Skip to main content
Log in

T–S fuzzy model adopted SLAM algorithm with linear programming based data association for mobile robots

  • Original Paper
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

This paper describes a Takagi–Sugeno (T–S) fuzzy model adopted solution to the simultaneous localization and mapping (SLAM) problem with two-sensor data association (TSDA) method. Nonlinear process model and observation model are formulated as pseudolinear models and rewritten with a composite model whose local models are linear according to T–S fuzzy model. Combination of these local state estimates results in global state estimate. This paper introduces an extended TSDA (ETSDA) method for the SLAM problem in mobile robot navigation based on an interior point linear programming (LP) approach. Simulation results are given to demonstrate that the ETSDA method has low computational complexity and it is more accurate than the existing single-scan joint probabilistic data association method. The above system is implemented and simulated with Matlab to claim that the proposed method yet finds a better solution to the SLAM problem than the conventional extended Kalman filter–SLAM algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Aidala VJ (1979) Kalman filter behavior in bearings-only tracking applications. IEEE Trans Aerospace Electron Syst 15(1):29–39

    Article  Google Scholar 

  • Bailey T (2002) Mobile robot localization and mapping in extensive outdoor environments. PhD dissertation, Australian Center for Field Robotics, Dept. Aerosp., Mech. Mechatron. Eng., Univ. of Sydney, Sydney, Australia

  • Bailey T, Durrant-Whyte H (2006) Simultaneous localization and mapping (SLAM): Part II. IEEE Robot Automat Mag 13(3):108–117

    Article  Google Scholar 

  • Bar-Shalom Y, Fortman TE (1988) Tracking and data association. Mathematics in science and engineering, vol 179. Academic Press, Orlando

    Google Scholar 

  • Blanco JL, Gonzalez J, Fernandez-Madrigal JA (2008) A pure probabilistic approach to range-only SLAM. In: Proc. IEEE int. conf. robot. automat., Pasadena, CA, USA

  • Chen G, Xie Q, Shieh LS (1998) Fuzzy Kalman filtering. J Inf Sci 109:197–209

    Article  MATH  MathSciNet  Google Scholar 

  • Chen H, Kirubarajan T, Bar-Shalom Y (2002) Tracking of spawning targets with multiple finite resolution sensors, vol 2, pp 943–950. In: Proc. 5th int. conf. inf. fusion, Annapolis, MD

  • Dezert J, Bar-Shalom Y (1993) Joint probabilistic data association for autonomous navigation. IEEE Trans Aerosp Electron Syst 29(4):1275–1286

    Article  Google Scholar 

  • Dissanayake MWMG, Newman P, Clark S et al (2001) A solution to the simultaneous localization and map building (SLAM) problem. IEEE Trans Robot Automat 17(3):229–241

    Article  Google Scholar 

  • Durrant-Whyte H, Bailey T (2006) Simultaneous localization and mapping: Part I. IEEE Robot Automat Mag 13(2):99–108

    Article  Google Scholar 

  • Frese U, Larsson P, Duckett T (2005) A multilevel relaxation algorithm for simultaneous localization and mapping. IEEE Trans Robot Automat 21(2):196–207

    Google Scholar 

  • Frintrop S, Jensfelt P (2008) Active gaze control for attentional visual SLAM. In: Proc. IEEE int. conf. robot. automat., Pasadena, CA, USA

  • Grisetti G, Stachniss C, Burgard W (2005) Improving grid-based SLAM with Rao-Blackwellized particle filters by adaptive proposals and selective resampling. In: Proc. IEEE int. conf. robot. automat., Barcelona, Spain, pp. 2443–2448

  • Holmes S, Klein G, Murray D (2008) A square root unscented Kalman filter for visual monoslam. In: Proc. IEEE int. conf. robot. automat., Pasadena, CA, USA

  • Leonard JJ, Durrant-White HF (1991) Mobile robot localization by tracking geometric beacons. IEEE Trans Robot Automat 7(3):376–382

    Article  Google Scholar 

  • Li XR, Jikov VP (2001) A survey of maneuvering target tracking—part III: measurement models. In: Proc. SPIE conference on signal and date processing of small targets, San Diego, CA, USA

  • Li X, Luo ZQ, Wong KM, Bosse E (1999) An interior point linear programming approach to two-scan data association. IEEE Trans Aerosp Electron Syst 35(2):474–490

    Article  Google Scholar 

  • Lindgren AG, Gong KF (1978) Position and velocity estimation via bearing observations. IEEE Trans Aerospace Electron Syst 14(4):564–577

    Article  Google Scholar 

  • Maksarov D, Durrant Whyte H (1995) Mobile vehicle navigation in unknown environments: a multiple hypothesis approach. In: Proc. IEE Control Theory Appl. 142(4):385–400

  • Montemerlo M, Thrun S, Koller D, Wegbreit B (2002) FastSLAM: a factored solution to the simultaneous localization and mapping problem. In: Proc. AAAI national conf. artif. intell., Edmonton, AB, Canada

  • Montemerlo M, Thrun S, Koller D et al (2003) FastSLAM 2.0: an improved particle filtering algorithm for simultaneous localization and mapping that provably converges. In: Proc. 18th int. joint conf. artif. intell., Acapulco, Mexico

  • Poore AB, Rijavec N (1991) Multi-target tracking and multidimensional assignment problems. In: Proceeding of the SPIE signal and data processing of small targets, Orlando, FL, pp 345–356

  • Santosh D, Achar S, Jawahar CV (2008) Autonomous image-based exploration for mobile robot navigation. In: Proc. IEEE int. conf. robot. automat., Pasadena, CA, USA

  • Simon D (2003) Kalman filtering for fuzzy discrete time dynamic systems. Appl Soft Comput 3:191–207

    Article  Google Scholar 

  • Smith R, Self M, Cheeseman P (1987) A stochastic map for uncertain spatial relationships. In: Proc. 4th int. symp. robot. res., pp 467–474

  • Smith R, Self M, Cheeseman P (1990) Estimating uncertain spatial relationships in robotics. In: Cox IJ, Wilfon GT (eds) Autonomous robot vehicles. Springer, New York, pp 167–193

    Google Scholar 

  • Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern 15:116–132

    MATH  Google Scholar 

  • Tanaka K, Ikeda T, Wang H (1996) Robust stabilization of a class of uncertain nonlinear system via fuzzy control. IEEE Trans Fuzzy Syst 4:1–13

    Article  Google Scholar 

  • Thrun S, Burgard W, Fox D (2005) Probabilistic robotics. MIT Press, Cambridge

  • Tully S, Moon H, Kantor G, Choset H (2008) Iterated filters for bearing-only SLAM. In: Proc. IEEE int. conf. robot. automat., Pasadena, CA, USA

  • Whitcombe DW (1972) Pseudo state measurements applied to recursive nonlinear filtering. In: Proc. 3rd symp. nonlinear estimation theory and its application, San Diego, CA, pp 278–281

  • Ye Y, Todd M, Mizuno S (1994) An \(O(\sqrt{n}L)\) iteration homogeneous and self-dual linear programming algorithm. Math Oper Res 19(1):53–67

    Google Scholar 

  • Zhang Y (1995) Solving large scale linear programs by interior point methods under MATLAB environment. Tech. Rep. TR96-01. Dept. Math. Statist., Univ. Maryland, Baltimore

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandima Dedduwa Pathiranage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pathiranage, C.D., Watanabe, K. & Izumi, K. T–S fuzzy model adopted SLAM algorithm with linear programming based data association for mobile robots. Soft Comput 14, 345–364 (2010). https://doi.org/10.1007/s00500-009-0409-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-009-0409-1

Keywords

Navigation