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Abstract There is a variety of knapsack problems in the literature. Multidimensional 0-1

Knapsack Problem (MKP) is an NP-hard combinatorial optimization problem having many

application areas. Many approaches have been proposed for solving this problem. In this paper, an

empirical investigation of memetic algorithms (MAs) that hybridize genetic algorithms (GAs) with

hill climbing for solving MKPs is provided. Two distinct sets of experiments are performed.

During the initial experiments, MA parameters are tuned. GA and four MAs each using a different

hill climbing method based on the same configuration are evaluated. In the second set of

experiments, a self-adaptive (co-evolving) multimeme memetic algorithm (MMA) is compared to

the best MA from the parameter tuning experiments. MMA utilizes the evolutionary process as a

learning mechanism for choosing the appropriate hill climbing method to improve a candidate

solution at a given time. Two well-known MKP benchmarks are used during the experiments.

Keywords Evolutionary Algorithms, Self-generation, Knapsack Problem, Local Search,

Adaptation

1 Introduction

Knapsack problems represent a set of hard combinatorial optimization problems. There are

different types of knapsack problems, such as, bounded, multiple-choice, multidimensional,

multiobjective, etc. In the multiple knapsack problems, each item is selected from a partition. In

this paper, Multidimensional 0-1 Knapsack Problem (MKP) is used as a case study. In MKPs,

1 The author is currently on leave of absence and working as a research fellow in the ASAP group at the
School of Computer Science, University of Nottingham, exo@cs.nott.ac.uk.
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there are multiple knapsacks and each item has a different weight in different knapsacks. The

objective is to maximize the total profit obtained by selecting a subset of items while respecting

the capacity constraints defined for each knapsack. As the 0-1 suggests, the items are indivisible.

The same selected items are placed into all knapsacks. Given a set I of n items and m knapsacks,

let S be a subset of I such that SI. Then an MKP can be formally stated as follows
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where profit(x) denotes the profit earned by selecting the item xS, weight(x,i) denotes the weight

of the item x in the ith knapsack and capacity(i) denotes the capacity of the ith knapsack. Let q

indicate the number of items that are chosen to be placed into the knapsacks (||S||), maxProfit

indicate iI, maximum{profit(i)} and minProfit indicate iI, minimum{profit(i)}.

MKPs are NP-hard problems [16]. Many researchers took an interest in the problem due to its

wide range of real-world application areas, such as stock cutting, cargo loading, capital budgeting,

and allocating processors in a distributed computing environment. A variety of approaches were

utilized for solving MKPs, such as approximation heuristics, integer programming, genetic

algorithms, tabu search, particle swarm optimization, grammatical evolution and membrane

computing [6, 7, 8, 15, 17, 18, 22, 28, 29, 42, 51]. A survey on MKPs can be found in [14],

including exact and (meta-)heuristic approaches for solving them. An overview of knapsack

problems in general and their categorizations can be found in [43].

A memetic algorithm (MA) is a nature-inspired population based optimization approach that

makes intensive use of local search. A set of different MAs is implemented for solving MKPs.

These MAs can be grouped into two classes based on the taxonomy provided by Ong et al. [36]. In

the first class, each canonical MA attempts to improve a given candidate solution using a single

hill climbing method. In the second class, a self-adaptive MA with a local level adaptation

allowing multiple hill climbers for improvement is utilized. A local level adaptation indicates that

the decision for choosing a hill climbing method from multiple hill climbers during the

improvement stage involves in the use of partial historical knowledge. The objective of this paper

is to analyze a set of MAs, including the one presented by Krasnogor [27] employing a

Lamarckian learning mechanism for self-adaptation on well known benchmark suites of multiple-

knapsack problems. Our aim is to answer a simple question, “Does the suggested learning

mechanism improve the decision process for choosing the hill climber(s) to employ, and does this

approach lead to even better results compared to the canonical MA in terms of the quality of final

solutions?” This study extends the initial investigations performed on a set of benchmark functions

in [37] to the MKPs as a constraint optimization case study.

Section 2 presents some preliminaries and the algorithmic details. Genetic algorithms,

memetic algorithms, including the self-adaptive multimeme approach and their designs for solving

MKPs are discussed in successive sections. Then, benchmark problem instances, experimental
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setup, and the results are given. Parameter tuning experiments are reported for deciding which

memetic algorithm components to use. The performances of different memetic algorithms are

compared. Finally, conclusions and remarks are provided in Section 5.

2 Memetic algorithms

2.1 Genetic algorithms

A genetic algorithm (GA) as a meta-heuristic is a subclass of evolutionary algorithms (EAs) that

has proven to be successful in solving difficult, time consuming problems [19, 23]. GAs are

inspired from the Darwinian theory of evolution. The search for optimum is directed by a set of

genetic operators, such as crossover, mutation and natural selection. In a typical GA, a population

of chromosomes (individuals), denoting the conceptual representation of candidate solutions

(states) goes through an evolutionary process. The population size is fixed before the evolution

starts. The traditional representation scheme is the binary encoding, where a gene (locus) in a

chromosome receives an allele value from {0, 1}. For example, the chromosome “011101” might

represent a candidate solution for some problem requiring a chromosome length of 6.

The evolution usually starts with a randomly or heuristically generated population of

chromosomes. In each generation (iteration), the quality of the solutions is evaluated by a fitness

function. Then the individuals, referred to as mates (parents) are stochastically selected for

crossover favouring good ones with good fitness values to form new individuals, called offspring.

This process continues until the offspring pool is full. The size of this pool is traditionally equal to

the population size. One-point crossover (1PTX) and uniform crossover (UX) operators are the

most common operators used in GAs [19, 23, 47]. 1PTX exchanges the genetic material at a

randomly selected crossover point in two mates generating two offspring. For example, assuming

that “010100” and “001110” are selected as mates and the crossover point is randomly decided to

be 3, then the resulting offspring after 1PTX will be “010110” and “001100”. UX exchanges each

allele in two given mates with a probability of 0.5 and generates two offspring. For example,

assuming an ordered sequence of random values in [0,1) is generated as <0.24, 0.56, 0.89, 0.33,

0.45, 0.67> for each gene in a chromosome of length 6; applying UX to “010100” and “001110”

yields “001100” and “010110”. After the recombination process, the offspring are modified by

mutation. The traditional mutation scheme processes each gene in an offspring consecutively

starting form the first bit and flips its value with a given mutation probability. For example, given

the mutation probability is 1/60.17 and an ordered sequence of random values in [0,1) is

generated as <0.04, 0.46, 0.83, 0.13, 0.65, 0.88> for each gene in a chromosome of length 6; the

offspring “001100” becomes “101000” after employing mutation. After crossover and mutation,

the chromosomes are selected from the current population and offspring pool to survive to the next

generation. In the traditional trans-generational replacement scheme, all chromosomes are

replaced by the offspring. There is also an elitist (top-N) scheme that involves in selecting the best

chromosomes based on their fitness values from both the current population and the offspring pool

for survival [12, 21]. The evolutionary process continues until some termination criteria are met,

e.g., until the optimal solution is found.
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2.2 Memes and self-generation

Memetic algorithms (MAs) are hybrid approaches that embed local searches into genetic

algorithms [32, 45]. For instance, a meme may denote a hill climbing method capable of local

learning. MAs aim to balance the exploration and exploitation capabilities of both genetic

algorithms and local search. Many researchers already highlighted the effectiveness of integrating

meme(s) into evolutionary algorithms for solving complex optimization problems based on

various frameworks [1, 2, 13, 30, 38, 40, 48, 53, 54]. In a canonical MA, a prefixed single meme is

employed after mutation and evaluation steps of a GA. Obviously, a variety of memes might be

designed for solving a specific problem. There is strong empirical evidence that the choice of

meme in canonical MAs influences the performance of the search [4, 37, 38, 39, 41, 55]. Many

strategies can be adopted to utilize multiple memes simultaneously within the MA framework. For

instance, a mechanism can be introduced that decides which meme to use among multiple memes

during the improvement stage. Hyper-heuristics refer to the approaches that perform a search over

the heuristics space [3, 9, 39]. A hyper-heuristic is used to choose a heuristic from a set of

heuristics to employ at a given time. Subsequently, a hyper-heuristic can be embedded into the

MA framework as a mechanism to choose the appropriate meme [11, 36, 37, 39, 55]. As an

extreme option, new MA architectures can be established for handling multiple memes [26, 27, 33,

35, 36, 37, 39, 41, 53]. In any case, the ultimate objective is obtaining a robust high level

adaptation, such that MA will perform successfully both for the problems with different

characteristics in a given domain, and for the problems in some different domains. If a well-

performing optimization algorithm on a set of problem instances utilizes some problem-specific

information for directing the search, then the no free lunch theorem of Wolpert et al. [52] implies

that such an algorithm is likely to perform worse on different problem instances (and/or in

different problem domains). Hence, the adaptation mechanisms should not incorporate any

problem dependent information within for more generality. Naturally, most of the researchers

focus on the adaptation techniques and relevant issues. An early survey on adaptation in genetic

algorithms can be found in [46]. Ong et al. [36] provided a recent survey and a well-defined

taxonomy for adaptive MAs and evaluated different types of adaptive MAs over a set of

benchmark problems.

One of the latest striking studies was provided in [26]. Krasnogor presented a self-adaptive

MA, referred to as multimeme memetic algorithm (MMA). MMA provides a broad framework

based on self-generation (co-evolution) to handle multiple operators and parameters all together. In

this study, only its capability for supporting multiple memes is focused. In order to implement

self-adaptation, the memetic information is coded along with the genetic information into each

chromosome. During the initial population generation, the meme of each individual is randomly

determined. For example, assuming that there are 4 hill climbing methods to be utilized,

“101001+2” might be a randomly generated individual that holds the second hill climber as a

meme. Then, both genetic and memetic materials are co-evolved. In MMAs, using the

Lamarckian learning mechanism, each individual improves itself via the evolutionary process. A

meme similar to a gene also gets inherited to an offspring from one of its parents using Simple

Inheritance Mechanism (SIM) during crossover [27]. SIM propagates the meme of the parent with



5

the better fitness to the offspring. When both parents have the same fitness value, one of them is

selected randomly. For example, in a minimization problem, applying 1PTX to two individuals

having fitness values of 25 and 10, respectively “110|011+3”(25) × “101|001+2”(10) yields

“110001+2”and “101011+2”. The inherited memes also goes through a mutation process similar to

the genetic material. A meme is randomly perturbed to another possible value based on a

probability rate called Innovation Rate (IR). For example, the meme in “101011+2” might be

mutated into “101011+4”, if the generated uniform random number in [0, 1) is less than IR. After

the mutation, an individual uses the meme to decide on the hill climbing method to use. E.g,

“101011+4” invokes the fourth hill climbing method for improvement.

Krasnogor [26] used the MMA approach for solving traveling salesperson problems, protein

structure prediction and MaxCMO problems. Ong et al. [35] tested two new methods for selecting

the memes using the MMA framework over 3 benchmark functions. Ozcan [37] experimented

with canonical MAs and MMAs for benchmark function optimization and nurse rostering.

Similarly, Ozcan et al. [41] compared different canonical MAs and MMAs utilizing a variety of

meme selection methods for parallel code optimization. In both studies, the results show that the

canonical MA with a good meme choice performs slightly better than the standard MMA. Unlike

these previous studies, Neri et al. [33] dealt with a continuous optimization problem. The authors

proposed a multimeme approach that adaptively manages three local search components and a set

of algorithmic parameters for designing optimal multidrug HIV therapy. Their algorithm generated

better therapies as compared to three other meta-heuristics. No comparison to a canonical MA is

provided in their study.

3 Memetic algorithms for solving MKPs

Tavares et al. [49, 50] observed that the use of binary representation combined with hill climbing

that considers the profit and resource consumption ratios performed the best in memetic

approaches for solving MKPs. Hence, the binary encoding is used as a representation scheme in

the memetic algorithms for solving MKPs. An allele is either 1 or 0, representing whether

corresponding item is included in S or not. For example, considering an MKP with 5 items,

“10001” denotes that the first and the last items are added into the knapsacks. Infeasible solutions

might arise due to the overfilled knapsacks. Let r denote the number of constraint violations

(overfilled knapsacks).

Four different maximizing fitness functions are implemented that can handle infeasible

solutions based on penalty as presented in Table 1. f0 is the same fitness function as in [25]. The

constraint violations are punished by decreasing some amount of profit from f(S) in Equation (1).

The punishment is emphasized more in the proposed fitness function f1. In f2, the profit is scaled

with respect to some factor of the number of overfilled knapsacks. It does not generate negative

fitness values. The fitness function f3 returns f(S) if the solution is feasible, otherwise a negative

constant as a death penalty is returned without discrimination of any infeasible solutions. More on

evolutionary algorithms for multidimensional knapsack problems and fitness functions can be

found in [20].
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Definition 1: Let HD(x,y) denote the hamming distance between the binary strings x and y, and U

and F denote the unfeasible and feasible search space for an MKP problem. Given a penalty

function pfi: S 0 , and a fitness function fi: S that uses the penalty function pfi to evaluate a

candidate solution S for MKP problems, pfi satisfies the following monotony conditions on G,

where G={xU: HD(x,y)=1, yU }  {xF: HD(x,y)=1, yU }

(M1) if pfi is monotonic increasing

(M2) if pfi is strictly monotonic increasing

(M3) if fi is monotonic increasing

(M4) if fi is strictly monotonic increasing

Gottlieb shows that a fitness function that satisfies all conditions generates a better performance.

Table 1 Fitness functions for MKPs.

Label Fitness function

f0  rSf )( maxProfit

f1  qrSf )( (maxProfit+1)

f2 )1/()( log qrSf

f3 )(Sf const

Theorem 1: The function f1 satisfies (M4).

Proof. Let x,y  G. The change in the penalty value, denoted as pf is

pf = |pf1(x)– pf1(y) |  (r+q–1)(maxProfit + 1)

since m2, and there should be at least one overfilled knapsack to activate the penalty function, the

penalty is increased at least by (maxProfit + 1), hence pf maxProfit.

As a result, it is expected that f1 will perform better than the others.

Four memes (hill climbers) are used in the memetic algorithms: Steepest Gradient (HC0),

Next Gradient (HC1), Random Mutation Hill Climbing (HC2), and Davis’s Bit Hill Climbing

(HC3) [10, 31, 37]. These hill climbing methods are chosen, since they are appropriate for all

types of optimization problems requiring binary encoding as a representation scheme. Moreover,

they can be easily extended to be used as a hill climber with other type of encodings in different

problems [4, 11, 13, 3741, 54]. HC0 generates n new solutions from a given candidate solution

by inverting each bit one by one. Hence, n different neighbours within a Hamming distance of 1

from the current solution are visited. If an improved solution is obtained, then it replaces the

current one. HC1 iterates over a candidate solution starting from the most significant bit towards

the least significant bit. At each step, the bit in question is inverted. If an improvement is achieved,

the new solution is accepted as the current. Then the iteration continues with the neighbouring bit.

HC3 performs the neighbourhood search similar to HC1. The only difference between them is the

order of inversions. HC3 generates a random permutation of n locations that will be scanned and

the iterations take place in that order. HC2 inverts a randomly selected bit at each step. If the

fitness improves, the modified candidate solution becomes the current. More details on the hill
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climbers used during the experiments can be found in [31]. HC0, HC1 and HC3 evaluate n

different neighbourhoods, while HC2 checks only a single neighbourhood during the improvement

process. In order to perform a fair comparison between the approaches, the maximum number of

steps (neighbouring solutions visited from the current solution) is fixed for all hill climbers during

the experiments. The consecutive bit inversions during a hill climbing process are repeated for a

factor of the bit-string length.

During an evolutionary process, the building blocks are processed and combined to produce

better solutions. UX is the most disruptive crossover operator that tends to destroy existing

building blocks, while 1PTX is the least disruptive one [19, 23]. Although 1PTX is the traditional

operator, Syswerda [47] provided empirical evidence that UX might outperform 1PTX in some

situations. Hence, both 1PTX and UX are implemented as crossover operators for comparison.

Crossover is employed to all parents as in the traditional GAs [19]. In all the evolutionary

algorithms for solving MKPs, the tournament selection method with a tour size of two, the

traditional mutation and a trans-generational replacement strategy with weak elitism are used [12,

21, 3741]. The weak elitism allows two best individuals to survive to the next generation and

replaces the remaining of the population with the offspring.

4 Experiments

Pentium IV 2 GHz. machines with 2 GB MB RAM are used during the experiments. Before the

main experiments, some preliminary ones are performed to decide on the best set of genetic

components. The multimeme strategy is tested during the last set of experiments. In all multimeme

experiments, IR rate is fixed at 0.20 [26].

4.1 Experimental data and evaluation criteria

SAC-94 [25] and ORlib [6] suites were used for the experiments. ORlib suite contains 27 different

problem sets, each having 10 randomly generated problem instances (files), while SAC-94 consists

of 6 problem sets (hp, pb, pet, weing, sento, weish). SAC-94 problem sets contain different

number of problems that are mostly small as illustrated in Table 2. Each problem instance in SAC-

94 will be identified by its name and a unique file id (fid). For example, the first instance in the hp

MKP set is referred to as hp1. On the other hand, each problem set in ORlib is labelled as ORmxn-

tightness ratio, where m{5, 10, 30}, n{100, 250, 500} and tightness ratio{0.25, 0.50, 0.75}.

A problem instance in ORlib will be identified by their labels and a unique file id as ORmxn-

tightness ratio_fid.

Table 2 The number of items and knapsacks in each SAC-94 problem instance

Problem Instance m n Problem Instance m n

hp1 4 8 pb1 4 27

hp2 4 35 pb2 4 34

weing1-6 2 28 pb4 2 29

weing7-8 2 105 pb5 10 20
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sento1-2 30 60 pb6 30 40

weish1-5 5 30 pb7 30 37

weish6-9 5 40 pet2 10 10

weish10-13 5 50 pet3 10 15

weish14-17 5 60 pet4 10 20

weish18-21 5 70 pet5 10 28

weish22-25 5 80 pet6 5 39

weish26-30 5 90 pet7 5 50

Success rate (s.r.) is the ratio of successful runs to all runs, where a successful run refers to a

run resulting in known optimal fitness. Another evaluation criterion is the %-gap, which measures

how much the best solution found deviates from the optimal value of LP relaxation, as described

in [6] for the ORlib instances. For the SAC-94 instances, the gap is computed with respect to the

optimal value. Additionally, evolutionary activity, obtained during an experiment is considered for

the evaluation of the memes used within an MMA [26]. Evolutionary activity of a meme is the

total number of its appearance among all individuals between the initial generation and the current

one in a run. It is a monotonically increasing function with respect to the generation. The slope of

the evolutionary activity versus generation plot indicates how much a meme is favoured. The more

a meme gets invoked, the steeper the slope.

4.2 Parameter tuning

During the preliminary experiments, arbitrarily selected subset of 20 problem instances is used

unless it is mentioned. 16 instances are compiled from ORlib by using the first instance (with file

id 1) having a tightness ratio of 0.25, or the last instance (with file id 10) having a tightness ratio of

0.75, or both instances for each n, m pair in the benchmark. In our preliminary experiment, it has

been noticed that hp, sento and weish from SAC-94 turns out to be the simple problems to solve.

Thus, four problem instances are randomly chosen from the SAC-94 problem sets pb, pet, weing

and including only hp as a simple case. Each experiment is repeated 50 times. Average %-gap

indicates how much the average fitness of 50 runs deviates from the LP optimum. A run terminates

whenever the expected fitness is achieved or the time limit of 600 sec. is exceeded. The parameter

settings are arbitrarily chosen with respect to the chromosome length (n). Reeves [44] articulated

that a minimum population size of 20 is appropriate for binary encoding up to a chromosome

length of 524, if the probability of reaching a point in the search space from the initial population

using only crossover is fixed as 99.9%. Hence, the population size is allowed to vary as min{n/2,

20} for each problem instance. This choice generates a population size over 50 for most of the

problem instances. The upper bound for the number neighbourhoods evaluated by a hill climber is

set to 2n. During the initial experiments, HC0 was arbitrarily chosen as a meme within the

memetic algorithms.

Ochoa [34] suggested that setting a mutation rate of (1/chromosome-length) while

performing a search over rugged landscapes with a population size greater than 50 and a

tournament selection with a tour size of 2 might improve the search performance. Hence, the
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traditional 1PTX and mutation that flips a bit with a mutation rate of 1/n are fixed as the initial

MA operators. A single allele per individual gets mutated on average with this mutation

probability. Then, different options for fitness computation, crossover, mutation rate and meme as

the MA components are investigated by fixing the best component each time.

Firstly, using a randomly selected problem instances from four different SAC-94 problem

sets, the fitness functions are tested for verifying the theoretical study. The fitness function f1

yields the best performance as expected with a full success in 50 runs for each problem instance as

shown in Figure 1. Therefore, f1 is preferred in all the succeeding experiments.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Fig. 1 Performance comparison of fitness functions based on average success rates over arbitrarily selected four

SAC-94 problem instances from different problem sets.

In the next set of experiments, the simple GA and the MAs using different hill climbers are

compared. After the best meme choice is determined, it is fixed and the performances of crossover

operators are compared. The results based on average %-gap are presented in Table 3 over a subset

of problem instances from SAC-94 and ORlib. For sample SAC-94 problems, the average %-gap

does not signify the successful meme, since in most of the cases the optimum is achieved. Figure 2

displays the average number of evaluations per run for each MA, where a bar appears only if the

algorithm generates full success for the given problem. GA performs better than all MAs only for a

single problem instance, weing6. Moreover, the performance of GA is not significantly different

than the MA with HC0 for this problem instance. HC2 and HC3 deliver the best performances for

SAC-94 sample problems. On the other hand, either HC0 (in 10 problem instances) or HC3 (in 4

problem instances) generates the best performance for the ORlib sample problems. For OR5x100-

0.75_10 and OR30x100-0.25_1, there are performance-wise ties between some memes. There is at

least one MA that outperforms GA in almost all selected problems considering all sample problem

instances. Moreover, the results of the paired t-test between HC0 and GA over the average %-gaps

validate the difference in performance is significant with a confidence interval of 99.99%. HC1 is

the worst hill climber, while HC0, HC2 and HC3 have similar performances in the overall. Yet,

HC0 performs the best on more problem instances than the rest of them having the least average

%-gap. Hence, HC0 is fixed as the best meme choice during the crossover trials. The paired t-test

over the average %-gaps shows no significant difference in performance between 1PTX and UX.

f0 f1 f2 f3

avr. success rate
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UX performs better than 1PTX in 11 problems, while 1PTX performs better than UX in 5

problems over 15 ORlib problems as shown in Table 3. For SAC-94, UX is the best operator.

Table 3 Performance comparisons of memetic algorithms using different memes and crossovers over a subset of

benchmark problem instances based on average %-gap. Bold entries indicate the best performing operators.

Problem Instance Memes Crossovers

label_fid opt GA HC0 HC1 HC2 HC3 1PTX UX

OR5x100-0.75_10 59,965 0.20 0.11 0.29 0.11 0.11 0.11 0.06

OR5x250-0.25_1 59,312 1.25 0.93 1.17 1.15 1.22 0.93 0.76

OR5x250-0.75_10 154,662 0.37 0.15 0.84 0.30 0.30 0.15 0.07

OR5x500-0.25_1 120,130 1.38 0.82 1.11 2.15 2.16 0.82 3.19

OR5x500-0.75_10 299,904 0.51 0.13 0.46 0.56 0.55 0.13 0.42

OR10x100-0.25_1 23,064 0.93 1.06 0.75 0.36 0.31 1.06 0.56

OR10x100-0.75_10 60,633 0.20 0.19 0.19 0.16 0.14 0.19 0.11

OR10x250-0.25_1 59,187 1.88 1.40 1.68 1.21 1.16 1.40 1.34

OR10x250-0.75_10 149,704 0.65 0.35 0.74 0.39 0.40 0.35 0.21

OR10x500-0.25_1 117,726 2.04 1.52 1.53 2.88 2.84 1.52 3.00

OR10x500-0.75_10 307,014 0.70 0.28 1.98 0.74 0.73 0.28 0.84

OR30x100-0.25_1 21,946 1.59 1.44 1.74 1.03 1.03 1.44 1.20

OR30x100-0.75_10 60,603 0.43 0.25 0.49 0.30 0.31 0.25 0.21

OR30x250-0.25_1 56,693 1.85 1.66 2.97 1.46 1.37 1.66 1.65

OR30x250-0.75_10 149,572 0.67 0.42 1.18 0.47 0.51 0.42 0.20

OR30x500-0.75_10 300,460 0.76 0.63 1.88 1.29 1.28 0.63 4.03

hp2 3,186 0.67 0.31 0.06 0.00 0.00 0.31 0.18

pb7 1,035 0.59 0.37 0.21 0.00 0.00 0.37 0.30

pet5 12,400 0.00 0.00 0.00 0.00 0.00 0.00 0.00

weing6 130,623 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Avr. 0.83 0.60 0.96 0.73 0.72 0.60 0.92
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Fig. 2 Performance comparison of the simple GA and MAs using different memes based on the mean no. of

evaluations and the standard dev. in log. scale for hp2, pb7, pet5 and weing6 problems. For each experiment, related

bar appears in the plot, only if all the runs yield the expected result.

The performances of the MA for different mutation rates are also investigated. In particular,

the following set of configurations is experimented {1/n, 2/n, 4/n, 8/n, 16/n}. The increasing

mutation rates serves to increase the exploration capability of MAs. In this set of experiments, the

meme and the crossover operator are fixed as HC0 and UX, respectively. The empirical results are

then summarized in Table 4. Considering the average %-gap over all data generated by each

mutation rate used in the MA, 16/n delivers the worst performance for both SAC-94 and ORlib

problem instances. 4/n and 1/n are the best mutation rate choices for SAC-94 and ORlib,

respectively. 1/n is the best performing mutation rate in 11 problems, while 2/n is the best in 4

problems. Considering the overall performance of each mutation rate, the traditional 1/n performs

slightly better than 2/n and the values 4/n and 16/n have the worst performances. Increasing the

mutation rate too much disturbs the balance between exploration and exploitation capabilities of

MAs and the search performance worsens.

Table 4 Performance comparison of mutation rates based on average %-gap. Bold entries mark the best mutation

rate for the corresponding problem instance

Problem Instance Mutation Rates

label_fid opt 1/n 2/n 4/n 8/n 16/n

OR5x100-0.75_10 59,965 0.06 0.04 0.18 1.19 3.43

OR5x250-0.25_1 59,312 0.76 1.75 5.29 10.64 15.54

OR5x250-0.75_10 154,662 0.07 0.10 0.78 2.81 4.96

OR5x500-0.25_1 120,130 3.19 4.62 7.72 12.36 16.68

OR5x500-0.75_10 299,904 0.42 0.63 1.59 3.43 5.57

hp2no of evals.

GA HC0 HC1 HC2 HC3 GA HC0 HC1 HC2 HC3

no of evals. pb7

no of evals.

GA HC0 HC1 HC2 HC3

no of evals.

GA HC0 HC1 HC2 HC3

pet5 weing6
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OR10x100-0.25_1 23,064 0.56 0.08 1.68 5.02 10.98

OR10x100-0.75_10 60,633 0.11 0.07 0.25 1.56 4.28

OR10x250-0.25_1 59,187 1.34 1.71 5.08 10.65 15.71

OR10x250-0.75_10 149,704 0.21 0.27 1.08 3.08 5.28

OR10x500-0.25_1 117,726 3.00 4.07 7.48 12.22 16.39

OR10x500-0.75_10 307,014 0.84 1.29 2.28 3.90 5.83

OR30x100-0.25_1 21,946 1.20 0.82 1.99 7.04 14.78

OR30x100-0.75_10 60,603 0.21 0.18 0.52 2.06 4.13

OR30x250-0.25_1 56,693 1.65 1.87 5.70 12.04 17.39

OR30x250-0.75_10 149,572 0.20 0.26 1.32 3.37 5.57

OR30x500-0.75_10 300,460 4.03 4.23 4.69 5.37 6.45

hp2 3,186 0.18 0.15 0.00 0.00 0.88

pb7 1,035 0.30 0.12 0.00 0.13 3.62

pet5 12,400 0.00 0.00 0.00 0.00 0.04

weing6 130,623 0.00 0.00 0.00 0.00 0.02

Avr. 0.92 1.11 2.38 4.84 7.88

4.3 Experimental results

During the final set of experiments, the time limit used as a termination criterion is changed to a

maximum number of generations with a value of 104. Population size is fixed as 102. For each

problem instance in a set, a single run is performed. The results are provided for each problem set

in both SAC-94 and ORlib benchmarks by averaging over the problem instances in a set. The rest

of the GA settings discovered to be the best are maintained from the parameter tuning

experiments. Most of the previous approaches were tested over a small subset of SAC-94 [6, 7, 22,

25] or over some instances that have not been used as a benchmark anymore due their small size.

Only, Chu et al. [6] evaluated their approach over ORlib and SAC-94. The modifications in the

experimental setup are arranged in order to be able to perform a direct comparison to the results

provided in [6].

4.3.1 Comparison of the memetic algorithms

Table 3 shows that HC3 and HC2 are the best memes in 7 and 5 different problems, respectively.

They perform the same in the rest of the problems. HC3 with a 0.72 average %-gap delivers a

slightly better performance than HC2 with a 0.73 average %-gap in the overall. Ozcan et al. [39]

showed empirically that reducing the number of heuristics within a hyper-heuristic system might

improve its performance. Hence, a reduced set of two most successful memes; h={HC0, HC3} are

preferred within the multimeme memetic algorithm. MMA and the MA with HC0 are tested using

the benchmark problems. Two values are compared for the maximum number of hill climbing

steps, fixed as a factor of the chromosome length; n and 8n [37, 38, 41]. Hence, the hill climbing

process in MAs and MMA has a run time complexity of O(mn). The algorithms are labelled as

algorithm_name-factor. The results are presented in Table 5. The number of hill climbing steps
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affects the performance of the MAs. The multimeme approach identifies the useful memes

successfully. MMAs perform better than MAs with a single meme. Increasing the maximum

number of hill climbing steps generates a better performance for large problem instances for both

MMA and MA approaches. On the other hand, the performance of MA improves, while the

performance of MMA does not change for the small problem instances. On the whole, MMA-8 is

the most successful approach yielding an average gap of 0.92% over 270 instances in ORlib (Table

5(a)) and an average success rate of 0.92 over 6 set of problem instances in SAC-94 (Table 5(b)).

Figure 3 shows the average evolutionary activity of the HC0 and HC3 memes over 50 runs

for solving the problem instance OR10x500-0.75_10 using MMA-1 and MMA-8. MMAs invoke

HC0 more than HC3 on average and both memes are utilized throughout a run. HC3 is employed

more than HC0 during the initial generations. This situation persists for nearly hundreds and tens

of generations during MMA-1 and MMA-8 runs, respectively. Then, HC0 takes over and it is

employed more than HC3. HC0 is utilized more while HC3 is utilized less when the maximum

number of hill climbing steps is increased in MMA. The same phenomenon is observed almost for

all problems. As a result, MMAs generate a synergy between the memes and produce an improved

performance as compared to the MA with a good meme choice.

Table 5 Performance comparison of Memetic Algorithms on (a) ORlib with respect to the average %-gap, (b) SAC-

94 with respect to the success rate

(a)

Problem Set
%-gap

MA0-1 MMA-1 MA0-8 MMA-8

OR5x100-0.25 1.68 1.56 1.33 1.29

OR5x100-0.50 0.78 0.90 0.62 0.68

OR5x100-0.75 0.47 0.50 0.41 0.42

OR5x250-0.25 1.34 0.86 0.83 0.75

OR5x250-0.50 0.54 0.49 0.37 0.35

OR5x250-0.75 0.30 0.26 0.20 0.19

OR5x500-0.25 1.21 0.96 0.63 0.57

OR5x500-0.50 0.45 0.46 0.26 0.27

OR5x500-0.75 0.22 0.25 0.16 0.17

OR10x100-0.25 3.16 2.57 2.37 2.20

OR10x100-0.50 1.44 1.28 1.18 1.12

OR10x100-0.75 0.78 0.73 0.69 0.64

OR10x250-0.25 2.06 1.72 1.27 1.20

OR10x250-0.50 0.94 0.95 0.57 0.58

OR10x250-0.75 0.53 0.42 0.34 0.32

OR10x500-0.25 1.95 1.56 1.04 0.98

OR10x500-0.50 0.80 0.70 0.51 0.46

OR10x500-0.75 0.38 0.43 0.26 0.27

OR30x100-0.25 4.56 3.96 3.95 3.59

OR30x100-0.50 1.81 1.90 1.72 1.63
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OR30x100-0.75 1.11 1.05 1.08 0.98

OR30x250-0.25 2.90 2.32 2.16 2.00

OR30x250-0.50 1.30 1.14 0.91 0.90

OR30x250-0.75 0.65 0.63 0.53 0.52

OR30x500-0.25 2.41 2.17 1.49 1.62

OR30x500-0.50 0.88 0.92 0.66 0.66

OR30x500-0.75 0.55 0.55 0.39 0.38

Avr. 1.30 1.16 0.96 0.92

(b)

Problem Set Sucess rate

label no. of inst. MA0-1 MMA-1 MA0-8 MMA-8

hp 2 1.00 1.00 1.00 1.00

pb 6 0.50 0.83 0.67 0.83

pet 6 0.83 0.83 0.83 0.83

sento 2 0.50 1.00 1.00 1.00

weing 8 0.88 0.88 0.88 0.88

weish 30 1.00 1.00 1.00 1.00

Avr. 0.78 0.92 0.90 0.92

Fig. 3 Mean evolutionary activity over 50 runs versus number of generations plot of memes HC0 and HC3 in

MMA-1 and MMA-8 for the problem instance OR10x500-0.75_10.
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4.3.2 Comparison of MA0-8 and MMA-8 to the previous approaches

MA0-8 and MMA-8 perform better over ORlib as compared to the heuristics proposed by

Magazine et al. [29], Volgenant et al. [51] and Pirkul [42] generating an average gap of 7.69%,

6.98% and 1.37%, respectively. Additionally, Chu et al. [6] reported that the CPLEX mixed

integer programming (MIP) solver attained an average gap of 3.14%. This is again a poorer

performance as compared to the MA0-8 and MMA-8 approaches. On the other hand, CPLEX

generated exact solutions for SAC-94, while MA0-8 and MMA-8 can not solve one of the problem

instances to optimality in pb, pet and weing problem sets as shown in Table 5(b). Chu et al. [6]

provided the best approach for solving MKPs with an average gap of 0.54% over ORlib.

Moreover, this approach delivers full success in solving SAC-94 problems. Although Chu et al. [6]

categorized their algorithm as a genetic algorithm; it was in fact a memetic algorithm that utilized

a repair operator functioning as a hill climber. This repair process has the same running time

complexity as our hill climbing process, O(mn). A smart initialization scheme was also used in

their approach. Furthermore, MA searched 106 non-duplicate states. It is not clear whether the

candidate solutions processed during the repair steps are counted as a state or not in their study. On

the other hand, MAs in this paper are allowed to visit the same states. Although the aim of the

study is not producing a state of the art approach for solving MKPs, the results show that both

approaches are very promising.

As an indirect comparison, Gavish et al. [17] and Freville et al. [15] obtained an average gap

of 1.98% and 1.91%, respectively. They used a different random data set having similar

characteristics to ORlib that contains 270 problem instances sizing up to m=30 and n=500. MMA-

8 and MA0-8 generate a better performance as compared to these heuristics. The performance

comparison of the heuristics, MA of Chu et al. [6] and the best MAs presented in this paper based

on the average %-gap for ORlib problems are summarized in Table 6. Memetic algorithms

perform better than the heuristics.

Table 6 Comparison of MMA-8 and MA0-8 to the previous approaches over the ORlib problems

Approach Avr. %-gap

type source ORlib

MA Chu et al. [6] 0.54%

MMA MMA-8 0.92%

MA MA0-8 0.96%

heuristic Pirkul [42] 1.37%

heuristic Freville et al. [15] 1.91%

heuristic Gavish et al. [17] 1.98%

MIP Chu et al. [6] 3.14%

heuristic Volgenant et al. [51] 6.98%

heuristic Magazine et al. [29] 7.69%
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There are other evolutionary algorithms proposed for solving MKPs in the literature. Khuri et

al. [25] used a genetic algorithm for solving MKPs, while Cotta et al. [8] combined a constructive

heuristic for initialization and a local search method with a genetic algorithm. Cleary et al. [7]

employed grammatical evolution (GE) using different representation schemes. The best approach

turned out to be the extended approach based on (full) attributed grammars (AG) that disallows

duplicate configurations in a population. Hembecker et al. [22] applied particle swarm

optimization (PSO) for solving MKPs. Since, different parameter settings are utilized in these

studies, only an indirect comparison can be made using their results. The common problem

instances for which a comparison can be made are pet (excluding pet2), sento problem sets,

weing7 and weing8 from SAC-94. The results from each study are used as a basis to assign an

average success rate for each data set. If an algorithm finds the optimum in more than 5% of the

trials for a problem instance, then it is accepted as a successful run for the corresponding problem

instance. The indirect performance comparisons of different evolutionary approaches based on

average success rates over each problem set are presented in Table 7. GE and PSO are the worst

approaches. The MAs of Chu et al. [6] and Cotta et al. [8] perform the best over the selected subset

of SAC-94. The memetic algorithms turn out to be the best evolutionary approaches for solving

small MKPs. Using a different representation scheme and/or deleting duplicates seem to improve

the performance of a population based approach [6, 7, 8].

Table 7 Comparison of MMA-8 and MA0-8 to the previously proposed evolutionary algorithms over the pet*, sento

and weing* problem sets from SAC-94. The problem set weing* contains only weing7 and weing8. The pet2

problem instance is excluded from the problem set pet*.

Evolutionary Algorithm Avr. s.r.

type source pet* sento weing*

MA Chu et al. [6] 1.00 1.00 1.00

MA Cotta et al. [8] 1.00 1.00 1.00

MMA MMA-8 0.80 1.00 0.50

MA MA0-8 0.80 1.00 0.50

AG Cleary et al. [7] 0.80 0.50 0.50

GA Khuri et al. [25] 0.60 0.50 0.50

PSO Hembecker et al. [22]  0.00 0.50

GE Cleary et al. [7] 0.20 0.00 0.00

5 Conclusions and Remarks

A set of MKP instances is used to investigate memetic algorithms and multimeme approach that is

based on self generation as proposed by Krasnogor [27]. Empirical results show that in almost all

cases, the performance of genetic algorithms improves if hill climbing is also utilized. Different

memes yield different performances. MAs with a good meme choice perform better. MMAs are

capable of identifying the useful memes. Lamarckian learning mechanism within the evolutionary
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process yields good results in solving problems. In [37], similar experiments are performed over a

set of benchmark functions yielding the same trivial results. The results show that the MA using

Davis’s bit hill climbing is the best choice for function optimization. MA with this single meme

performs even better than a multimeme strategy. On the other hand, the steepest gradient hill

climbing turns out to be the best single meme choice to be used in MA for solving MKPs. Unlike

the results obtained in [37, 41], multimeme strategy generates a synergy between multiple memes

and performs better as compared to using a single meme choice within MA for constraint

optimization. Furthermore, the performance of MMA is comparable to the state of the art approach

for solving MKPs.

Apart from the nature of problems dealt with, the main difference between the MMAs

investigated in the previous study and the current one is the usage of fewer memes in this study.

The same set of hill climbers in [37] is used during the MKP experiments. The results show that

random mutation hill climbing performed the worst for the benchmark functions, while next

gradient hill climbing performs the worst for solving MKPs. Whenever such worst memes are

abandoned, the performance might get better. It seems that multimeme strategy is good at

identifying useful memes, but it is not good at identifying bad memes that might delay the process

of converging to a global optimum or cause premature convergence. There might be a variety of

hill climbers designed specifically for solving a problem. It is not a viable strategy to combine all

such hill climbers under the framework of multimeme memetic algorithms. As in our studies, it

might be a good idea to make some preliminary experiments with each meme. As a result, the bad

meme(s) can be detected and excluded from the set of memes to be used within the multimeme

approach for an improved performance.
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