
ORIGINAL PAPER

Automatic detection of trends in time-stamped sequences:
an evolutionary approach

Lourdes Araujo Æ Juan Julián Merelo

Published online: 14 January 2009

� Springer-Verlag 2009

Abstract This paper presents an evolutionary algorithm

for modeling the arrival dates in time-stamped data

sequences such as newscasts, e-mails, IRC conversations,

scientific journal articles or weblog postings. These models

are applied to the detection of buzz (i.e. terms that occur

with a higher-than-normal frequency) in them, which has

attracted a lot of interest in the online world with the

increasing number of periodic content producers. That is

why in this paper we have used this kind of online

sequences to test our system, though it is also valid for

other types of event sequences. The algorithm assigns

frequencies (number of events per time unit) to time

intervals so that it produces an optimal fit to the data. The

optimization procedure is a trade off between accurately

fitting the data and avoiding too many frequency changes,

thus overcoming the noise inherent in these sequences.

This process has been traditionally performed using

dynamic programming algorithms, which are limited by

memory and efficiency requirements. This limitation can

be a problem when dealing with long sequences, and

suggests the application of alternative search methods with

some degree of uncertainty to achieve tractability, such as

the evolutionary algorithm proposed in this paper. This

algorithm is able to reach the same solution quality as those

classical dynamic programming algorithms, but in a shorter

time. We also test different cost functions and propose a

new one that yields better fits than the one originally

proposed by Kleinberg on real-world data. Finally, several

distributions of states for the finite state automata are

tested, with the result that an uniform distribution produces

much better fits than the geometric distribution also

proposed by Kleinberg. We also present a variant of the

evolutionary algorithm, which achieves a fast fit of a

sequence extended with new data, by taking advantage of

the fit obtained for the original subsequence.

Keywords Evolutionary algorithms � Event tracking �
Data time-stamped sequences � Burst detection

1 Introduction

The analysis of information sequences has become a crit-

ical task nowadays. One of the challenges is to detect what

are the emerging topics people are talking about, mainly

online, what is usually called buzz. Creating buzz about a

product (and measuring it afterwards) is critical to its

success, and news agencies and governments are interested

in following and measuring it in order to find out what are

the most important topics in the public opinion.

However, even as buzz can be visually discovered eas-

ily, it is more difficult to detect and measure automatically,

so that alerts can be set when a particular topic is buzzing

above the rest. In order to do that, the arrival time of a

significant group of terms has to be recorded, and a model

designed for a set of frequencies or states applied so that

state changes (increasing or decreasing buzz) can be used

to detect and track buzz involving those terms.

A possible model would be as follows: let us assume a

sequence of N documents arriving along a period of time T,

and a set of S frequencies, ranging between 0 and 1. We

L. Araujo (&)

Departamento de Lenguajes y Sistemas Informáticos,

Universidad Nacional de Educación a Distancia, Madrid, Spain

e-mail: lurdes@lsi.uned.es

J. J. Merelo

Departamento de Arquitectura y Tecnologı́a de Computadores,

Universidad de Granada, Granada, Spain

e-mail: jj@merelo.net

123

Soft Comput (2010) 14:211–227

DOI 10.1007/s00500-008-0395-8



have a double goal: determining the most appropriate

frequency for each interval between one arrival and the

next one and grouping together intervals with ‘‘similar’’

frequencies, i.e. with relative stability, in order to wash out

the noise, i.e. random fluctuations which do not mean a real

change in the frequency.

Figure 1 shows different possible fitting curves (or fits)

for the frequencies of a sequence of documents which have

arrived at the instants of time marked in the X axis. If the

chosen probabilistic model does not penalize changes of

state, the optimum curve would be the one which assigns to

each interval the most appropriate frequency, which, in

general, amounts to a change of state for each arrival. In

this case, the chosen fit for the arrival marked in the X axis

in Fig. 1 would be the lowest one. However, we want to

assign the same state to consecutive intervals with similar

frequency, ignoring in this way the changes produced

by the randomness in the arrivals. This can be done by

penalizing the change of state in different ways, i.e. by

introducing in the function that measures the agreement

between the fitting curve and the frequencies of document

arrivals, a factor that reduce the function value with the

number of changes of state.

Kleinberg (2003), whose method has inspired this work,

has developed a framework which formalizes these ideas.

He proposes a probabilistic automaton to model the

frequency of arrival of documents in different intervals.

The state of the automaton at a particular time determines

the expected frequency of document occurrences, while

transitions between states are probabilistically modeled

(Elwalid and Mitra 1993). A burst of documents for a topic

can therefore be identified by the period in which the

automaton has stayed in a high frequency state. Given a

sequence of documents related to a particular topic, the

Viterbi dynamic programming algorithm (Forney 1973)

can be applied to determine the sequence of automaton

states which optimizes the measure defined by the chosen

probabilistic model. This algorithm was initially designed

to find the most probable path in a Markov chain which

produces a given sequence of tags, and it is now exten-

sively applied to a wide range of problems (Rabiner 1990).

The Viterbi algorithm sets up a probability matrix, with

one column for each date index t and one row for each state

in the automaton. Each column has a cell for each state qi

in the automaton where the algorithm puts the maximum

probability of the previous paths arriving to the node

corresponding to the cell.

The sequences of document dates to model can be

obtained from different environments; in many cases they

are long sequences of documents appearing along unlim-

ited periods of time, such as chat logs, e-mails and news

stories. Since a dynamic programming algorithm is limited

by memory and efficiency constraints, as the length of the

sequence or the number of automaton states grows, it

makes sense to explore approximate or stochastic search

methods in order to achieve tractability. Furthermore, what

is really interesting for most applications, such as the

detection of trends in sequences of documents, is the

detection of significant changes of state, i.e. the detection

of clear changes in the average intensity of document

arrivals, not the achievement of a very precise optimum

numerical result for the cost function. For these reasons,

this work investigates the application of evolutionary

[for which texts such as (Goldberg 1989; Michalewicz and

Fogel 2004; Eiben and Smith 2003) can be good intro-

ductions] algorithms to the problem.

The aim of this work is to provide an efficient method to

find a ‘‘good’’ fit for a sequence of dates. In our experi-

ments those dates represent the arrivals or appearance of

documents in a particular environment (such as e-mail or

news feeds). Usually, the sequence presents gaps of dif-

ferent size between arrivals. The problem is to discern if

the change in the frequency of arrivals is representative

enough to be considered a change in the trend of interest on

the topic in the environment, or it is just noise in the data. If

we have a method to perform this discrimination, we can

build a fit for the data with the frequencies which have been

detected in different intervals of the arrival sequence. The

obtained fit can be used for predictive applications, such as

finding if interest on a topic is increasing (the last change of

frequency is from lower to higher) or decreasing (other-

wise), or having an estimate about when the next arrival

will occur.

Moreover, there are many other applications for the

obtained model. For example, it can help to detect rela-

tionships between different topics if there is a correlation in

state changes for the sequences of documents collected in

the same period, which would help to find emerging con-

cepts composed of more than one word. The model can

also be useful in identifying hierarchies between topics: the

fit of one at a higher level can be obtained as the sum of the

fits for those at lower level. Moreover, some correlation has

Time of documents arrival
X

Y

Fig. 1 Some possibles fits for a sequence of documents. The y axis

would represent the number of documents arrived in a particular time

period

212 L. Araujo, J. J. Merelo

123



been found between the buzz generated in blogs, and the

Amazon online bookstore sales rank (Gruhl et al. 2005):

online postings can be used to predict spikes in sales rank.

In this paper we adopt the Kleinberg model; an

alternative model assuming a Poisson distribution of fre-

quencies has been explored in another paper (Araujo et al.

2006). In addition to use an alternative algorithm for fitting

frequencies, in this paper we have also studied alternative

cost functions to the one proposed by Kleinberg (2003) for

modeling the change of state when new documents arrive.

We have built a number of artificial sequences, for which

the best fit is known, in order to be able to compare the

results obtained with the different cost functions. Another

issue to investigate is what is the best distribution of states:

uniform (all finite automata states distributed uniformly

over the frequency interval) or exponential (states sepa-

rated by intervals increasing exponentially in size). We

have checked both distributions in real-world sequences.

We have also researched the application of our evolu-

tionary algorithm to quickly fit a sequence where messages

keep arriving, taking advantage of the previously fitted

model by using it as a seed for the evolutionary algorithm.

The rest of the paper is organized as follows: next

section examines the state of the art; Sect. 3 describes the

model proposed by Kleinberg and the variant we are pro-

posing here; Sect. 4 is devoted to describe an evolutionary

algorithm used to find the optimal fit of frequency

assignments; Sect. 5 presents and discusses the experi-

mental results and Sect. 6 its extension to the incremental

detection of changes in date sequences. Finally, Sect. 7

draws the main conclusions from this work and discusses

future lines of research.

2 State of the art

Burst detection as applied to documents appearing in the

web is an important part of a set of tasks usually grouped

under the term text mining (although it can, in principle, be

applied to any kind of events, as the authors did in Araujo

et al. 2006). The duration of bursts, among other factors,

can be used to create a buzzness index (Yi 2005), or to

predict sales of items based on the buzz they are generating

(Gruhl et al. 2005). Kumar et al. (2004) also propose using

this method to analyze the evolution of links in blog

communities. Different techniques for data sequences are

surveyed by Muthukrishnan in (Muthukrishnan 2003),

describing various models that have been proposed to

describe data sequences, including Time Series Model,

Cache Register Model, and Turnstile Model. The Klein-

berg approach (Kleinberg 2003), as well as ours, belongs to

the Time Series model category, tackled with Markov

methods. There are alternatives, like the Topics Over Time

(TOT) (Wang and McCallum 2006) algorithm, that uses

the Latent Dirichlet allocation model, as opposed to a finite

state automaton (FSA), focused on topic discovery, more

than on topic tracking.

More similar to our work is the paper by Gollapudi and

Sivakumar (2004), although it uses a different kind of

approach (relational records and metric spaces), applied to

multi-dimensional data (as opposed to the mono-dimen-

sional data—dates used in this paper). The emphasis is also

on fast and online calculation. The work by Ihler et al.

(2006), has a similar aim that ours, but it uses a Poisson

process to model arrivals, in the same way we did in

Araujo et al. (2006).

Other papers, reviewed by Kleinberg (2006), have

focused in identifying time segments in which the

appearance of documents of a particular topic can be

considered relatively stable. The frequency of occurrences

can be very noisy, i.e. with many random changes, which

hinders the identification of intervals of similar frequency.

Different statistical techniques (Kleinberg 2003; Bingham

et al. 2003; Girolami and Kaban 2004) have been applied

to analyse temporal changes in document sequences.

Another approach is to focus on studying the rise and

fall of frequencies to detect trends in sequences by iden-

tifying changes in the frequencies along given periods of

time. Charikar et al. (Charikar et al. 2002) have proposed

an algorithm for finding the most frequent elements in a

sequence, which is also adapted to find elements whose

frequencies change the most.

What we will attempt in this paper is to analyze the best

way to fit a FSA to an event sequence model, optimizing at

the same way algorithm speed and accuracy.

3 Problem models

One of our aims in this paper is to devise a model which

generates a sequence of events and set its parameters so

that the sequence under study might have been generated

with it with a high probability. In order to model event

occurrences in a sequence we are going to use a FSA,

inspired by models for network traffic in queuing theory

(Elwalid and Mitra 1993) and on Hidden Markov Models

(Rabiner 1990).

According to this approach, a source emits documents at

a rate which depends on the state of the FSA at a given

point in time. A traffic burst begins with a transition from a

state of lower rate of emission to one of higher rate.

Kleinberg chooses an exponential density function f ðxÞ ¼
ae�ax; a [ 0 to model the probability density of waiting

times between arrivals. In the simplest case, we can dis-

tinguish between only two different states, with high and

low frequency respectively. In state q0 the automaton emits

Automatic detection of trends in time-stamped sequences 213

123



documents at a low rate, which gives rise to a probability

density for the intervals f0ðxÞ ¼ a0e�a0x; while state q1 has

a higher emission rate, which gives rise to a probability

density for the gaps given by f1ðxÞ ¼ a1e�a1x; with a1 [ a0:

Now the question is how to model the probability p with

which the automaton changes its state between the emis-

sion of two consecutive documents. It is assumed that p is

independent of previous emissions and state transitions.

Assuming this probability distribution, we can compute the

probability of a sequence q ¼ fq1; . . .; qng of state transi-

tions conditioned to the sequence x ¼ fx1; . . .; xng of gaps

observed between the n ? 1 documents arrived in the

sequence. The state sequence which maximizes this prob-

ability PðqjxÞ is the one which minimizes the cost function

cðqjxÞ ¼ �lnPðqjxÞ: Applying this condition, the following

formula is obtained

cðqjxÞ ¼ b ln
1� p

p

� �
þ
Xn

t¼1

�lnfitðxtÞ ð1Þ

where b is the number of state transitions done to emit the

sequence, i.e. the number of times in which qðtÞ 6¼ qðt þ 1Þ:
In formula (1), we can observe that the fewer state transi-

tions, the smaller the first term, while the better the state

sequence fits the observed sequence of gaps x, the smaller

the second term. Therefore, it is expected that the optimum

sequence of states fits well the gap sequence with as few

changes in the size of the gaps as possible, depending this

inertia on the parameter b.

This simple two-state model is then extended to one of

infinite states, providing a different one for each possible

intensity of emission. Kleinberg proposes an automaton

with an initial state q0 whose corresponding density func-

tion a0e�a0x is assigned an emission rate a0 ¼ n=T ; where n

is the number of gaps between documents emissions and T

is the total length of the considered period of time; i.e., a0

corresponds to a perfectly uniform event emission. For the

remaining states qi; i [ 0; the assigned emission rate is

ai ¼ a0si; where s [ 1 is a scaling parameter, i.e. the

smaller the gap, the greater the intensity. Then, by analogy

with the two-state model, the cost function which the

selected sequence of states must minimize, is

cðqjxÞ ¼
Xn�1

t¼0

sðit; itþ1Þ þ
Xn

t¼1

�lnfitðxtÞ ð2Þ

where sði; jÞ represents the cost of a state transition from

the state qi at a given time t to the state qj at time t þ 1:

Kleinberg, who considers that the selection of sði; jÞ is very

flexible, chooses sði; jÞ in such a way that the cost of

changing from a lower intensity state to a higher intensity

one is proportional to the number of involved states, while

there is no cost for changing from higher to lower intensity

states. Specifically, the cost associated to change from state

qi to qj, where j [ i, is defined as ðj� iÞclnn; c being a

parameter of the model. A�s;c denotes the automaton of

infinite states with parameters s and c. The parameter s

controls the scale for the rate values of the states, while c,

which Kleinberg sets to 1 in his experiments, controls the

resistance to changing state.

Computing an optimal state sequence in an automata

A�s;c with infinite states is equivalent to computing q in one

of its finite restrictions Ak
s;c; obtained by deleting from the

automaton all states but the first k of them. This result

allows establishing algorithms to compute the sequence of

states for the minimum cost. For this purpose, Kleinberg

adopts the standard dynamic programming algorithm used

for hidden Markov Models.

However, the penalty function described above is not

the only possible one and we have studied others: cost

functions which also penalize the change from a state with

high intensity to a state of low intensity, and measures

which do not depend on the number of states. These are the

cost functions we will test in this paper:

– sa; defined as
ðj� iÞ ln n if j [ i
0; if i� j

�
; the one proposed

by Kleinberg, where n stands for the number of

documents in the sequence.

– sb; defined as jj� ijln n; similar to sa but now there is

also a cost by changing from a higher intensity state to

a lower one.

– sc; defined as
logðj� iÞ if j [ i
0; if i� j

�
; other penalty func-

tion with zero penalty for high-to-low intensity

changes.

– sd; defined as logðjj� ijÞ; the counterpart of sc which

also penalizes high-to-low intensity changes.

– se, defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj� iÞ

p
if j [ i

0; if i� j

�
; which has zero

penalty for high-to-low intensity changes.

– sf, defined as
ffiffiffiffiffiffiffiffiffiffiffiffi
jj� ij

p
; the counterpart of se.

– sg, defined as
ðj� iÞ=lnE if j [ i
0; if i� j

�
; introduced to

avoid the dependency with the number of states. E is

the total number of automaton states.

– sh; defined as jj� ij=lnE; the counterpart of sg which

penalizes any change of state.

The results obtained with the different functions have

been compared in the section devoted to the experiments

(Sect. 5).

4 The search process: evolutionary algorithm

Systems based on evolutionary algorithms (Michalewicz

and Fogel 2004; Hsu et al. 2002; Galvão et al. 2004)

maintain a population of potential solutions to the problem

and apply some selection process based on the quality or

214 L. Araujo, J. J. Merelo

123



fitness of individuals, as natural selection does. The popu-

lation is renewed by replacing some individuals with those

obtained by applying ‘‘genetic’’ operators to selected indi-

viduals. The most usual genetic operators are crossover and

mutation. Crossover obtains new individuals by mixing,

often in some problem dependent way, two individuals,

called parents. Mutation produces a new individual by

performing some kind of random change on an individual.

The production of new generations continues until resour-

ces are exhausted or until some individual in the population

is fit enough. Evolutionary algorithms have proved very

useful as search and optimization methods, and have pre-

viously been applied to different issues of natural language

processing (Araujo 2004), such as text categorization,

inference of context-free grammars, tagging and parsing.

In our case, individuals represent sequences of state

transitions in the automaton. The fitness of individuals is

the cost function associated to the sequence of state tran-

sitions, and depends on the chosen probabilistic model.

4.1 Individual representation

Let E be the number of states chosen for the automaton. Let

us assume a sequence of n ? 1 events along a period of

time T. Then, the individuals of our evolutionary algorithm

could be represented as the list of automaton states corre-

sponding to each event. Accordingly, an individual could

be a list of n genes gi, where gi 2 f0; . . .;Eg is the state q in

which the automaton is after the event i.

However, the occurrence of a new event does not pro-

duce a state transition in many cases. Therefore, the

sequence of transitions can be represented in a more com-

pact manner. Thus, an individual is a variable length list, in

which each position, or ‘‘gene’’, represents the occurrence

of a sub-sequence of events which do not lead to a change of

state. Each gene is composed of an automaton state and of

an identifier of the first and the last events in the sub-

sequence. Therefore, the individuals of our evolutionary

algorithm could be represented as the list of state transitions

in the automaton caused by the occurrence of events.

4.2 The fitness function

For the fitness function we take, quite naturally, the cost

function which defines the chosen statistical model. Thus

the goal of our evolutionary algorithm is to find the

sequence of state transitions q ¼ ðqi1 ; . . .; qinÞ which

minimizes the function

cðqjxÞ ¼
Xn�1

t¼0

sðit; itþ1Þ þ
Xn

t¼1

�lnaie
�aixt ;

with the penalty cost sði; jÞ and the state parameter, ai; of

the chosen statistical model. In order to compute this

function, the implicit automaton underlying the model

must be completely defined, i.e. we have to assign values to

each ai; 1� i\E: We assume that the number of automa-

ton states has previously been fixed to E. In Kleinberg’s

approach, a special state q0 is assigned a document arrival

rate a0 ¼ n=T; which corresponds to uniform document

arrivals. For the remaining states, qi; i [ 0; the arrival rate

is ai ¼ a0si; where s [ 1 is a scaling parameter, i.e. the

arrival intensity increases geometrically with i. However,

after performing some experiments, we have adopted a

uniform distribution of state frequencies, which provides

better results, specially for the sequences of real data (see

Sect. 3). An estimate of the minimum frequency can be

a0 ¼ ð1=2Þr�1; with r the longest interval without events.

Thus the possible frequencies are ai ¼ a0 � i; i ¼ 1; . . .;E:

4.3 Initial population

The first step of an evolutionary algorithm is the creation of

a population of individuals, or potential solutions to the

problem. In our case, these individuals represent sequences

of randomly generated state transitions. The simplest way

of creating one such sequence is to choose a few events at

random and use them to split the whole sequence into

intervals, every one of which is assigned a random state.

However, some preliminary experiments we have per-

formed have shown that such a simple strategy gives rise to

a search space that is too large for the algorithm to be

efficient.1 Accordingly, we choose for a state transition

only those events for which the gaps with the previous

event and with the following one are sufficiently different

(the size of one at least 50% longer than the other). The

interval before the first transition is assigned a random

state, and this state is increased or decreased in successive

intervals according to whether the gaps on the left and right

of the partition points increase or decrease in length,

respectively. The size of this change is randomly chosen.

Figure 2 shows an example of generation of an indi-

vidual of the initial population. After generating a number

of partition points at random, only those that correspond to

a significant change of frequency in the input data, are used

to define the genes of the new individual.

1 The number of generations required to reach the optimal fit is about

ten times the one required with the strategy finally adopted.

Automatic detection of trends in time-stamped sequences 215

123



4.4 Crossover operator

We have tested the classic one-point crossover and a two-

point crossover operator. The first one creates two new

individuals by combining two individuals in such a way

that the first part of one parent up to a crossover point is

combined with the second part of the other parent and vice

versa. Afterwards, the best offspring substitutes the worst

parent, which is a steady state strategy. The two-point

crossover operator swaps the part of the parents between

two crossover points chosen at random.

In both types of crossover operators, the crossover

points correspond to a date in the input sequence, and the

crossover gene is the one containing such date. Since, in

general, the crossover gene will be different in both

parents, it is necessary to design a strategy to deal with it.

For the sake of simplicity, we show the adopted strategy

for the one-point crossover operator. The two-point

crossover operator works analogously for the two cross-

over genes.

The one-point crossover operator is applied following

these steps:

– In order to select the crossover point, we randomly

choose one of the event dates in the sequence. Then, we

search in both parents the gene (crossover gene) which

contains this event.

Let us assume that the date selected as crossover point

corresponds to the occurrence of event t, which belongs

to the gene g1i in parent 1 and to the gene g2j in parent

2. The two individuals shown at the top of Fig. 3

represent that kind of parents.

– Then, the genes on the right-hand side of the crossover

point (c.p.) in both parents are exchanged. The

individuals at the bottom of Fig. 3 represent this type

of offspring, where the gene at the crossover point is

not yet specified.

– For the gene containing the crossover point (c.p.), we

must decide if the subsequence of events of the

crossover gene—which, in general, is different in both

parents—is going to be joined or split. Experiments

have shown that taking this decision at random

produces bad results.2 Accordingly, if the gaps on the

left and on the right of the crossover point are

comparable, the subsequence is assigned a single gene

whose state is randomly selected from one of the

parents. Otherwise, the subsequence is split at the

crossover point in two genes, each taking the state from

one parent. We consider that the gaps are similar if they

differ in less than 50%. Let d(x) the date of occurrence

of event x. Then,

Figure 4 shows an example of how one-point crossover

operator creates two new chromosomes. The first one,

which is a copy of the parent 1 up to the crossover point,

and a copy of the parent 2 after it, will be the individual of

the figure a1 if the alternative chosen at random is not

splitting the crossover gene and a2 in the other case.

Analogously, the second one will be one of the two alter-

native individuals, b1 if the crossover gene is not split, or b2

if it is.

input data

partition points
randomly generated

chromosome

Fig. 2 Example of generation of an individual of the initial

population. Only the partition points corresponding to a significant

change of frequencies in the input data are accepted

2 The number of generations required to reach the optimal fit is about

twenty times the one required with the strategy finally adopted.

216 L. Araujo, J. J. Merelo

123



4.5 Mutation operator

The mutation operator is applied to every individual of the

population with a probability given by the mutation rate.

Different variants of mutation have been implemented,

selecting at random the one to apply in each case:

– One of these mutation operators amounts to choosing a

gene at random and randomly increment or decrement

its state by one unit (see Fig. 5, top).

– Other mutation operator merges two consecutive genes

to produce a single one. The state of the new gene is

randomly taken from one of the original genes (see

Fig. 5, middle right).

– The last mutation operator splits a gene in two; each

one is assigned a different state: one of them is given

the state of the original gene and the other one is given

the previous state plus or minus one (plus if the gap on

the left of the partition point is longer than the one on

the right, and minus otherwise). This operator is only

applied if the gaps in both sides of the partition are

different (see Fig. 5, bottom).

4.6 Algorithm convergence

We use a double criterion for stopping: the algorithm stops

either when the specified maximum number of generations

is reached or when the maximum fitness value converges,

that is, when it has not changed for the last 100 genera-

tions; this number has been chosen heuristically.

5 Experimental results

Before evaluating the system on a number of real world

sequences, for which the correct fit is not known in

advance, we need to use artificial data, for which the fit is

known, in order to test the behaviour of the adopted model

and of the evolutionary algorithm. Tests for the model

performed on real world sequences only can be intuitively

validated if some event concerning the topic of the

sequence, that causes a burst of interest, is known. For

instance, in a sequence corresponding to documents on the

topic terrorism, we can expect a burst around the date of

some well known terrorist attack. However, other not so

outstanding trends can not be evaluated in this way.

Because of this, we have generated artificial sequences

with different features, for which we know the probability

distribution of the document arrivals.

Since the performance of the evolutionary algorithm is

usually sensitive to settings such as the population size, the

number of generations and the rates of application of the

Fig. 3 Scheme of the parents and offspring in a crossover

CP

G2

Parent 2

CP

G1

Parent 1

b
2

b
1

a
2

a
1

Offspring 2Offspring 1

Fig. 4 Example of the one-point crossover operator. CP stands for

crossover point. Each parent is identified by a different line type. The

full line corresponds to the crossover gene. a1 will be the offspring 1

if the procedure of not splitting the CP gene is randomly selected, and

a2 if it is selected to split the CP gene. Analogously, the offspring 2

will be b1 or b2 depending on whether the gene is split or not

G

G

state change

MP

gene join

G’

gene split

Chromosome

G’

G’’

Fig. 5 Examples of the different mutation operators. MP stands for

mutation point. The one at the top changes the state of the gene

containing the mutation point; the middle one merges it with the

preceding or next one, and finally the one at the bottom splits in two

the gene selected for mutation

Automatic detection of trends in time-stamped sequences 217

123



crossover and mutation operators, we have also investi-

gated the range of values for these parameters which

provide best results and compared the fits obtained by a

dynamic programming algorithm with the EA; results have

been published elsewhere (Araujo and Merelo 2006).

Finally, we have also tested our system in some real world

sequences, for which we provide other measures of the

quality of the obtained fit, such as the cumulative time

required for the arrival of the next document in the

sequence corresponding to the obtained fit, which can be

compared to the real number of messages of the fitted

sequence.

5.1 Evaluating cost functions

In principle, it is not a trivial task to compare the results

obtained using different cost functions. It is pointless to

compare the numerical value yielded by each of them for

the cost, because, in general, they are going to be different

even for the same fitting curve. The best way to perform

the comparison is to apply the different measures to a

sequence for which we know the emission frequencies that

generated it. In this case, we can compare the correct fitting

curve with the curves obtained with the different cost

functions. Because real world sequences present too much

noise to objectively determine the best fit, we have applied

this method to two kinds of artificial sequences, composed

of a number of intervals spanning the whole interval. These

intervals have been designed by hand to present different

degrees of difficulty for the algorithm.

The program which generates sequences of the first kind

reads from an input file the number of documents arriving

(or event occurrences) within each interval and the gap

between every two consecutive ones, which is constant

along the interval. Intervals correspond to steps in the

frequency-time representation. Figure 6 represents a

sequence, synthetic1, of this type, which is composed of

220,000 dates and presents ascending and descending

steps.

Figure 7 shows the fitting curves obtained by applying

the Viterbi algorithm (10 states) with the different cost

functions for the sequence synthetic1. Table 1 shows the

numerical values of the frequencies appearing in the figure.

0 1e+06 2e+06 3e+06 4e+06
Time

0

0,2

0,4

0,6

0,8

1

Fr
eq

ue
nc

y

Fig. 6 Artificial sequence, synthetic1, generated to evaluate cost

functions

0

0,2

0,4

0,6

0,8

1

Fr
eq

ue
nc

y

Base
τ_a
τ_b

Base
τ_c
τ_d

0 1e+06 2e+06 3e+06 4e+06
Time

0 1e+06 2e+06 3e+06 4e+06
Time

0 1e+06 2e+06 3e+06 4e+06
Time

0 1e+06 2e+06 3e+06 4e+06
Time

0

0,2

0,4

0,6

0,8

1

Fr
eq

ue
nc

y

0

0,2

0,4

0,6

0,8

1

Fr
eq

ue
nc

y

0

0,2

0,4

0,6

0,8

1

Fr
eq

ue
nc

y

Base
τ_e
τ_f

Base
τ_g
τ_h

Fig. 7 Fitting curves obtained

with different cost functions for

the sequence synthetic1 (Fig. 6)

(clockwise from the top-left
corner, sa and sb; sc and sd; sg

and sh, se and sf). The arrow
marks the points in which the fit

has been able to detect a narrow

peak in the data

218 L. Araujo, J. J. Merelo

123



We can observe that the best fits, i.e. closest to the base

curve of frequencies used for generating the sequence, are

obtained with functions se and sg: Please note that these

functions are able to detect the narrow peak in the sequence

(marked with an arrow in the figure). However, we choose

sg because it is normalized with respect to the number of

states, which makes its behavior more insensitive to this

parameter. Measures sb; sd; sf and sh whose changes from a

higher frequency state to a lower one are also penalized,

produce fitting curves that are much too flat.

The second sequence, random1 used for evaluation has

been generated via the following procedure: every time unit

a document arrives with a given probability (its frequency);

probabilities for this sequence are shown in Table 2.

Figure 8 shows the fits obtained by applying the Viterbi

algorithm to an automaton of 100 states for a sequence

generated according to the probability distribution of

Table 2. Table 3 shows the numerical values of the

frequencies appearing in the Fig. 8. The first row of this

table indicates the initial dates of each segment, the second

one the last date, and the third one is the average frequency

at which documents are emitted. Gaps between documents

in a segment are thus random. In Fig. 8 the most accurate

and smoothest fit is again obtained with the cost function sg:

In this case sa produces a very poor fit.

As a conclusion, we have used sg instead of the cost

function proposed by Kleinberg in his paper, since it pro-

vides a better fit for known document sequences. This

function avoids the dependency with the number of docu-

ments that was featured by Kleinberg’s proposed one; the

main difference is that while Kleinberg’s function (sa here)

uses as a scale factor the number of documents, ours (sg

here) scales by the number of states. As can be seen in

Figs. 7 and 8, the difference is bigger in the case of a

randomly generated sequence (8) than in the case of a

sequence with uniform gaps (7), which probably means

that, in the general case, sg will yield better results.

Table 4 presents the results of a t test to assess the

statistical significance of the differences among the dif-

ferent cost functions tested. The t test has been applied to

the value of the area below the fitting curve resulting as

Table 1 Numerical values of the frequencies appearing in the graphics of Fig. 7 for the different cost functions

Ref. Message(State) sa sb sc sd se sf sg sh

1,000,000 (0.5) 0.0547 0.0731 0.2327 0.7411 0.0547 0.0731 0.0547 0.0731

1,150,000 (0.2) 0.0547 0.0731 0.2327 0.7411 0.4153 0.0731 0.1742 0.0731

1,160,000 (1) 0.2327 0.0731 0.0976 0.0731 0.0547 0.0731 0.4153 0.0731

1,360,000 (0.1) 0.0976 0.0547 0.0547 0.0731 0.0547 0.0547 0.4153 0.0547

2,160,000 (0.0125) 0.0547 0.0547 0.1742 0.0731 0.3109 0.0547 0.0547 0.0547

2,180,000 (0.3333) 0.0547 0.0547 0.1742 0.0731 0.3109 0.0547 0.3109 0.0547

2,580,000 (0.1) 0.3109 0.0547 0.0976 0.0547 0.0976 0.0547 0.0976 0.0547

3,480,000 (0.0333) 0.0547 0.0547 0.0976 0.0547 0.0547 0.0547 0.0547 0.0547

4,020,000 (0.02) 0.0547 0.0547 0.0547 0.0547 0.0547 0.0547 0.0547 0.0547

The column at left shows the time of arrival, and the state used to generate it; values for each function are better the closer they are to the value in

parenthesis. The closest value is highlighted in boldface. As it can be seen, sg values (next-to-last column) are consistently closer to the real
values

Table 2 Probability distribution used to generate the random1
sequence, which features random gaps

Ini 0 1001 2001 3001 4001 5001

End 1000 2000 3000 4000 5000 6000

Freq. 0.002 0.89 0.004 0.9 0.001 0.99

Table 3 Numerical values of the frequencies appearing in the graphics of Fig. 8 for the different cost functions

Ref. Message(State) sa sb sc sd se sf sg sh

451 (0.002) 0.7365 0.7030 0.0179 0.0209 0.0089 0.0089 0.0029 0.0204

1,001 (0.89) 0.7365 0.7030 0.8832 0.9406 0.8597 0.8597 0.8927 0.8802

2,001 (0.004) 0.7365 0.7030 0.1477 0.0199 0.1062 0.1062 0.0024 0.0119

3,001 (0.9) 0.7365 0.7030 0.9316 0.9271 0.7634 0.7634 0.8957 0.9386

4,001 (0.001) 0.6307 0.6856 0.0009 0.0079 0.0044 0.0044 0.0029 0.0089

5,001 (0.99) 0.6307 0.6856 0.9925 0.9910 0.8063 0.8063 0.9935 0.9890

Once again, sg values are almost always better than the values for other functions, and always very close. The value closest to the real one is

highlighted in boldface

Automatic detection of trends in time-stamped sequences 219

123



solution in each case for the data of Fig. 8. We can observe

that the t test is 0 for the results of sg; and also for some

other measures, thus showing its statistical significance.

5.2 Comparing the EA with a classic algorithm

Finally, in order to test the advantages of using an EA for

the considered problem, we have compared its results with

those obtained with the Viterbi dynamic programming

algorithm. Tables 5, 6 and 7 show the values obtained for

the cost function and the execution time when using a

dynamic programming algorithm and the EA (best result of

five runs, average and standard deviation). The cost func-

tion used has been sg: The EA has been run with a

population size of 200 individuals, a maximum number of

200 iterations, a crossover rate of 40% and a mutation rate

of 10%. The values presented for the EA are the best cost,

together with its average and standard deviation and the

running time (average and deviation) for five runs.

Parameters for running the EA have been established

heuristically; the experiments performed have been

described elsewhere by the authors (Araujo and Merelo

2006). According to the obtained results, we have adopted

by default the parameter setting shown in Table 8.

It can be observed that the EA always yields the shortest

running time. In some cases the value obtained for the cost

function with both algorithms and the number of states in

the automaton is the same. There are other cases in which

the value provided by Viterbi is slightly better. However, in

all these cases the fitting curve obtained with both algo-

rithms is the same and the only difference is the particular

state number assigned to different steps; the relative change

of state, and therefore of frequency, is maintained. For

example, in the case of the synthetic3, Fig. 10 shows the

results obtained with a 10-state automaton, with the Viterbi

algorithm and the EA. We can observe that the number of

steps found in each curve is the same, the size of each step

and the document of the beginning and the end of each step

is also the same in both algorithms, and the relative change

of state is also maintained. The only difference, highlighted

in the figure, is the absolute state assigned to the interval

between the documents 60,000 and 75,000. Therefore, both

solutions are equally useful in order to detect the burst of

interest in the sequence and to estimate the future trend.

Furthermore, the values obtained for the average cost and

0 1000 2000 3000 4000 5000 6000
Time

0 1000 2000 3000 4000 5000 6000
Time

0 1000 2000 3000 4000 5000 6000
Time

0 1000 2000 3000 4000 5000 6000
Time

0

0,2

0,4

0,6

0,8

1

Fr
eq

ue
nc

y

0

0,2

0,4

0,6

0,8

1
Fr

eq
ue

nc
y

0

0,2

0,4

0,6

0,8

1

Fr
eq

ue
nc

y

0

0,2

0,4

0,6

0,8

1

Fr
eq

ue
nc

y

Base
τ_a
τ_ b

Base
τ_c
τ_d

Base
τ_e
τ_f

Base
τ_g
τ_h

Fig. 8 Fitting curves obtained

with different cost functions for

the sequence generated with the

probability distribution

appearing in Table 2 (clockwise

from the top-left corner, sa and

sb; sc and sd, sg and sh, se and

sf). sg yields the best fit, as can

be seen in the figure at the

bottom

Table 4 T test results for the cost functions considered. The results
are zero or near zero for sa; sb and sg. The rest of the results are less

than 0.5, except for sc and sh, which is just a bit greater

sa sb sc sd se sf sg sh

sa 1

sb 0.003 1

sc 0 0 1

sd 0 0 0.043 1

se 0 0 0.279 0.307 1

sf 0 0 0.112 0.223 0.375 1

sg 0 0 0 0 0.002 0 1

sh 0 0 0.548 0.060 0.263 0.135 0.032 1

220 L. Araujo, J. J. Merelo

123



standard deviation, which is below 0.5% in all cases, show

that the EA is very robust. Because of the small variability

observed, the fit obtained by any of the EA runs is a valid

solution.

We have also studied how the number of events in the

sequence to fit affect the performance on the Viterbi

algorithm and the EA, for both execution time and mem-

ory. Table 9 shows the comparative results. The sequences

correspond to variations in the number of documents of the

artificial sequence synthetic1. The number of intervals and

the gap between consecutive events in each interval have

been maintained, but the length of the intervals has been

reduced or extended to produce sequences with different

event numbers. We can observe that the increase of both,

the execution time and the memory requirement, with the

number of document is very much larger with the Viterbi

algorithm. It is more clearly shown in Fig. 11 where we

can see that, though obviously the time and memory

required grow with the number of documents for both

algorithms, the curve for the Viterbi algorithm is much

steeper than the one of the EA.

5.3 Evaluating real world document sequences

We have studied the behavior of some sequences obtained

from the real world. They have been obtained from the

Blogalia weblog hosting site,3 by doing a database search

of the comments table on certain words: (a) google, (b)

gmail, (c) terrorismo4 and (d) atentado terrorista.5

Values for crossover and mutation are the same as in the

previous version (40% for crossover, 10% for mutation),

but the population and number of generations has been

Table 5 Execution time in

seconds and value of the cost

function for the synthetic2
sequence (Fig. 9) when

applying the Viterbi and the

Evolutionary algorithm to find

the optimal sequence of

automata states with different

total number of states

State n. Viterbi Evo. Alg

Cost Ex. time Best Cost Cost Ex. time

5 734,721 2394.44 734,721 735242.6 ± 824.72 721.10 ± 103.12

10 704,021 4789.13 704,021 707342.2 ± 3081.98 1902.61 ± 245.23

15 699,429 7188.22 699,429 702288.4 ± 2989.61 2476.37 ± 305.70

20 696,703 9588.8 696,703 696703 2729.01 ± 294.62

25 696,210 12001.2 696,210 696210 2921.53 ± 275.33

Table 6 Execution time in

seconds and value of the cost

function for the sequence

synthetic3 (Fig. 9) when

applying the Viterbi and the

Evolutionary algorithm to find

the optimal sequence of

automata states with different

total number of states

State n. Viterbi Evo. Alg

Cost Ex. time Best Cost Cost Ex. time

5 279,464 792.08 279,464 280897.6 ± 839.70 646.09 ± 72.12

10 277,796 1547.4 277,893 278785.4 ± 899.03 1431.92 ± 92.56

15 277,402 2319.36 277,712 279385.6 ± 980.11 1812.06 ± 115.37

20 277,306 3117.28 277,528 278980.4 ± 1114.91 2149.72 ± 136.55

25 277,260 3835.37 277,270 279472.6 ±1116.03 2161.13 ± 128.41

Table 7 Execution time in

seconds and value of the cost

function for the sequence

synthetic1 (Fig. 6) when

applying the Viterbi and the

Evolutionary algorithm to find

the optimal sequence of

automata states with different

total number of states

State n. Viterbi Evo. Alg

Cost Ex. time Best Cost Cost Ex. time

5 795,853 2377.35 795,853 799612.8 ± 3098.99 1823.20 ± 104.62

10 794,821 4781.91 794,821 795938.2 ± 1117.64 3293.21 ± 206.75

15 794,381 5666.24 794,381 798642.0 ± 3007.618 4116.03 ± 241.21

20 794,256 9559.78 794,256 797285.0 ± 3023.408 5965.48 ± 276.92

25 794,199 11975.5 795,013 798818.8 ± 3448.08 5877.49 ± 208.23

Table 8 Parameter setting

Number of generations 200

Population size 200

Crossover type Two-point

Crossover probability 40

Mutation probability 10

Fitness function sg

3 http://www.blogalia.com.
4 terrorism.
5 terrorist attack.

Automatic detection of trends in time-stamped sequences 221

123

http://www.blogalia.com


increased to 1,000 in the two cases, instead of 200 used in

the experiments with artificial sequences. Figure 12 shows

the fitting curve obtained by the EA with those parameters

and using a 100 state automaton. The figure compares

the results obtained using the uniform distribution of fre-

quencies for the automata states (which we propose) with

the geometric distribution proposed by Kleinberg. We can

observe that the results obtained with our uniform distri-

bution are much better than those obtained with the

geometric distribution.

It becomes even clearer in the plots of Fig. 13 which

show, for the input data and the two considered fits, the

cumulative time required for the arrival of the next docu-

ment in the sequence. In the case of the fit data, the inverse

of the frequency assigned to the interval is used to calculate

the required time. We can observe that the fit using the

geometric distribution of frequencies severely underesti-

mates the curve representing the input data. The goodness

2e+07 2,05e+07 2,1e+07 2,15e+07
Time

0

0,2

0,4

0,6

0,8

1

Fr
eq

ue
nc

y
a

0 1e+05 2e+05 3e+05 4e+05 5e+05
Time

0

0,2

0,4

0,6

0,8

1

Fr
eq

ue
nc

y

b

Fig. 9 Additional artificial sequences generated to evaluate the EA,

which we will call synthetic2 (a) and synthetic3 (b)

0 1e+05 2e+05 3e+05 4e+05 5e+05 6e+05
Time

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

Fr
eq

ue
nc

y

Viterbi
EA

Fig. 10 Steps of the fitting curve obtained with the Viterbi algorithm

and the Evolutionary algorithm for the sequence synthetic3 (Fig. 9)

with a 10 state automaton. The EA is run on a population size of 200

individuals for a maximum number of 200 generations, with a

crossover rate of 40% and a mutation rate of 10%

Table 9 Comparison of the execution times and the memory require-

ments for sequences with different number of events

doc.

number

Viterbi Evolutionary Alg.

Cost Ex. Time Memory Cost Ex. Time Memory

110,000 348,114 2624.79 36,082 348,114 2015.25 5,596

220,000 696,210 12001.2 71,041 696,210 2870.53 8,176

330,000 1,044,320 25896.11 102,842 1044,320 5964.96 11,616

440,000 1,392,430 51401.34 147,192 1,392,430 8187.25 15,052

The execution time (Ex. Time) appears in seconds, the memory appears in

KB. Both algorithms have been run for an automaton of 25 states. The EA

parameters have been a population size of 200 individuals, 200 genera-

tions, a crossover rate of 40% and a mutation rate of 10%

1e+05 2e+05 3e+05 4e+05
Number of documents

0

10000

20000

30000

40000

50000

60000

E
xe

cu
tio

n 
T

im
e

Viterbi
AE

1e+05 2e+05 3e+05 4e+05
Number of documents

0

50000

1e+05

1,5e+05

2e+05

M
em

or
y 

re
q.

Viterbi
EA

Fig. 11 Execution times and memory requirements for sequences

with different numbers of documents for the Viterbi (solid) and the

evolutionary (dotted line) algorithm

222 L. Araujo, J. J. Merelo

123



of the fit using our uniform distribution is patent from the

plots, providing an evidence of the quality of the results. In

order to provide a numerical evidence of the quality of the

fits, Table 10 compares the discrepancy with the input data

of the cumulative time at the date of the last document

arrival, for both types of distribution of frequencies. The

table shows the absolute difference as well as the per-

centage it represents with respect the total accumulated

time. We can observe that this difference, is much smaller

in the case of our uniform distribution.

We can observe that the fit for google (Fig. 12a) shows a

great interest in the topic, along the whole period. The

curve for the gmail sequence (Fig. 12 b) presents some

bursts (approximately four), though their intensity is not

very high. These bursts roughly correspond to new waves

of GMail (the Google webmail system, at http://gmail.com)

0 500 1000 1500
time

0

0,2

0,4

0,6

0,8

fr
eq

ue
nc

y

uniform frequencies
geometric frequencies

0 500 1000 1500
time

0

0,1

0,2

0,3

0,4

0,5
fr

eq
ue

nc
y

uniform frequencies
geometric frequencies

0 100 200 300 400 500 600 700
time

0

0,5

1

1,5

2

fr
eq

ue
nc

y

uniform frequencies
geometric frequencies

0 500 1000 1500
time

0

0,1

0,2

0,3

0,4

fr
eq

ue
nc

y

uniform frequencies
geometric frequencies

(a) (b)

(c) (d)

Fig. 12 Fitting curves for some

real world document sequences;

each sequence corresponds to

blog posts from Blogalia that

include the following words:

a google; b gmail; c atentado
and d atentado terrorista. The

scale unit of x axis is days. Each

graphic shows the fits obtained

using our uniform distribution

(solid line) and a geometric

distribution (dashed line)

0 200 400 600 800
document arrivals

0

500

1000

1500

2000

tim
e

0

500

1000

1500

2000

tim
e

data
fit (uniform frequencies)
fit (geometric frequencies)

0 50 100 150 200
document arrivals

data
fit (uniform frequencies)
fit (geometric frequencies)

0

500

1000

1500

2000

tim
e

0 50 100
document arrivals

0

100

200

300

400

500

600

700

tim
e

data
fit (uniform frequencies)
fit (geometric frequencies)

0 50 100 150 200
document arrivals

data
fit (uniform frequencies)
fit (geometric frequencies)

(a) (b)

(c) (d)

Fig. 13 Cumulative time

required for the arrival of the

sequence of documents in the

input data and according to

the frequencies generated by the

fit for the sequences of Fig. 12.

Each graphic shows the curves

corresponding to the input data

(solid line), and to the fits

obtained using our uniform

distribution (dashed line) and a

geometric distribution (dotted
line)

Automatic detection of trends in time-stamped sequences 223

123

http://gmail.com


invitations. The two last fits (Fig. 12 c, d) are devoted to

two related topics, terrorism and terrorist attack, and thus,

we can observe that although the intensity of document

arrivals is greater in (d), because the topic is more general,

the bursts in both sequences appear approximately at the

same times, as it can be expected.

We have also checked the behaviour of the different cost

functions for these real world sequences. Figure 14 shows

the cumulative time required for the arrival of the sequence

of documents in the input data and according to the fre-

quencies generated by the fit obtained with each cost

function. We can observe than the fit obtained using the

cost function sg is the one which more tightly follows the

curve corresponding to the input data in every sequence

considered, thus confirming the results obtained with the

artificial sequences. All the other cost functions show clear

flaws: sa diverges on the google sequence, sb in gmail; in

general, sa; sb and sd show the worst results for the

sequences considered.

6 Incremental detection of changes of state

in document sequences

We have also investigated the progressive detection of

changes in the trends of documents sequences. Let us

assume the fit for a sequence has been found, new docu-

ments arrive, and we want to detect possible changes in the

trends of the corresponding topic. Clearly, the most accu-

rate way of doing this is to apply again the algorithm for

finding the best fit for the extended sequence. However,

bearing in mind applications where data keeps arriving, we

have investigated a way to quickly obtain a fit for an

extension of a previously fitted sequence. This is done by

using the previous fitting curve as a seed for the EA which

searches the fit of the extended sequence. To implement

this mechanism, we have modified the way in which the

EA creates the initial population. A seed individual is

created, its last gene extended with the new subsequence of

document dates. Then, the initial population is created by

applying the mutation operator to this seed individual, but

in such a way that the last gene has a higher probability to

undergo mutation. Once the initial population has been

created, the EA proceeds as before.

Table 11 shows the time required to fit the sequence of

Fig. 9a if a part of it, whose length appears in the first

Table 10 Comparison of the discrepancy with the input data of the

cumulative time of the last document arrival, using our uniform

distribution of frequencies for the automata states and the geometric

distribution

Uniform freq. Geometric freq.

Diff. % Diff. %

google -17.31 1.23 143.11 10.19

gmail 33.198 5.47 166.583 27.48

atentado -7.66 0.55 269.94 19.47

at. terrorista -18.85 1.25 332.34 22.18

Fig. 14 Cumulative time

required for the arrival of the

sequence of documents in the

input data and according to the

frequencies generated by the fit

obtained using the different cost

functions for the sequences of

Fig. 12. Every graphic

corresponds to a different

sequence, and shows the curves

corresponding to the input data

(solid line), and to the fits

obtained by the different cost

functions (fit (x) corresponds to

the fit obtained using the cost

function sx)

224 L. Araujo, J. J. Merelo

123



column, has already been fitted. The first column indicates

the length of the previously fitted subsequence, the second

one the time spent to fit it, and the third one the length of

the sequence of documents which has to be added to the

previous one. The fourth column presents the time needed

to fit the whole sequence, while the following one presents

the time spent to finish (500 generations or reach conver-

gence) by using the previous fit as seed, with a population

size of 200 individuals, a crossover rate of 40% and a

mutation rate of 10%. The result for a population size of

100 individuals appears in parentheses. The last column

shows the improvement achieved. We have also tested this

approach on a sequence from the real world formed

by the comments sent to all blogs hosted in Blogalia

(http://blogalia.com) during the period January 2002 to

January 2006. Table 12 shows the execution time results.

In this case the algorithm works with a population size of

1,000 individual, a maximum of 10,000 iterations, cross-

over rate of 40%, and mutation rate of 10%. We can

observe that the time required for both, artificial and the

real world sequences, is very small and the use of the seed

provides a large improvement in all the cases. Therefore,

this mechanism can save a lot of execution time. Moreover,

the quality of the results is similar to the one obtained

fitting the whole sequence.

Figure 15 shows the fitting curves obtained by applying

the EA to the whole sequence (Fig. 15a) and using as seed

the fitting curve of the subsequence which lacks the last

1000 dates (Fig. 15b). We can see that the curves are very

similar, showing the same intervals of higher interest in the

topic. Furthermore, we can observe that the area corre-

sponding to the last 1000 dates is cleaner in the fit obtained

Table 11 Time (seconds) spent to fit the initial subsequence and the sequence after the arrival of new data without seed and using the previous

fit as a seed for some subsequence taken from the sequence of Fig. 9a

Subst. Length T. to fit New Subs. length T. w/out seed T. w/seed Improv. (%)

219,900 3821.31 100 141.45 (79.09) 48.64

219,000 3830.03 1,000 3895.28 144.75 (81.96) 47.70

220,000 3337.56 10,000 166.73 (79.32) 43.38

Subst. stands for subsequence, T. to fit for time to fit, T. w/out for time without, T. w/ for time with and Improv for improvement

Table 12 Time (seconds) spent fitting the whole sequence using an evolutionary algorithm (w/o seed column) and using the previous fit as a

seed for some subsequence taken from the time sequence of comments including the word ‘blog’ during the January 2002 to January 2006 period

Subst. length T. to fit New Subs. length T. w/out seed T. w/seed Improv. (%)

3,032 4825.12 100 5048.49 54.6 48.31

2,632 2976.86 500 92.247 35.94

2,132 2147.50 1,000 294.97 25.74

1,132 578.79 2,000 370.41 3.7

Results correspond to the best of five runs. Subst. stands for subsequence, T. to fit for time to fit, T. w/out for time without, T. w/ for time with and

Improv for improvement

0 500 1000
Time

2

3

4

5

6

7

Fr
eq

ue
nc

y

(a)

0 500 1000
Time

2

3

4

5

6

7

Fr
eq

ue
nc

y

(b)

Fig. 15 Fits obtained for the sequence of blog comments including

the word blog. In a (top) the EA has been used to fit the whole

sequence, with a population size of 1,000 individuals, 10,000

generations, a crossover rate of 40% and a mutation rate of 10%.

b shows the results when the EA is applied to a part of the sequence

missing the last 1,000 dates (corresponding to the third row of

Table 12), and the result of this fit is used as seed for another EA

which produces the fit of the whole sequence. In this case the

algorithm has been run with a population size of 1,000 individuals,

1,000 generations, a crossover rate of 40% and a mutation rate of

10%. As it can be observed, results are very similar, although the first

fit is more sensitive to changes in frequency

Automatic detection of trends in time-stamped sequences 225

123

http://blogalia.com


from the seed. This is probably because in this case, due to

the way in which the individuals are created, the search is

centered in the area of the new dates, providing more

precise results for it.

7 Conclusions and future work

In this paper, we have presented the design of a system

devoted to the detection of changes on the trends of the

topics of a sequence of documents, such as newscasts,

e-mails, IRC (Internet Relay Chat) conversations, scientific

journals or weblogs. It is based on modeling the assignment

of frequencies to intervals of document arrivals (or events,

in general) and obtaining an optimal fit to the data. We

have designed an evolutionary algorithm to implement the

model, which allows us to deal with very large sequences

of documents in a reasonable time, obtaining fitting curves

with a similar shape to those provided by classic dynamic

algorithms. We have studied different issues of the model

and its implementation, such as the criterion to change to

an interval with a new frequency reflected in the cost

function. We have found that penalizing the change of an

interval to another with different frequency, whether it is

higher or lower, provides slightly worse results than

penalizing only those changes to an interval of higher

frequency. We have also tested different functions for this

last type of penalization, finding that some of them

improve the results of the function previously used for the

task of time-stamped sequence tracking. We have also

observed that several functions of the tested set provide

similar results. Because of this, we prefer a function which

normalizes the penalization with respect of the number of

frequency values considered, in order to make the results

independent of this parameter. We have also found that a

uniform distribution of the frequencies assigned to the

automata states outperforms the geometric one proposed by

Kleinberg, providing much more accurate fits of the input

data. It turns out that the geometric distribution of fre-

quencies introduces an extra penalty; with the uniform

distribution the coarse-grain description of the data relies

entirely on the penalizing parameters. Thus the role of

tuning the penalty of the state changes is really assigned to

the corresponding term of the model, which is controlled

by specific parameters.

We have also designed a version of the evolutionary

algorithm which dramatically reduces the time required to

find the optimal fit to a sequence which is an extension of a

previously fitted subsequence. This version uses the pre-

vious fit as a seed to generate the initial population, which

can quickly converge if most of the sequence has been

previously fitted. In this way, our system can be applied to

progressively model the document sequence, and thus to

detect changes on the trends of the corresponding topic.

Furthermore, the fitting curves produced by the system for

a sequence of documents can also be useful for other

applications: the fit obtained for sequences corresponding

to different topics can help to detect correlations between

these topics or to study how a topic affects others.

Future lines of work will include:

1. Systematic studies of the evolutionary algorithm

parameters, such as genetic operators, to improve the

performance.

2. Study of correlation among document sequences, to

automatically detect the occurrence of new topics

composed of multi-word concepts. This can also be

helped by other techniques.

3. Optimization for real-time operation, including parall-

elization of the algorithms.

4. More extensive checking in many different document

sequences.

5. Characterization of document sequences via its model.

6. Use only the most recent part of the sequence, via a

sliding window model that uses only the most recent

information, and allows to optimize the time spent

fitting the sequence to adequate it to the most recent

states.

Acknowledgments This work has been supported by the Spanish

MICYT projects TIN2007-68083-C02-01 and TIN2007-67581-C02-

01, the Junta de Andalucia CICE project P06-TIC-02025 and the

Granada University PIUGR 9/11/06 project. We are also very grateful

to the anonymous reviewers, who greatly contributed to the

improvement of this papers and suggested new lines of research.

References

Araujo L (2004) Symbiosis of evolutionary techniques and statistical

natural language processing. IEEE Trans Evol Comput 8(1):14–27

Araujo L, Merelo JJ (2006) Automatic detection of trends in

dynamical text: an evolutionary approach. http://www.citebase.

org/abstract?id=oai:arXiV.org:cs/0601047

Araujo L, Cuesta JA, Merelo JJ (2006) Genetic algorithm for burst

detection and activity tracking in event streams. In: Runarsson

TP, Beyer HG, Burke E, Guervós JJM, Bullinaria LDWA, Rowe

J, Yao X (eds) Proceedings PPSN IX, no. 4193. Lecture notes in

computer science, LNCS. Springer, Berlin, pp 453–462

Bingham E, Kabán A, Girolami M (2003) Topic identification in

dynamical text by complexity pursuit. Neural Process Lett

17(1):69–83

Charikar M, Chen K, Farach-Colton M (2002) Finding frequent items in

data streams. In: Charikar M, Chen K, Farach-Colton M. Finding

frequent items in data streams. In: Proceedings of the 29th

International Colloquium on Automata, Languages, and Program-

ming, 2002. http://citeseer.ist.psu.edu/charikar02finding.html

Eiben AE, Smith JE (2003) Introduction to evolutionary computing.

Springer, Berlin

Elwalid AI, Mitra D (1993) Effective bandwidth of general Markov-

ian traffic sources and admission control of high speed networks.

IEEE/ACM Trans Netw 1(3):329–343

226 L. Araujo, J. J. Merelo

123

http://www.citebase.org/abstract?id=oai:arXiV.org:cs/0601047
http://www.citebase.org/abstract?id=oai:arXiV.org:cs/0601047
http://citeseer.ist.psu.edu/charikar02finding.html


Forney GD (1973) The Viterbi algorithm. Proc IEEE 61(3):268–278

Galvão RK, Becerra VM, Abou-Seada M (2004) Ratio selection for

classification models. Data Mining and Knowledge Discovery

8(2):151–170. doi:10.1023/B:DAMI.0000015913.38787.b3

Girolami M, Kaban A (2004) Simplicial mixtures of Markov chains:

distributed modelling of dynamic user profiles. In: Thrun S, Saul

L, Schölkopf B (eds) Advances in neural information processing

systems 16. MIT Press, Cambridge

Goldberg DE (1989) Genetic Algorithms in search, optimization and

machine learning. Addison Wesley, Reading

Gollapudi S, Sivakumar D (2004) Framework and algorithms for

trend analysis in massive temporal data sets. In: CIKM’04:

Proceedings of the thirteenth ACM international conference on

Information and knowledge management. ACM Press, New

York, pp 168–177. doi:10.1145/1031171.1031208

Gruhl D, Guha R, Kumar R, Novak J, Tomkins A (2005) The

predictive power of online chatter. In: KDD’05: Proceeding of

the eleventh ACM SIGKDD international conference on Knowl-

edge discovery in data mining. ACM Press, New York, pp 78–87.

doi:10.1145/1081870.1081883. http://portal.acm.org/citation.

cfm?id=1081883

Hsu WH, Welge M, Redman T, Clutter D (2002) High-performance

commercial data mining: a multistrategy machine learning

application. Data Min Knowl Discov 6(4):361–391

Ihler A, Hutchins J, Smyth P (2006) Adaptive event detection with

time-varying poisson processes. In: KDD’06: Proceedings of the

12th ACM SIGKDD international conference on Knowledge

discovery and data mining. ACM Press, New York, pp 207–216.

doi:10.1145/1150402.1150428

Kleinberg JM (2003) Bursty and hierarchical structure in streams.

Data Min Knowl Discov 7(4):373–397

Kleinberg J (2006) Temporal dynamics of on-line information

streams. In: Garofalakis M, Gehrke J, Rastogi R (eds) Data

stream management: processing high-speed data streams.

Springer, Berlin. http://www.cs.cornell.edu/home/kleinber/stream-

survey04.pdf

Kumar R, Novak J, Raghavan P, Tomkins A (2004) Structure and

evolution of blogspace. Commun ACM 47(12):35–39. doi:

10.1145/1035134.1035162

Michalewicz Z, Fogel DB (2004) How to solve it: modern heuristics,

2nd edn. Revised and extended edn. Springer, Berlin. ISBN:3-

540-22494-7

Muthukrishnan S (2003) Data streams: algorithms and applications.

In: SODA’03: Proceedings of the fourteenth annual ACM-SIAM

symposium on Discrete algorithms. Society for Industrial and

Applied Mathematics, Philadelphia, PA, USA, pp 413–413.

Extended version available at http://infolab.usc.edu/csci599/

Fall2003/Data thms

Rabiner LR (1990) A tutorial on hidden Markov models and selected

applications in speech recognition. In: Readings in speech

recognition. Morgan Kaufmann Publishers Inc., Menlo Park,

pp 267–296

Wang X, McCallum A (2006) Topics over time: a non-Markov

continuous-time model of topical trends. In: KDD ’06: Proceed-

ings of the 12th ACM SIGKDD international conference on

Knowledge discovery and data mining. ACM Press, New York,

pp 424–433. doi:10.1145/1150402.1150450

Yi J (2005) Detecting buzz from time-sequenced document streams. In:

e-Technology, e-Commerce and e-Service, 2005. EEE ’05.

Proceedings. The 2005 IEEE International Conference on, pp

347–352. http://ieeexplore.ieee.org/iel5/9634/30444/01402320.pdf

Automatic detection of trends in time-stamped sequences 227

123

http://dx.doi.org/10.1023/B:DAMI.0000015913.38787.b3
http://dx.doi.org/10.1145/1031171.1031208
http://dx.doi.org/10.1145/1081870.1081883
http://portal.acm.org/citation.cfm?id=1081883
http://portal.acm.org/citation.cfm?id=1081883
http://dx.doi.org/10.1145/1150402.1150428
http://www.cs.cornell.edu/home/kleinber/stream-survey04.pdf
http://www.cs.cornell.edu/home/kleinber/stream-survey04.pdf
http://dx.doi.org/10.1145/1035134.1035162
http://infolab.usc.edu/csci599/Fall2003/Data thms
http://infolab.usc.edu/csci599/Fall2003/Data thms
http://dx.doi.org/10.1145/1150402.1150450
http://ieeexplore.ieee.org/iel5/9634/30444/01402320.pdf

	Automatic detection of trends in time-stamped sequences:�an evolutionary approach
	Abstract
	Introduction
	State of the art
	Problem models
	The search process: evolutionary algorithm
	Individual representation
	The fitness function
	Initial population
	Crossover operator
	Mutation operator
	Algorithm convergence

	Experimental results
	Evaluating cost functions
	Comparing the EA with a classic algorithm
	Evaluating real world document sequences

	Incremental detection of changes of state�in document sequences
	Conclusions and future work
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


