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Abstract Thereisavariety of knapsack problemsin the literature. Multidimensional 0-1
Knapsack Problem (MKP) isan NP-hard combinatorial optimization problem having many
application areas. Many approaches have been proposed for solving this problem. In this paper, an
empirical investigation of memetic algorithms (MAs) that hybridize genetic algorithms (GAs) with
hill climbing for solving MKPs s provided. Two distinct sets of experiments are performed.
During the initial experiments, MA parameters are tuned. GA and four MAs each using a different
hill climbing method based on the same configuration are evaluated. In the second set of
experiments, a self-adaptive (co-evolving) multimeme memetic algorithm (MMA) is compared to
the best MA from the parameter tuning experiments. MMA utilizes the evolutionary process as a
learning mechanism for choosing the appropriate hill climbing method to improve a candidate

solution at a given time. Two well-known MKP benchmarks are used during the experiments.

K eywor ds Evolutionary Algorithms, Self-generation, Knapsack Problem, Local Search,

Adaptation

1 Introduction

Knapsack problems represent a set of hard combinatorial optimization problems. There are
different types of knapsack problems, such as, bounded, multiple-choice, multidimensional,
multiobjective, etc. In the multiple knapsack problems, each item is selected from a partition. In

this paper, Multidimensional 0-1 Knapsack Problem (MKP) isused as a case study. In MKPs,
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there are multiple knapsacks and each item has a different weight in different knapsacks. The
objective isto maximize the total profit obtained by selecting a subset of items while respecting
the capacity constraints defined for each knapsack. Asthe 0-1 suggests, the items are indivisible.
The same selected items are placed into all knapsacks. Given a set | of n items and m knapsacks,
let Sbe asubset of | such that Scl. Then an MKP can be formally stated as follows

maximiz% f(S) = Z profit (x)}

XeS

subject to i, »_ weight (x,i) < capacity (i) o
XeS
where profit(x) denotes the profit earned by selecting the item xe S weight(x,i) denotes the weight
of theitem x in the i knapsack and capacity(i) denotes the capacity of thei™ knapsack. Let q
indicate the number of items that are chosen to be placed into the knapsacks (|[S][), maxPr ofit
indicate Viel, maximumy profit(i)} and minProfit indicate Viel, minimuny profit(i)}.

MKPs are NP-hard problems [16]. Many researchers took an interest in the problem due to its
wide range of real-world application areas, such as stock cutting, cargo loading, capital budgeting,
and allocating processors in a distributed computing environment. A variety of approaches were
utilized for solving MKPs, such as approximation heuristics, integer programming, genetic
algorithms, tabu search, particle swarm optimization, grammatical evolution and membrane
computing [6, 7, 8, 15, 17, 18, 22, 28, 29, 42, 51]. A survey on MKPs can be found in [14],
including exact and (meta-)heuristic approaches for solving them. An overview of knapsack
problemsin general and their categorizations can be found in [43].

A memetic algorithm (MA) is a nature-inspired population based optimization approach that
makes intensive use of local search. A set of different MAsisimplemented for solving MKPs.
These MAs can be grouped into two classes based on the taxonomy provided by Ong et a. [36]. In
the first class, each canonical MA attempts to improve a given candidate solution using asingle
hill climbing method. In the second class, a self-adaptive MA with alocal level adaptation
allowing multiple hill climbers for improvement is utilized. A local level adaptation indicates that
the decision for choosing a hill climbing method from multiple hill climbers during the
improvement stage involvesin the use of partial historical knowledge. The objective of this paper
isto analyze aset of MAs, including the one presented by Krasnogor [27] employing a
Lamarckian learning mechanism for self-adaptation on well known benchmark suites of multiple-
knapsack problems. Our aim isto answer a simple question, “Does the suggested learning
mechanism improve the decision process for choosing the hill climber(s) to employ, and does this
approach lead to even better results compared to the canonical MA in terms of the quality of final
solutions?’ This study extends the initial investigations performed on a set of benchmark functions
in [37] to the MKPs as a constraint optimization case study.

Section 2 presents some preliminaries and the algorithmic details. Genetic algorithms,
memetic algorithms, including the self-adaptive multimeme approach and their designs for solving

MK Ps are discussed in successive sections. Then, benchmark problem instances, experimental



setup, and the results are given. Parameter tuning experiments are reported for deciding which
memetic algorithm components to use. The performances of different memetic algorithms are

compared. Finally, conclusions and remarks are provided in Section 5.

2 Memetic algorithms

2.1 Genetic algorithms

A genetic algorithm (GA) as a meta-heuristic is a subclass of evolutionary algorithms (EAS) that
has proven to be successful in solving difficult, time consuming problems[19, 23]. GAs are
inspired from the Darwinian theory of evolution. The search for optimum is directed by a set of
genetic operators, such as crossover, mutation and natural selection. In atypical GA, a population
of chromosomes (individuals), denoting the conceptual representation of candidate solutions
(states) goes through an evolutionary process. The population sizeis fixed before the evolution
starts. The traditional representation scheme is the binary encoding, where a gene (locus) in a
chromosome receives an allele value from { 0, 1} . For example, the chromosome “011101” might
represent a candidate solution for some problem requiring a chromosome length of 6.

The evolution usually starts with arandomly or heuristically generated population of
chromosomes. In each generation (iteration), the quality of the solutionsis evaluated by a fithess
function. Then the individuals, referred to as mates (parents) are stochastically selected for
crossover favouring good ones with good fitness val ues to form new individuals, called offspring.
This process continues until the offspring pool isfull. The size of this pool istraditionally equal to
the population size. One-point crossover (1PTX) and uniform crossover (UX) operators are the
most common operators used in GAs[19, 23, 47]. 1PTX exchanges the genetic material at a
randomly selected crossover point in two mates generating two offspring. For example, assuming
that “010100” and “001110" are selected as mates and the crossover point is randomly decided to
be 3, then the resulting offspring after 1PTX will be “010110” and “001100". UX exchanges each
alelein two given mates with a probability of 0.5 and generates two offspring. For example,
assuming an ordered sequence of random valuesin [0,1) is generated as <0.24, 0.56, 0.89, 0.33,
0.45, 0.67> for each gene in a chromosome of length 6; applying UX to “010100” and “001110"
yields “001100" and “010110". After the recombination process, the offspring are modified by
mutation. The traditional mutation scheme processes each gene in an offspring consecutively
starting form the first bit and flips its value with a given mutation probability. For example, given
the mutation probability is 1/6~0.17 and an ordered sequence of random valuesin [0,1) is
generated as <0.04, 0.46, 0.83, 0.13, 0.65, 0.88> for each gene in a chromosome of length 6; the
offspring “001100" becomes “101000" after employing mutation. After crossover and mutation,
the chromosomes are selected from the current population and offspring pool to survive to the next
generation. In the traditional trans-generational replacement scheme, all chromosomes are
replaced by the offspring. Thereis also an elitist (top-N) scheme that involves in selecting the best
chromosomes based on their fitness values from both the current population and the offspring pool
for survival [12, 21]. The evolutionary process continues until some termination criteria are met,

e.g., until the optimal solution is found.



2.2 Memes and self-generation

Memetic algorithms (MAs) are hybrid approaches that embed local searchesinto genetic
algorithms [32, 45]. For instance, a meme may denote a hill climbing method capable of local
learning. MAs aim to balance the exploration and exploitation capabilities of both genetic
algorithms and local search. Many researchers already highlighted the effectiveness of integrating
meme(s) into evolutionary algorithms for solving complex optimization problems based on
various frameworks [1, 2, 13, 30, 38, 40, 48, 53, 54]. In acanonica MA, aprefixed single memeis
employed after mutation and evaluation steps of a GA. Obvioudly, a variety of memes might be
designed for solving a specific problem. There is strong empirical evidence that the choice of
meme in canonical MAs influences the performance of the search [4, 37, 38, 39, 41, 55]. Many
strategies can be adopted to utilize multiple memes simultaneously within the MA framework. For
instance, a mechanism can be introduced that decides which meme to use among multiple memes
during the improvement stage. Hyper-heuristics refer to the approaches that perform a search over
the heuristics space [3, 9, 39]. A hyper-heuristic is used to choose a heuristic from a set of
heuristics to employ at a given time. Subsequently, a hyper-heuristic can be embedded into the
MA framework as a mechanism to choose the appropriate meme [11, 36, 37, 39, 55]. Asan
extreme option, new MA architectures can be established for handling multiple memes [26, 27, 33,
35, 36, 37, 39, 41, 53]. In any case, the ultimate objective is obtaining a robust high level
adaptation, such that MA will perform successfully both for the problems with different
characteristics in a given domain, and for the problems in some different domains. If awell-
performing optimization algorithm on a set of problem instances utilizes some problem-specific
information for directing the search, then the no free lunch theorem of Wolpert et al. [52] implies
that such an algorithm islikely to perform worse on different problem instances (and/or in
different problem domains). Hence, the adaptation mechanisms should not incorporate any
problem dependent information within for more generality. Naturally, most of the researchers
focus on the adaptation techniques and relevant issues. An early survey on adaptation in genetic
algorithms can be found in [46]. Ong et al. [36] provided arecent survey and a well-defined
taxonomy for adaptive MAs and evaluated different types of adaptive MAs over a set of
benchmark problems.

One of the latest striking studies was provided in [26]. Krasnogor presented a self-adaptive
MA, referred to as multimeme memetic algorithm (MMA). MMA provides a broad framework
based on self-generation (co-evolution) to handle multiple operators and parameters al together. In
this study, only its capability for supporting multiple memes is focused. In order to implement
self-adaptation, the memetic information is coded along with the genetic information into each
chromosome. During the initial population generation, the meme of each individual is randomly
determined. For example, assuming that there are 4 hill climbing methods to be utilized,
“101001+2" might be arandomly generated individual that holds the second hill climber as a
meme. Then, both genetic and memetic materials are co-evolved. In MMAS, using the
Lamarckian learning mechanism, each individual improves itself viathe evolutionary process. A
meme similar to a gene also getsinherited to an offspring from one of its parents using Simple

Inheritance Mechanism (SIM) during crossover [27]. SIM propagates the meme of the parent with
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the better fitness to the offspring. When both parents have the same fitness value, one of themis
selected randomly. For example, in a minimization problem, applying 1PTX to two individuals
having fitness values of 25 and 10, respectively “110[011+3" ;5 x “101|001+2" 1) yields
“110001+2"and “101011+2". The inherited memes also goes through a mutation process similar to
the genetic material. A meme is randomly perturbed to another possible value based on a
probability rate called Innovation Rate (IR). For example, the memein “101011+2" might be
mutated into “101011+4”, if the generated uniform random number in [0, 1) islessthan IR. After
the mutation, an individual uses the meme to decide on the hill climbing method to use. E.g,
“101011+4" invokes the fourth hill climbing method for improvement.

Krasnogor [26] used the MMA approach for solving traveling salesperson problems, protein
structure prediction and MaxCMO problems. Ong et al. [35] tested two new methods for selecting
the memes using the MM A framework over 3 benchmark functions. Ozcan [37] experimented
with canonical MAs and MMAs for benchmark function optimization and nurse rostering.
Similarly, Ozcan et al. [41] compared different canonical MAs and MMAS utilizing a variety of
meme selection methods for parallel code optimization. In both studies, the results show that the
canonical MA with a good meme choice performs dlightly better than the standard MMA.. Unlike
these previous studies, Neri et al. [33] dealt with a continuous optimization problem. The authors
proposed a multimeme approach that adaptively manages three local search components and a set
of algorithmic parameters for designing optimal multidrug HIV therapy. Their algorithm generated
better therapies as compared to three other meta-heuristics. No comparison to a canonical MA is

provided in their study.

3 Memetic algorithmsfor solving MKPs

Tavares et a. [49, 50] observed that the use of binary representation combined with hill climbing
that considers the profit and resource consumption ratios performed the best in memetic
approaches for solving MKPs. Hence, the binary encoding is used as a representation schemein
the memetic algorithms for solving MKPs. An dleleiseither 1 or O, representing whether
corresponding item isincluded in Sor not. For example, considering an MKP with 5 items,
“10001" denotes that the first and the last items are added into the knapsacks. Infeasible solutions
might arise due to the overfilled knapsacks. Let r denote the number of constraint violations
(overfilled knapsacks).

Four different maximizing fitness functions are implemented that can handle infeasible
solutions based on penalty as presented in Table 1. fy isthe same fitness function asin [25]. The
constraint violations are punished by decreasing some amount of profit from f(S) in Equation (1).
The punishment is emphasized more in the proposed fitness function f;. In f,, the profit is scaled
with respect to some factor of the number of overfilled knapsacks. It does not generate negative
fitness values. The fitness function f; returns f(S) if the solution is feasible, otherwise a negative
constant as a death penalty is returned without discrimination of any infeasible solutions. More on
evolutionary algorithms for multidimensional knapsack problems and fitness functions can be
found in [20].



Definition 1: Let HD(x,y) denote the hamming distance between the binary strings x and y, and U
and F denote the unfeasible and feasible search space for an MKP problem. Given a penalty
function pfi: S» R§ , and afitness function f;; S— R that uses the penalty function pf; to evaluate a
candidate solution Sfor MKP problems, pf; satisfies the following monotony conditions on G,
where G={xeU: HD(x,y)=1, vyeU } U {xeF: HD(x,y)=1, VyeU }

(M1) if pf; is monotonic increasing

(M2) if pf; is strictly monotonic increasing

(M3) if f; is monotonic increasing

(M4) if f; is strictly monotonic increasing

Gottlieb shows that a fitness function that satisfies all conditions generates a better performance.

Table 1 Fitness functions for MKPs.

Label Fitness function
fo f (S) —r - maxProfit
f1 f(S)-r-q- (maxProfit+1)
f f(S)/(r'°? +1)
fa f(S) v—const

Theorem 1: The function f; satisfies (M4).
Proof. Let x,y € G. The change in the penalty value, denoted as Apf is
Apf = |pf1(X)— pfi(y) | = (r+g-1)(maxProfit + 1)
since m>2, and there should be at |east one overfilled knapsack to activate the penalty function, the
penalty isincreased at least by (maxProfit + 1), hence Apf> maxProfit.

Asaresult, it is expected that f, will perform better than the others.

Four memes (hill climbers) are used in the memetic algorithms: Steepest Gradient (HCO),
Next Gradient (HC1), Random Mutation Hill Climbing (HC2), and Davis' s Bit Hill Climbing
(HC3) [10, 31, 37]. These hill climbing methods are chosen, since they are appropriate for al
types of optimization problems requiring binary encoding as a representation scheme. Moreover,
they can be easily extended to be used as a hill climber with other type of encodingsin different
problems[4, 11, 13, 37-41, 54]. HCO generates n new solutions from a given candidate solution
by inverting each bit one by one. Hence, n different neighbours within a Hamming distance of 1
from the current solution are visited. If an improved solution is obtained, then it replaces the
current one. HC1 iterates over a candidate solution starting from the most significant bit towards
the least significant bit. At each step, the bit in question isinverted. If an improvement is achieved,
the new solution is accepted as the current. Then the iteration continues with the neighbouring bit.
HC3 performs the neighbourhood search similar to HC1. The only difference between them isthe
order of inversions. HC3 generates a random permutation of n locations that will be scanned and
the iterations take place in that order. HC2 inverts arandomly selected bit at each step. If the

fitness improves, the modified candidate solution becomes the current. More details on the hill



climbers used during the experiments can be found in [31]. HCO, HC1 and HC3 evaluate n
different neighbourhoods, while HC2 checks only a single neighbourhood during the improvement
process. In order to perform afair comparison between the approaches, the maximum number of
steps (neighbouring solutions visited from the current solution) isfixed for al hill climbers during
the experiments. The consecutive bit inversions during a hill climbing process are repeated for a
factor of the bit-string length.

During an evolutionary process, the building blocks are processed and combined to produce
better solutions. UX isthe most disruptive crossover operator that tends to destroy existing
building blocks, while 1PTX isthe least disruptive one [19, 23]. Although 1PTX is the traditional
operator, Syswerda [47] provided empirical evidence that UX might outperform 1PTX in some
situations. Hence, both 1PTX and UX are implemented as crossover operators for comparison.
Crossover is employed to all parents asin the traditional GAs[19]. In all the evolutionary
algorithms for solving MKPs, the tournament selection method with a tour size of two, the
traditional mutation and a trans-generational replacement strategy with weak elitism are used [12,
21, 37-41]. The weak elitism allows two best individual s to survive to the next generation and

replaces the remaining of the population with the offspring.

4 Experiments

Pentium IV 2 GHz. machines with 2 GB MB RAM are used during the experiments. Before the
main experiments, some preliminary ones are performed to decide on the best set of genetic
components. The multimeme strategy is tested during the last set of experiments. In all multimeme
experiments, IR rate is fixed at 0.20 [26].

4.1 Experimental data and evaluation criteria

SAC-94[25] and ORIib [6] suites were used for the experiments. ORIib suite contains 27 different
problem sets, each having 10 randomly generated problem instances (files), while SAC-94 consists
of 6 problem sets (hp, pb, pet, weing, sento, weish). SAC-94 problem sets contain different

number of problemsthat are mostly small asillustrated in Table 2. Each problem instance in SAC-
94 will beidentified by its name and a unique file id (fid). For example, the first instance in the hp
MKP set isreferred to as hpl. On the other hand, each problem set in ORIlib islabelled as ORmxn-
tightness ratio, where me{5, 10, 30}, ne{100, 250, 500} and tightnessratioe{0.25, 0.50, 0.75}.
A problem instance in ORIib will be identified by their labels and a unique file id as ORmxn-

tightnessratio_fid.

Table 2 The number of items and knapsacks in each SAC-94 problem instance

Problem Instance m n Problem Instance m n
hpl 4 8 pbl 4 27
hp2 4 35 pb2 4 34
weingl-6 2 28 pb4 2 29
weing7-8 2 105 pb5 10 20



sentol-2 30 60 pb6 30 40

weish1-5 5 30 pb7 30 37
Weish6-9 5 40  pet2 10 10
weish10-13 5 50  pet3 10 15
weish14-17 5 60  petd 10 20
weish18-21 5 70  pe5 10 28
weish22-25 5 80  pet6 5 39
weish26-30 5 90  pet7 5 50

Successrate (s.r.) istheratio of successful runsto all runs, where a successful run refersto a
run resulting in known optimal fitness. Another eval uation criterion is the %-gap, which measures
how much the best solution found deviates from the optimal value of LP relaxation, as described
in [6] for the ORIib instances. For the SAC-94 instances, the gap is computed with respect to the
optimal value. Additionally, evolutionary activity, obtained during an experiment is considered for
the evaluation of the memes used within an MMA [26]. Evolutionary activity of amemeisthe
total number of its appearance among all individuals between the initial generation and the current
oneinarun. It isamonotonically increasing function with respect to the generation. The slope of
the evolutionary activity versus generation plot indicates how much a memeis favoured. The more

ameme gets invoked, the steeper the sope.

4.2 Parameter tuning

During the preliminary experiments, arbitrarily selected subset of 20 problem instancesis used
unlessit is mentioned. 16 instances are compiled from ORIib by using the first instance (with file
id 1) having atightnessratio of 0.25, or the last instance (with fileid 10) having atightness ratio of
0.75, or both instances for each n, m pair in the benchmark. In our preliminary experiment, it has
been noticed that hp, sento and weish from SAC-94 turns out to be the simple problemsto solve.
Thus, four problem instances are randomly chosen from the SAC-94 problem sets pb, pet, weing
and including only hp as a simple case. Each experiment is repeated 50 times. Average %-gap
indicates how much the average fitness of 50 runs deviates from the LP optimum. A run terminates
whenever the expected fitness is achieved or the time limit of 600 sec. is exceeded. The parameter
settings are arbitrarily chosen with respect to the chromosome length (n). Reeves [44] articul ated
that a minimum population size of 20 is appropriate for binary encoding up to a chromosome
length of 524, if the probability of reaching a point in the search space from theinitial population
using only crossover is fixed as 99.9%. Hence, the population sizeis allowed to vary asmin{n/2,
20} for each problem instance. This choice generates a population size over 50 for most of the
problem instances. The upper bound for the number neighbourhoods eval uated by a hill climber is
set to 2n. During the initial experiments, HCO was arbitrarily chosen as a meme within the
memetic algorithms.

Ochoa [34] suggested that setting a mutation rate of (1/chromosome-length) while
performing a search over rugged landscapes with a population size greater than 50 and a

tournament selection with atour size of 2 might improve the search performance. Hence, the



traditional 1PTX and mutation that flips a bit with a mutation rate of 1/n are fixed asthe initial
MA operators. A single alele per individual gets mutated on average with this mutation
probability. Then, different options for fitness computation, crossover, mutation rate and meme as
the MA components are investigated by fixing the best component each time.

Firstly, using arandomly selected problem instances from four different SAC-94 problem
sets, the fitness functions are tested for verifying the theoretical study. The fitness function f;
yields the best performance as expected with afull successin 50 runs for each problem instance as

shown in Figure 1. Therefore, f; is preferred in all the succeeding experiments.
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Fig. 1 Performance comparison of fitness functions based on average success rates over arbitrarily selected four

SAC-94 problem instances from different problem sets.

In the next set of experiments, the ssimple GA and the MAs using different hill climbers are
compared. After the best meme choice is determined, it is fixed and the performances of crossover
operators are compared. The results based on average %-gap are presented in Table 3 over a subset
of problem instances from SAC-94 and ORlib. For sample SAC-94 problems, the average %-gap
does not signify the successful meme, sincein most of the cases the optimum is achieved. Figure 2
displays the average number of evaluations per run for each MA, where a bar appears only if the
algorithm generates full success for the given problem. GA performs better than all MAs only for a
single problem instance, weing6. Moreover, the performance of GA is not significantly different
than the MA with HCO for this problem instance. HC2 and HC3 deliver the best performances for
SAC-94 sample problems. On the other hand, either HCO (in 10 problem instances) or HC3 (in 4
problem instances) generates the best performance for the ORIlib sample problems. For OR5x100-
0.75_10 and OR30x100-0.25 1, there are performance-wise ties between some memes. Thereis at
least one MA that outperforms GA in almost all selected problems considering all sample problem
instances. Moreover, the results of the paired t-test between HCO and GA over the average %-gaps
validate the difference in performance is significant with a confidence interval of 99.99%. HC1is
the worst hill climber, while HCO, HC2 and HC3 have similar performancesin the overall. Yet,
HCO performs the best on more problem instances than the rest of them having the least average
%-gap. Hence, HCO isfixed as the best meme choice during the crossover trials. The paired t-test

over the average %-gaps shows no significant differencein performance between 1PTX and UX.



UX performs better than 1PTX in 11 problems, while 1PTX performs better than UX in 5
problems over 15 ORIlib problems as shown in Table 3. For SAC-94, UX isthe best operator.

Table 3 Performance comparisons of memetic algorithms using different memes and crossovers over a subset of

benchmark problem instances based on average %-gap. Bold entries indicate the best performing operators.

Problem Instance Memes Crossovers
label_fid opt GA HCO HC1 HC2 HC3 1IPTX UX

OR5x100-0.75_10 59,965 020 011 029 011 011 0.11 0.06
OR5x250-0.25_1 59,312 125 093 117 115 122 093 0.76
OR5x250-0.75_10 154,662 037 015 084 030 0.30 0.15 0.07
OR5x500-0.25_1 120,130 138 082 111 215 216 082 3.19
OR5x500-0.75_10 299,904 051 0.13 046 056 055 0.13 042
OR10x100-0.25_1 23,064 093 106 075 036 031 1.06 0.56
OR10x100-0.75_10 60,633 020 019 019 016 0.14 019 011
OR10x250-0.25_1 59,187 183 140 168 121 116 140 134
OR10x250-0.75_10 149,704 065 035 074 039 040 035 021
OR10x500-0.25_1 117,726 204 152 153 283 284 152 3.00
OR10x500-0.75_10 307,014 070 028 198 074 0.73 028 0.84
OR30x100-0.25_1 21,946 159 144 174 103 1.03 144 120
OR30x100-0.75_10 60,603 043 025 049 030 031 025 021
OR30x250-0.25_1 56,693 185 166 297 146 137 166 1.65
OR30x250-0.75_10 149,572 0.67 042 118 047 051 042 020
OR30x500-0.75_10 300,460 076 063 188 129 128 0.63 4.03
hp2 3,186 067 031 0.06 0.00 0.00 0.31 0.18
pb7 1,035 059 037 021 0.00 0.00 0.37 0.30
pet5 12,400 0.00 0.00 000 0.00 0.00 0.00 0.00
weing6 130,623 0.00 0.00 000 0.00 0.00 0.00 0.00

Avr. 083 060 096 073 0.72 0.60 0.92
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Fig. 2 Performance comparison of the simple GA and MAs using different memes based on the mean no. of
evaluations and the standard dev. in log. scale for hp2, pb7, pet5 and weing6 problems. For each experiment, related
bar appearsin the plot, only if all the runs yield the expected resuilt.

The performances of the MA for different mutation rates are also investigated. In particular,
the following set of configurations is experimented { 1/n, 2/n, 4/n, 8/n, 16/n}. The increasing
mutation rates serves to increase the exploration capability of MAs. In this set of experiments, the
meme and the crossover operator are fixed as HCO and UX, respectively. The empirical results are
then summarized in Table 4. Considering the average %-gap over all data generated by each
mutation rate used in the MA, 16/n delivers the worst performance for both SAC-94 and ORlib
problem instances. 4/n and 1/n are the best mutation rate choices for SAC-94 and ORIib,
respectively. 1/n isthe best performing mutation ratein 11 problems, while 2/nisthe bestin 4
problems. Considering the overall performance of each mutation rate, the traditional 1/n performs
slightly better than 2/n and the values 4/n and 16/n have the worst performances. Increasing the
mutation rate too much disturbs the balance between exploration and exploitation capabilities of

MAs and the search performance worsens.

Table 4 Performance comparison of mutation rates based on average %-gap. Bold entries mark the best mutation
rate for the corresponding problem instance

Problem Instance Mutation Rates
label_fid opt Un 2/n 4/n 8/n 16/n
OR5x100-0.75_10 59,965 006 004 018 1.19 3.43
OR5x250-0.25 1 59,312 076 175 529 1064 1554
OR5x250-0.75_10 154,662 007 010 0.78 281 4.96
OR5x500-0.25_1 120,130 319 462 772 1236 16.68

OR5x500-0.75_10 299,904 042 063 159 3.43 5.57

11



OR10x100-0.25_1 23,064 056 0.08 168 502 1098
OR10x100-0.75_10 60,633 011 007 025 1.56 4.28
OR10x250-0.25_1 59,187 134 171 508 1065 1571
OR10x250-0.75_10 149,704 021 027 108 3.08 5.28
OR10x500-0.25_1 117,726 300 407 748 1222 16.39
OR10x500-0.75_10 307,014 084 129 228 3.90 5.83

OR30x100-0.25_1 21,946 120 082 199 7.04 1478
OR30x100-0.75_10 60,603 021 018 052 2.06 4.13
OR30x250-0.25_1 56,693 165 187 570 1204 17.39

OR30x250-0.75_10 149,572 020 026 132 3.37 5.57
OR30x500-0.75_10 300,460 403 423 469 5.37 6.45

hp2 3,186 018 015 0.00 0.00 0.88
pb7 1,035 030 012 0.00 0.13 3.62
pet5 12,400 0.00 000 0.00 0.00 0.04
weing6 130,623 0.00 000 0.00 0.00 0.02

Avr. 092 111 238 4.84 7.88

4.3 Experimental results

During the final set of experiments, the time limit used as a termination criterion is changed to a
maximum number of generations with a value of 10*. Population size is fixed as 10 For each
problem instancein a set, asingle run is performed. The results are provided for each problem set
in both SAC-94 and ORIlib benchmarks by averaging over the problem instancesin a set. The rest
of the GA settings discovered to be the best are maintained from the parameter tuning
experiments. Most of the previous approaches were tested over a small subset of SAC-94 [6, 7, 22,
25] or over some instances that have not been used as a benchmark anymore due their small size.
Only, Chu et a. [6] evaluated their approach over ORIlib and SAC-94. The madificationsin the
experimental setup are arranged in order to be able to perform a direct comparison to the results
provided in [6].

4.3.1 Comparison of the memetic algorithms

Table 3 showsthat HC3 and HC2 are the best memesin 7 and 5 different problems, respectively.
They perform the same in the rest of the problems. HC3 with a 0.72 average %-gap delivers a
dightly better performance than HC2 with a 0.73 average %-gap in the overall. Ozcan et a. [39]
showed empirically that reducing the number of heuristics within a hyper-heuristic system might
improve its performance. Hence, areduced set of two most successful memes; h={ HCO, HC3} are
preferred within the multimeme memetic algorithm. MMA and the MA with HCO are tested using
the benchmark problems. Two values are compared for the maximum number of hill climbing
steps, fixed as afactor of the chromosome length; n and 8n [37, 38, 41]. Hence, the hill climbing
processin MAs and MMA has arun time complexity of O(mn). The algorithms are labelled as
algorithm_name-factor. The results are presented in Table 5. The number of hill climbing steps
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affects the performance of the MAs. The multimeme approach identifies the useful memes
successfully. MM As perform better than MAs with a single meme. Increasing the maximum
number of hill climbing steps generates a better performance for large problem instances for both
MMA and MA approaches. On the other hand, the performance of MA improves, while the
performance of MMA does not change for the small problem instances. On the whole, MMA-8is
the most successful approach yielding an average gap of 0.92% over 270 instancesin ORlib (Table
5(a)) and an average success rate of 0.92 over 6 set of problem instancesin SAC-94 (Table 5(b)).
Figure 3 shows the average evolutionary activity of the HCO and HC3 memes over 50 runs
for solving the problem instance OR10x500-0.75_10 using MMA-1 and MMA-8. MMAs invoke
HCO more than HC3 on average and both memes are utilized throughout a run. HC3 is employed
more than HCO during the initial generations. This situation persists for nearly hundreds and tens
of generations during MMA-1 and MMA-8 runs, respectively. Then, HCO takesover and it is
employed more than HC3. HCO is utilized more while HC3 is utilized less when the maximum
number of hill climbing stepsisincreased in MMA. The same phenomenon is observed almost for
all problems. Asaresult, MMAS generate a synergy between the memes and produce an improved

performance as compared to the MA with agood meme choice.

Table 5 Performance comparison of Memetic Algorithms on (a) ORIlib with respect to the average %-gap, (b) SAC-
94 with respect to the successrate

@
Problem Set il
MAO-1 MMA-1 MAO-8 MMA-8

OR5x100-0.25 1.68 1.56 1.33 1.29
OR5x100-0.50 0.78 0.90 0.62 0.68
OR5x100-0.75 0.47 0.50 0.41 0.42
OR5x250-0.25 1.34 0.86 0.83 0.75
OR5x250-0.50 0.54 0.49 0.37 0.35
OR5x250-0.75 0.30 0.26 0.20 0.19
OR5x500-0.25 121 0.96 0.63 0.57
OR5x500-0.50 0.45 0.46 0.26 0.27
OR5x500-0.75 0.22 0.25 0.16 0.17
OR10x100-0.25 3.16 2.57 2.37 2.20
OR10x100-0.50 1.44 1.28 1.18 112
OR10x100-0.75 0.78 0.73 0.69 0.64
OR10x250-0.25 2.06 1.72 1.27 1.20
OR10x250-0.50 0.94 0.95 0.57 0.58
OR10x250-0.75 0.53 0.42 0.34 0.32
OR10x500-0.25 1.95 1.56 1.04 0.98
OR10x500-0.50 0.80 0.70 0.51 0.46
OR10x500-0.75 0.38 0.43 0.26 0.27
OR30x100-0.25 4.56 3.96 3.95 3.59
OR30x100-0.50 181 1.90 172 1.63
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OR30x100-0.75 111 1.05 1.08 0.98

OR30x250-0.25 2.90 2.32 2.16 2.00

OR30x250-0.50 1.30 1.14 0.91 0.90

OR30x250-0.75 0.65 0.63 0.53 0.52

OR30x500-0.25 241 217 1.49 1.62

OR30x500-0.50 0.88 0.92 0.66 0.66

OR30x500-0.75 0.55 0.55 0.39 0.38

Avr. 1.30 1.16 0.96 0.92

(b)
Problem Set Sucessrate
label no. of inst. MAO-1 MMA-1 MAO-8 MMA-8
hp 2 1.00 1.00 1.00 1.00
pb 6 0.50 0.83 0.67 0.83
pet 6 0.83 0.83 0.83 0.83
sento 2 0.50 1.00 1.00 1.00
weing 8 0.88 0.88 0.88 0.88
weish 30 1.00 1.00 1.00 1.00
Avr. 0.78 0.92 0.90 0.92
Mean evolutionary activity MMA-1

1600
1400

1800

Mean evolutionary activity

1600
1400 -

Fig. 3 Mean evolutionary activity over 50 runs versus number of generations plot of memes HCO and HC3 in
MMA-1 and MMA-8 for the problem instance OR10x500-0.75_10.
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4.3.2 Comparison of MAO-8 and MMA-8 to the previous approaches

MAO-8 and MMA-8 perform better over ORlib as compared to the heuristics proposed by
Magazine et al. [29], Volgenant et al. [51] and Pirkul [42] generating an average gap of 7.69%,
6.98% and 1.37%, respectively. Additionally, Chu et al. [6] reported that the CPLEX mixed
integer programming (MIP) solver attained an average gap of 3.14%. Thisis again a poorer
performance as compared to the MAO-8 and MM A-8 approaches. On the other hand, CPLEX
generated exact solutions for SAC-94, while MA0-8 and MMA-8 can not solve one of the problem
instances to optimality in pb, pet and weing problem sets as shown in Table 5(b). Chu et al. [6]
provided the best approach for solving MK Ps with an average gap of 0.54% over ORlib.
Moreover, this approach delivers full successin solving SAC-94 problems. Although Chu et al. [6]
categorized their algorithm as a genetic algorithm; it was in fact a memetic algorithm that utilized
arepair operator functioning as a hill climber. Thisrepair process has the same running time
complexity asour hill climbing process, O(mn). A smart initialization scheme was also used in
their approach. Furthermore, MA searched 10° non-duplicate states. It is not clear whether the
candidate solutions processed during the repair steps are counted as a state or not in their study. On
the other hand, MAs in this paper are alowed to visit the same states. Although the aim of the
study is not producing a state of the art approach for solving MKPs, the results show that both
approaches are very promising.

Asanindirect comparison, Gavish et a. [17] and Freville et a. [15] obtained an average gap
of 1.98% and 1.91%, respectively. They used a different random data set having similar
characteristics to ORlib that contains 270 problem instances sizing up to m=30 and n=500. MMA-
8 and MAO-8 generate a better performance as compared to these heuristics. The performance
comparison of the heuristics, MA of Chu et a. [6] and the best MAs presented in this paper based
on the average %-gap for ORIib problems are summarized in Table 6. Memetic algorithms

perform better than the heuristics.

Table 6 Comparison of MMA-8 and MAO-8 to the previous approaches over the ORIib problems

Approach Avr. %-gap
type source ORlib
MA Chuetal. [6] 0.54%
MMA MMA-8 0.92%
MA MAO-8 0.96%
heuristic ~ Pirkul [42] 1.37%
heuristic ~ Frevilleet a. [15] 1.91%
heuristic ~ Gavish et a. [17] 1.98%
MIP Chuetal. [6] 3.14%
heuristic ~ Volgenant et al. [51] 6.98%
heuristic ~ Magazine et a. [29] 7.69%
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There are other evolutionary algorithms proposed for solving MKPs in the literature. Khuri et
al. [25] used a genetic algorithm for solving MKPs, while Cotta et al. [8] combined a constructive
heuristic for initialization and alocal search method with a genetic algorithm. Cleary et al. [7]
employed grammatical evolution (GE) using different representation schemes. The best approach
turned out to be the extended approach based on (full) attributed grammars (AG) that disallows
duplicate configurations in a population. Hembecker et al. [22] applied particle swarm
optimization (PSO) for solving MKPs. Since, different parameter settings are utilized in these
studies, only an indirect comparison can be made using their results. The common problem
instances for which a comparison can be made are pet (excluding pet2), sento problem sets,
weing7 and weing8 from SAC-94. The results from each study are used as a basisto assign an
average success rate for each data set. If an algorithm finds the optimum in more than 5% of the
trials for a problem instance, then it is accepted as a successful run for the corresponding problem
instance. The indirect performance comparisons of different evolutionary approaches based on
average success rates over each problem set are presented in Table 7. GE and PSO are the worst
approaches. The MAs of Chu et a. [6] and Cotta et al. [8] perform the best over the selected subset
of SAC-94. The memetic algorithms turn out to be the best evolutionary approaches for solving
small MKPs. Using a different representation scheme and/or deleting duplicates seem to improve

the performance of a population based approach [6, 7, 8].

Table 7 Comparison of MMA-8 and MAO-8 to the previously proposed evol utionary algorithms over the pet*, sento
and weing* problem sets from SAC-94. The problem set weing* contains only weing7 and weing8. The pet2

problem instance is excluded from the problem set pet*.

Evolutionary Algorithm Avr. sir.
type source pet* sento  weing*
MA Chuetal. [6] 1.00 100 1.00
MA Cottaet al. [8] 1.00 100 1.00
MMA  MMA-8 080 100 050
MA MAO-8 080 100 050
AG Cleary et al. [7] 080 050 0.0
GA Khuri et al. [25] 060 050 0.50
PSO Hembecker et al. [22] - 0.00 0.50
GE Cleary et al. [7] 020 0.00 0.00

5 Conclusions and Remarks

A set of MKP instances is used to investigate memetic al gorithms and multimeme approach that is
based on self generation as proposed by Krasnogor [27]. Empirical results show that in almost all
cases, the performance of genetic algorithms improves if hill climbing isalso utilized. Different
memes yield different performances. MAs with a good meme choice perform better. MMASs are

capable of identifying the useful memes. Lamarckian learning mechanism within the evolutionary
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process yields good results in solving problems. In [37], similar experiments are performed over a
set of benchmark functions yielding the same trivial results. The results show that the MA using
Davis'shit hill climbing isthe best choice for function optimization. MA with this single meme
performs even better than a multimeme strategy. On the other hand, the steepest gradient hill
climbing turns out to be the best single meme choice to be used in MA for solving MKPs. Unlike
the results obtained in [37, 41], multimeme strategy generates a synergy between multiple memes
and performs better as compared to using a single meme choice within MA for constraint
optimization. Furthermore, the performance of MMA is comparable to the state of the art approach
for solving MKPs.

Apart from the nature of problems dealt with, the main difference between the MMAs
investigated in the previous study and the current one is the usage of fewer memes in this study.
The same set of hill climbersin [37] is used during the MKP experiments. The results show that
random mutation hill climbing performed the worst for the benchmark functions, while next
gradient hill climbing performs the worst for solving MKPs. Whenever such worst memes are
abandoned, the performance might get better. It seems that multimeme strategy is good at
identifying useful memes, but it is not good at identifying bad memes that might delay the process
of converging to a global optimum or cause premature convergence. There might be a variety of
hill climbers designed specifically for solving a problem. It is not a viable strategy to combine all
such hill climbers under the framework of multimeme memetic algorithms. Asin our studies, it
might be a good idea to make some preliminary experiments with each meme. As aresult, the bad
meme(s) can be detected and excluded from the set of memesto be used within the multimeme

approach for an improved performance.
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