Skip to main content

Advertisement

Log in

AMA: a new approach for solving constrained real-valued optimization problems

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Memetic algorithms (MA) have recently been applied successfully to solve decision and optimization problems. However, selecting a suitable local search technique remains a critical issue of MA, as this significantly affects the performance of the algorithms. This paper presents a new agent based memetic algorithm (AMA) for solving constrained real-valued optimization problems, where the agents have the ability to independently select a suitable local search technique (LST) from our designed set. Each agent represents a candidate solution of the optimization problem and tries to improve its solution through co-operation with other agents. Evolutionary operators consist of only crossover and one of the self-adaptively selected LSTs. The performance of the proposed algorithm is tested on five new benchmark problems along with 13 existing well-known problems, and the experimental results show convincing performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alba E, Dorronsoro B (2005) The exploration/exploitation tradeoff in dynamic cellular genetic algorithms. IEEE Trans Evol Comput 9: 126–142

    Article  Google Scholar 

  • Alkan A, Ozcan E (2003) Memetic algorithms for timetabling. In: The 2003 congress on evolutionary computation, vol 3, pp 1796–1802

  • Anderson DR, Sweeney DJ, Williams TA, Harrison NJ, Rickard JA (1996) Essentials of statistics for business and economics. Harper Educational (Australia) Pty. Limited, Publisher West Group

  • Barkat Ullah ASSM, Sarker R, Cornforth D (2007a) An evolutionary agent system for mathematical programming. In: Advances in computation and intelligence. Springer, Heidelberg, pp 187–196

  • Barkat Ullah ASSM, Sarker R, Cornforth D, Lokan C (2007b) An agent-based memetic algorithm (AMA) for solving constrained optimization problems. In: IEEE congress on evolutionary computation, 2007. CEC 2007, pp 999–1006

  • Barkat Ullah ASSM, Sarker R, Cornforth D (2007c) A combined MA-GA approach for solving constrained optimization problems. In: 6th IEEE/ACIS international conference on computer and information science, 2007. ICIS 2007, pp 382–387

  • Burke EK, Smith AJ (1999) A memetic algorithm to schedule planned maintenance for the national grid. J Exp Algorithmics 4: 1–13

    Article  Google Scholar 

  • Cheng R, Gen M (1996) Parallel machine scheduling problems using memetic algorithms. IEEE Int Conf Syst Man Cybern 4: 2665–2670

    Google Scholar 

  • Chootinan P, Chen A (2006) Constraint handling in genetic algorithms using a gradient-based repair method. Comput Oper Res 33: 2263–2281

    Article  MATH  Google Scholar 

  • Coello CAC (2000) Constraint-handling using an evolutionary multiobjective optimization technique. Civil Eng Environ Syst 17: 319–346

    Article  Google Scholar 

  • Coello CAC (2002) Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput Methods Appl Mech Eng 191: 1245–1287

    Article  MATH  Google Scholar 

  • Conover WJ (1980) Practical nonparametric statistics. Wiley, New York

    Google Scholar 

  • Davis L (1991) Handbook of genetic algorithms. Van Nostrand Reinhold, New York

    Google Scholar 

  • Dawkins R (1976) The selfish gene. Oxford University Press, New York

    Google Scholar 

  • Deb K (2000) An efficient constraint handling method for genetic algorithms. Comput Methods Appl Mech Eng 186: 311

    Article  MATH  Google Scholar 

  • Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, New York

    MATH  Google Scholar 

  • Deb K, Agrawal RB (1995) Simulated binary crossover for continuous search space. Complex Syst 9: 115–148

    MATH  MathSciNet  Google Scholar 

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6: 182

    Article  Google Scholar 

  • Dobrowolski G, Kisiel-Dorohinicki M, Nawarecki E (2001) Evolutionary multiagent system in multiobjective optimisation. In: Proceedings of the IASTED international symposium: applied informatics. IASTED/ACTA Press

  • Elfeky EZ, Sarker RA, Essam DL (2006) A simple ranking and selection for constrained evolutionary optimization. In: Lecture notes in computer science: simulated evolution and learning, pp 537–544

  • Farmani R, Wright JA (2003) Self-adaptive fitness formulation for constrained optimization. IEEE Trans Evol Comput 7: 445

    Article  Google Scholar 

  • Ferber J (1999) Multiagent systems as introduction to distributed artificial intelligence. Addison-Wesley, Reading

    Google Scholar 

  • Floudas C (1999) Handbook of test problems in local and global optimization. Nonconvex optimization and its applications. Kluwer, The Netherlands

    Google Scholar 

  • Floudas CA, Pardalos PM (1990) A collection of test problems for constrained global optimization algorithms. In: Lecture notes in computer science, vol 455. Springer, Berlin

  • Folino G, Pizzuti C, Spezzano G (2001) Parallel hybrid method for SAT that couples genetic algorithms and local search. IEEE Trans Evol Comput 5: 323–334

    Article  Google Scholar 

  • Goldberg D (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Reading

    MATH  Google Scholar 

  • Goldberg DE, Voessner S (1999) Optimizing global-local search hybrids. In: Proceedings of the genetic and evolutionary computation conference, pp 220–228

  • Guimaraes FG, Wanner EF, Campelo F, Takahashi RHC, Igarashi H, Lowther DA, Ramirez JA (2006) Local learning and search in memetic algorithms. In: IEEE congress on evolutionary computation, 2006. CEC 2006, pp 2936–2943

  • Gupta H, Deb K (2005) Handling constraints in robust multi-objective optimization. The 2005 IEEE congress on evolutionary computation, 2005, vol 1, p 25

  • Hart WE (1994) Adaptive global optimization with local search. Ph.D thesis. University of California, San Diego, CA

  • Himmelblau DM (1972) Applied nonlinear programming. McGraw-Hill, USA

    MATH  Google Scholar 

  • Hock W, Schittkowski K (1981) Test examples for nonlinear programming codes. In: Lecture notes in economics and mathematical systems. Springer, Heidelberg

    Google Scholar 

  • Houck CR, Joines JA, Kay MG (1996) Utilizing Lamarckian evolution and the Baldwin effect in hybrid genetic algorithms. Meta-heuristic research and applications group. NCSU-IE Technical Report 96-01. Department of Industrial Engineering, North Carolina State University

  • Hu X, Huang Z, Wang Z (2003) Hybridization of the multi-objective evolutionary algorithms and the gradient-based algorithms. In: The 2003 congress on evolutionary computation, vol 2, pp 870–877

  • Ishibuchi H, Kaige S, Narukawa K (2005) Comparison between Lamarckian and Baldwinian repair on multiobjective 0/1 Knapsack problems. Evol Multicriterion Optim 3410: 370–385

    Google Scholar 

  • Joines JA, Houck CR (1994) On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA’s. Proc First IEEE Conf Evol Comput 2: 579–584

    Article  Google Scholar 

  • Knowles JD, Corne DW (2000) M-PAES: a memetic algorithm for multiobjective optimization. In: Proceedings of the 2000 congress on evolutionary computation, vol 1, pp 325–332

  • Knowles J, Corne D (2001) A comparative assessment of memetic, evolutionary and constructive algorithms for the multi-objective d-msat problem. GECCO-2001 workshop program, pp 162–167

  • Knowles J, Corne D (2005) Memetic algorithms for multiobjective optimization: issues, methods and prospects. In: Recent advances in memetic algorithms, pp 313–352

  • Koziel S, Michalewicz Z (1999) Evolutionary algorithms, homomorphous mappings, and constrained parameter optimization. Evol Comput 7: 19–44

    Article  Google Scholar 

  • Krasnogor N (2002) Studies on the theory and design space of memetic algorithms. Ph.D thesis, University of the West of England

  • Krasnogor N, Smith J (2001) Emergence of profitable search strategies based on a simple inheritance mechanism. In: Proceedings of the genetic and evolutionary computation conference

  • Krasnogor N, Smith J (2005) A tutorial for competent memetic algorithms: model, taxonomy, and design issues. IEEE Trans Evol Comput 9: 474–488

    Article  Google Scholar 

  • Leung Y-W (2001) An orthogonal genetic algorithm with quantization for global numerical optimization optimization. IEEE Trans Evol Comput 5: 41–53

    Article  Google Scholar 

  • Liang JJ, Suganthan PN (2006) Dynamic multi-swarm particle swarm optimizer with a novel constraint-handling mechanism. In: IEEE congress on evolutionary computation, 2006. CEC 2006, pp 9–16

  • Liu J, Jing H, Tang YY (2002) Multi-agent oriented constraint satisfaction. Artif Intell 136: 101–144

    Article  MATH  MathSciNet  Google Scholar 

  • Liu J, Zhong W, Jiao L (2006) A multiagent evolutionary algorithm for constraint satisfaction problems. IEEE Trans Syst Man Cybern B 36: 54–73

    Article  Google Scholar 

  • Merz P, Freisleben B (1997) Genetic local search for the TSP: new results. In: IEEE international conference on evolutionary computation, 1997, pp 159–164

  • Merz P, Freisleben B (1999) A comparison of memetic algorithms, tabu search, and ant colonies for the quadratic assignment problem. In: Proceedings of the congress on evolutionary computation, vol 3, p 2070

  • Merz P, Freisleben B (2000) Fitness landscape analysis and memetic algorithms for the quadratic assignment problem. IEEE Trans Evol Comput 4: 337–352

    Article  Google Scholar 

  • Michalewicz Z (1994) Genetic algorithms + data structures = evolution programs. Springer, Heidelberg

    MATH  Google Scholar 

  • Michalewicz Z (1995) Genetic algorithms, numerical optimization and constraints. In: Proceedings of the 6th international conference on genetic algorithms, pp 151–158

  • Michalewicz Z, Janikow CZ (1996) GENOCOP: a genetic algorithm for numerical optimization problems with linear constraints. Commun ACM 39, Article No. 175

  • Michalewicz Z, Schoenauer M (1996) Evolutionary algorithms for constrained parameter optimization problems. Evol Comput 4: 1–32

    Article  Google Scholar 

  • Michalewicz Z, Nazhiyath G, Michalewicz M (1996) A note on usefulness of geometrical crossover for numerical optimization problems. In: 5th Annual conference on evolutionary programming. MIT Press, Cambridge/San Diego, pp 305–312

  • Molina D, Herrera F, Lozano M (2005) Adaptive local search parameters for real-coded memetic algorithms. In: The 2005 IEEE congress on evolutionary computation, vol 1, pp 888–895

  • Moscato P (1989) On evolution, search, optimization, genetic algorithms and martial arts towards memetic algorithms. Caltech concurrent computation program report 826. California Institute of Technology, Pasadena, CA, USA

  • Muruganandam A, Prabhaharan G, Asokan P, Baskaran V (2005) A memetic algorithm approach to the cell formation problem. Int J Adv Manuf Technol 25: 988–997

    Article  Google Scholar 

  • Nakashima T, Ariyama T, Yoshida T, Ishibuchi H (2003) Performance evaluation of combined cellular genetic algorithms for function optimization problems. In: Proceedings of the 2003 IEEE international symposium on computational intelligence in Robotics and Automation, 2003. vol 1, pp 295–299

  • Ong YS, Keane AJ (2004) Meta-Lamarckian learning in memetic algorithms. IEEE Trans Evol Comput 8: 99–110

    Article  Google Scholar 

  • Ong YS, Lim MH, Zhu N, Wong KW (2006) Classification of adaptive memetic algorithms: a comparative study. IEEE Trans Syst Man Cybern B 36: 141–152

    Google Scholar 

  • Paredis J (1994) Co-evolutionary constraint satisfaction. In: Proceedings of the 3rd conference on parallel problem solving from nature. Springer, New York, pp 46–55

  • Powell D, Skolnick MM (1993) Using genetic algorithms in engineering design optimization with non-linear constraints. In: Proceedings of the 5th international conference on genetic algorithms. Morgan Kaufmann, San Francisco, pp 424–431

  • Ray T, Kang T, Chye SK (2000) An evolutionary algorithm for constrained optimization. In: Proceedings of the genetic and evolutionary computation conference (GECCO’2000), San Francisco, CA

  • Richardson J, Palmar M, Liepus G, Hillard M (1989) Some guidelines for genetic algorithms with penalty functions. In: Proceedings international conference on genetic algorithms, pp 191–197

  • Runarsson TP, Yao X (2000) Stochastic ranking for constrained evolutionary optimization. IEEE Trans Evol Comput 4: 284

    Article  Google Scholar 

  • Sarker R (2001) A comparative study of different penalty function-based genetic algorithms for constrained optimization. Aust J Intell Inf Process Syst 7: 58–63

    Google Scholar 

  • Sarker R, Runarsson T, Newton C (2001) Genetic algorithms for solving a class of constrained nonlinear integer programs. Int Trans Oper Res 8: 61–74

    Article  MATH  MathSciNet  Google Scholar 

  • Sarker R, Kamruzzaman J, Newton C (2003) Evolutionary optimization (EvOpt): a brief review and analysis. Int J Comput Intell Appl 3: 311–330

    Article  Google Scholar 

  • Siwik L, Kisiel-Dorohinicki M (2006) Semi-elitist evolutionary multi-agent system for multiobjective optimization. In: Lecture notes in computer science: computational science, ICCS, pp 831–838

  • Smith JE (2003) Co-evolving memetic algorithms: a learning approach to robust scalable optimisation. In: The 2003 congress on evolutionary computation, 2003. CEC 2003, vol 1, pp 498–505

  • Spalanzani A (2000) Lamarckian vs Darwinian evolution for the adaptation to acoustical environment change. Artif Evol 1829: 136–144

    Article  Google Scholar 

  • Srinivas N, Deb K (1994) Multiobjective optimization using nondominated sorting in genetic algorithms. Evol Comput 2: 221–248

    Article  Google Scholar 

  • Srinivasan D, Rachmawati L (2006) An efficient multi-objective evolutionary algorithm with steady-state replacement model. In: Proceedings of the 8th annual conference on Genetic and evolutionary computation. ACM Press, Seattle

  • Stan F, Art G (1997) Is it an agent, or just a program?: a taxonomy for autonomous agents. In: Intelligent agents III agent theories, architectures, and languages. Lecture notes in computer science, vol 3. Springer, Berlin, pp 21–35

  • Surry P, Radcliffe N, Boyd I (1995) A multi-objective approach to constrained optimization of gas supply networks: the COMOGA method. In: Proceedings of Evol. Comput. AISB workshop, pp 166–180

  • Sycara KP (1998) Multiagent systems. The American Association for Artificial Intelligence, Al Magazine 10(2): 79–93

    Google Scholar 

  • Takahama T, Sakai S (2006) Constrained optimization by the e constrained differential evolution with gradient-based mutation and feasible elites. In: IEEE congress on evolutionary computation, CEC 2006, pp 1–8

  • Tang J, Lim MH, Ong YS, Er MJ (2005) Solving large scale combinatorial optimization using PMA-SLS. In: Proceedings of the 2005 conference on genetic and evolutionary computation. ACM Press, Washington DC, USA

  • Tang J, Lim MH, Ong YS (2006) Adaptation for parallel memetic algorithm based on population entropy. Proceedings of the 8th annual conference on genetic and evolutionary computation. ACM Press, Seattle, Washington, USA

  • Tang J, Lim M, Ong Y (2007) Diversity-adaptive parallel memetic algorithm for solving large scale combinatorial optimization problems. Soft Comput Fusion Found Methodol Appl 11: 873–888

    Google Scholar 

  • Tasgetiren MF, Suganthan PN (2006) A multi-populated differential evolution algorithm for solving constrained optimization problem. In: IEEE congress on evolutionary computation, 2006. CEC 2006, pp 33–40

  • Torn A, Zilinskas A (1989) Global optimization, vol 350. Springer, New York

    Google Scholar 

  • Vavak F, Fogarty T, Jukes K (1996) A genetic algorithm with variable range of local search for tracking changing environments. Parallel problem solving from nature—PPSN IV. Springer, Berlin/Heidelberg, pp 376–385

  • Venkatraman S, Yen GG (2005) A generic framework for constrained optimization using genetic algorithms. IEEE Trans Evol Comput 9: 424–435

    Article  Google Scholar 

  • Whitley LD (1993) Cellular genetic algorithms. In: Proceedings of the 5th international conference on genetic algorithms. Morgan Kaufmann, San Francisco

  • Whitley D, Gordon V, Mathias K (1994) Lamarckian evolution, the Baldwin effect and function optimization. In: Lecture notes in computer science: parallel problem solving from nature—PPSN III. Springer, Berlin/Heidelberg, pp 5–15

  • Zhong W, Liu J, Xue M, Jiao L (2004) A multiagent genetic algorithm for global numerical optimization. IEEE Trans Syst Man Cybern B 34: 1128–1141

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abu S. S. M. Barkat Ullah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barkat Ullah, A.S.S.M., Sarker, R., Cornforth, D. et al. AMA: a new approach for solving constrained real-valued optimization problems. Soft Comput 13, 741–762 (2009). https://doi.org/10.1007/s00500-008-0349-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-008-0349-1

Keywords

Navigation