Skip to main content
Log in

Modeling neuronal response to disparity gradient

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

There is a rich literature of physiological studies that a subset of neurons in visual cortices is discriminative of 3-D surface orientation using only the disparity gradient information. One of the physiological models to account for this sensibility to surface slant is the dif-frequency disparity model. Although this model is physiologically plausible, no computational analysis is available to explain how first-order-disparity sensitive neurons detect slanted surface. In this paper a computational model based on the dif-frequency disparity model is presented. In particular, analytical expressions that fit well with neuronal responses to broadband stimuli are obtained when simple cell receptive field is described by log-Gabor filters. It is shown with mathematical analysis and numerical simulations that our proposed model can not only account for physiological data of neuronal response to surface slant but also detect disparity gradient from random dot and sinusoidal grating stereograms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. In this paper, the disparity gradient refers to the first-order derivative of disparity within the receptive field, not the definition proposed by Burt and Julesz (1980).

  2. The preferred disparity gradient of the cell is the peak position of the disparity gradient tuning curve.

  3. Strictly speaking, the relation is not exactly linear and depends on the separation of the eyes and distance from the subject to the fixation point. Here we use a linear approximation to describe this relation.

References

  • Blakemore C (1970) A new kind of stereoscopic vision. Vis Res 10:1181–1199

    Article  Google Scholar 

  • Burt P, Julesz B (1980) Modifications of the classical notion of Panum’s fusional area. Perception 9(6):671–682

    Article  Google Scholar 

  • Chen Y, Qian N (2004) A coarse-to-fine disparity energy model with both phase-shift and position-shift receptive field mechanisms. Neural Comput 16:1545–1577

    Article  MATH  Google Scholar 

  • Daugman J (1985) Uncertainty relation for resolution in space. Spatial frequency and orientation optimized by two-dimensional visual cortical filters. J Optic Soc Am A 2(7):1160–1169

    Article  Google Scholar 

  • DeValois R, Albrecht D, Thorell L (1982) Spatial frequency selectivity of cells in macaque visual cortex. Vis Res 22:545–559

    Article  Google Scholar 

  • Durand J-B et al (2007) Anterior regions of monkey parietal cortex process visual 3D shape. Neuron 55:493–505

    Article  Google Scholar 

  • Field D (1987) Relations Between the Statistics of Natural Images and the Response Properties of Cortical Cells. Journal of Optical Society of American A 4:2379–2393

    Article  Google Scholar 

  • Fleet D, Wagner H, Heeger D (1996) Neural encoding of binocular disparity: energy models, position shifts and phase shifts. Vis Res 36(12):1839–1857

    Article  Google Scholar 

  • Hawken M, Parker A (1987) Spatial properties of neurons in the monkey striate cortex. Proc R Soc Lond Ser B 231:251–288

    Article  Google Scholar 

  • Hegde J, Van Essen D (2005) Role of primate visual area V4 in the processing of 3-D shape characteristics defined by disparity. J Neurophysiol 94:2856–2866

    Article  Google Scholar 

  • Hinkle D, Connor C (2002) Three-dimensional orientation tuning in Macaque area V4. Nat Neurosci 5(7):665–670

    Article  Google Scholar 

  • Janssen P, Vogels R, Orban G (2000) Three-dimensional shape coding in inferior temporal cortex. Neuron 27(2):385–397

    Article  Google Scholar 

  • Janssen P et al (2001) Macaque inferior temporal neurons are selective for three-dimensional boundaries and surfaces. J Neurosci 21(23):9419–9429

    Google Scholar 

  • Jones J, Palmer L (1987) An evaluation of the 2D Gabor Filter model of simple receptive fields in cat striate cortex. J Neurophysiol 58:1233–1258

    Google Scholar 

  • Julesz B (2006) Foundations of cyclopean perception s.l. The MIT Press, Cambridge

  • Morrone M, Burr D (1988) Feature detection in human vision: a phase dependent energy model. Proc R Soc Lond B 235:221–245

    Article  Google Scholar 

  • Nguyenkim J, DeAngelis G (2003) Disparity-based coding of three-dimensional surface orientation by Macaque middle temporal neurons. J Neurosci 23:7117–7218

    Google Scholar 

  • Ohzawa I, DeAngelis G, Freeman R (1990) Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. Science 249:1037–1041

    Article  Google Scholar 

  • Pollard S, Mayhew J, Frisby J (1985) PMF: a stereo correspondence algorithm using a disparity gradient limit. Perception 14:449–470

    Article  Google Scholar 

  • Pollen D, Ronner S (1981) Phase relationships between adjacent simple cells in the visual cortex. Science 212:1409–1411

    Article  Google Scholar 

  • Qian N (1994) Ning Qian, computing stereo disparity and motion with known binocular cell properties. Neural Comput 6:390–404

    Article  Google Scholar 

  • Qian N, Mikaelian S (2000) Relationship between phase and energy methods for disparity computation. Neural Comput 12:279–292

    Article  Google Scholar 

  • Read J (2002) A Bayesian model of stereopsis depth and motion direction discrimination. Biol Cybern 82:117–136

    Article  Google Scholar 

  • Read J, Cumming B (2003) Testing quantitative models of binocular disparity selectivity in primary visual cortex. J Neurophysiol 90:2795–2817

    Article  Google Scholar 

  • Sanada T, Ohzawa I (2006) Encoding of three-dimensional surface slant in cat visual areas 17 and 18. J Neurophysiol 95:2768–2786

    Article  Google Scholar 

  • Taira M et al (2000) Parietal neurons represent surface orientation from the gradient of binocular disparity. J Neurophysiol 83:3140–3146

    Google Scholar 

  • Tsai J, Victor J (2003) Reading a population code: a multi-scale neural model for representing binocular disparity. Vis Res 43(4):445–466

    Article  Google Scholar 

  • Tsutsui K-I, Taira M, Sakata H (2005) Neural mechanisms of three-dimensional vision. Neurosci Res 51:221–229

    Article  Google Scholar 

  • Tyler C, Sutter E (1979) Depth from spatial frequency difference: an old kind of stereopsis. Vis Res 19:859–865

    Article  Google Scholar 

  • von der Heydt R, Zhou H, Friedman H (2000) Representation of stereoscopic edges in monkey visual cortex. Vis Res 40:1955–1967

    Article  Google Scholar 

  • Young R (1987) The Gaussian derivative model for spatial vision: i. retinal mechanisms. Spat Vis 2(4):273–293

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under grant No. 90820012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianqing Yu.

Appendices

Appendix A: Disparity gradient tuning curve to sinusoidal gratings stimulus

In this appendix, the derivation of the response function of a complex cell to sinusoidal gratings is provided.

The receptive field profile of a simple subunit in the disparity energy model can be represented by a one-dimensional (1-D) Gabor function

$$ \begin{gathered} f(x;x_{0} ,\omega_{0} ,\phi ) = \frac{1}{{\sqrt {2\pi } \sigma }}\exp \left( { - \frac{{(x + x_{0} )^{2} }}{{2\sigma^{2} }}} \right) \hfill \\ \exp \left[ { - i\left( {\omega_{0} (x + x_{0} ) + \phi } \right)} \right] \hfill \\ \end{gathered} $$
(A1)

where \( \sigma ,\omega_{0} ,\phi \) are, respectively, Gaussian scale, preferred angular frequency and phase of the cell. \( x_{0} \) is the position of Gaussian peak and set to be zero \( \left( {x_{0} = 0} \right) \) without loss of generality.

The receptive field profiles of left and right eye can be described as:

$$ f_{L} (x) = f(x;0,\omega_{0} ,\phi ) $$
(A2)
$$ f_{R} (x) = f(x;\Updelta x,k\omega_{0} ,\phi + \Updelta \phi ) $$
(A3)

where \( k \) is the spatial frequency ratio between right and left receptive field. \( \Updelta x \) and \( \Updelta \phi \) are interocular position and phase difference, respectively.

Given Eq. 3, the corresponding image patch within the receptive field is

$$ I(x) = I_{L} (x) $$
$$ I(x) = I_{R} (x + d(x)) = I_{R} (x + {{\Updelta}}dx + d_{0} ) $$

which is equivalent to

$$ I_{L} (x) = I(x) $$
$$ I_{R} (x) = I\left( {\frac{{x - d_{0} }}{{1 + {{\Updelta}}d}}} \right) $$

If \( \hat{I}\left( \omega \right) \) is the Fourier transform of \( I\left( x \right), \) then we have

$$ I_{L} (x) = \int\limits_{ - \infty }^{ + \infty } {\hat{I}\left( \omega \right)\exp \left( {i\omega x} \right)d\omega } $$
(A4)
$$ I_{R} (x) = \int\limits_{ - \infty }^{ + \infty } {\hat{I}\left( \omega \right)\exp \left( {i\frac{{\omega \left( {x - d_{0} } \right)}}{1 + \Updelta d}} \right)d\omega } $$
(A5)

According to the disparity energy model, the response of a complex cell is the linear summation of the responses of its monocular unit:

$$ R_{C} = \left| C \right|^{2} ,\quad C = \int\limits_{ - \infty }^{ + \infty } {\left( {f_{L} (x)I_{L} (x) + f_{R} (x)I_{R} (x)} \right)dx} $$

Substitute Eq. A2, A3, A4 and A5 into the above equation yields

$$ \begin{aligned} C = & \int\limits_{ - \infty }^{ + \infty } {\rho \left( \omega \right)d\omega \exp \left( { - \frac{{\sigma^{2} }}{2}\left( {\omega - \omega_{0} } \right)^{2} } \right)\exp \left[ {i\left( {\theta \left( \omega \right) - \phi } \right)} \right]} \\ & \quad + \int\limits_{ - \infty }^{ + \infty } {\rho \left( \omega \right)d\omega \exp \left( { - \frac{{\sigma^{2} }}{2}\left( {\frac{\omega }{{1 + {{\Updelta}}d}} - k\omega_{0} } \right)^{2} } \right)} \exp \left[ {i\;\left( {\theta \left( \omega \right) - \frac{{\omega \left( {{{\Updelta}}x + d_{0} } \right)}}{{1 + {{\Updelta}}d}} - \phi - \Updelta \phi } \right)} \right] \\ \end{aligned} $$
(A6)

In the deduction, the following equality is used:

$$ \int\limits_{ - \infty }^{ + \infty } {\exp \left( { - \frac{{x^{2} }}{{2\sigma^{2} }}} \right)\exp (i\omega x)dx = \sqrt {2{{\Uppi}}} \sigma \exp } \left( { - \frac{{\sigma^{2} \omega^{2} }}{2}} \right) $$

For a sinusoidal grating stimulus, its transfer function contains only two frequency components and its Fourier phase changes linearly in related to the frequency.

$$ \rho \left( \omega \right) = \delta \left( {\Upomega + \omega } \right) + \delta \left( {\Upomega - \omega } \right) $$
(A7)
$$ \theta \left( \omega \right) = a\omega $$
(A8)

where \( \delta \left( \omega \right) \) is the Dirac’s delta function and \( a \) is a constant.

By making use of Eqs. A7 and A8, and let mean disparity, interocular position and phase difference to be zero, Eq. A6 can be simplified as

$$ R_{C}^{\sin } \approx \left[ \begin{aligned} & {\exp \left( { - \frac{{\sigma^{2} }}{2}\left( {\frac{\Upomega }{{1 + {{\Updelta}}d}} - k\omega_{0} } \right)^{2} } \right)} \\ & + {\exp \left( { - \frac{{\sigma^{2} }}{2}\left( {\Upomega - \omega_{0} } \right)^{2} } \right)} \end{aligned} \right]^{2} $$
(A9)

Appendix B: Disparity gradient tuning curve to broadband stimulus

In this appendix, we give the derivation of the response function of our model cell to broadband stimuli such as random dot patterns and illumination bars.

The log-Gabor filter can be expressed in the spatial frequency domain as

$$ \hat{g}\left( {\omega ;x_{0} ,\omega_{0} ,\phi } \right) = \exp \left( { - \frac{{\sigma_{\omega }^{2} }}{2}\left( {\log {\omega \mathord{\left/ {\vphantom {\omega {\omega_{0} }}} \right. \kern-\nulldelimiterspace} {\omega_{0} }}} \right)^{2} } \right)\exp \left[ { - i\left( {x_{0} \left( {\log {\omega \mathord{\left/ {\vphantom {\omega {\omega_{0} }}} \right. \kern-\nulldelimiterspace} {\omega_{0} }}} \right) - \phi } \right)} \right] $$
(B1)

where \( \sigma_{\omega } \) is the Gaussian scale that controls the spatial frequency bandwidth of the filter. \( \omega_{0} \) is the preferred angular spatial frequency of the cell. \( x_{0} \) is the retinal position of the receptive field center and \( \phi \) is the carrier phase.

With Eq. B1, the left and right receptive field profile in the spatial frequency domain is

$$ \hat{g}_{L} \left( \omega \right) = \hat{g}\left( {\omega ;x_{c} ,\omega_{0} ,\phi } \right) $$
(B2)
$$ \hat{g}_{R} \left( \omega \right) = \hat{g}\left( {\omega ;x_{c} ,k\omega_{0} ,\phi } \right) $$
(B3)

where \( x_{c} \) is the retinal position of the receptive field center (we let \( x_{c} = 1 \) throughout this paper), \( k \) is the spatial frequency ratio between the right and left receptive field (see Eq. 2).

For a stimulus with a mean disparity \( d_{0} \) and a constant disparity gradient \( \Updelta d, \) its left and right images in logarithmic scale can be expressed as

$$ \begin{aligned} I_{L} (\log x)& = I\left[ {\log x} \right] \\ I_{R} (\log x)& = I\left[ {\log \left( {x - d_{0} } \right) - \log \left( {1 + \Updelta d} \right)} \right] \\ \end{aligned} $$

If the mean disparity is known beforehand, it can be nullified by shifting the left retinal image by \( d_{0} . \) Therefore without loss of generality, we assume \( d_{0} = 0. \) Given the above equations, the Fourier transform of left and right retinal image in logarithmic scale can be written as

$$ \hat{I}_{L} \left( {\log \omega } \right) = \hat{I}\left( {\log \omega } \right) $$
(B4)
$$ \hat{I}_{R} \left( {\log \omega } \right) = \exp \left( { - i\log \omega \log \left( {1 + \Updelta d} \right)} \right)\hat{I}\left( {\log \omega } \right) $$
(B5)

The response of a complex cell is the power of the sum of the left and right monocular response, which can be written in logarithmic spatial frequency domain with Parseval’s theorem as

$$R=\left|{\begin{aligned}& \int\limits_{0}^{ + \infty } \hat{g}_{L}(\text{log}\;\omega)\hat{I}_{L}(\text{log}\;\omega) d(\text{log}\;\omega)\\ & + \int\limits_{0}^{ + \infty } \hat{g}_{R}(\text{log}\;\omega)\hat{I}_{R}(\text{log}\;\omega) d(\text{log}\;\omega) \end{aligned}}\right|^2$$
(B6)

Let

$$ C \equiv \int_{0}^{ + \infty } {\hat{g}_{L} \left( {\log \omega } \right)\hat{I}_{L} \left( {\log \omega } \right)d\log \omega } + \int_{0}^{ + \infty } {\hat{g}_{R} \left( {\log \omega } \right)\hat{I}_{R} \left( {\log \omega } \right)d\log \omega } $$
(B7)

Substituting Eqs. B2, B3, B4 and B5 into Eq. B7 and separating the magnitude and phase of the stimulus with

$$ \hat{I}\left( {\log \omega } \right) = \rho \left( {\log \omega } \right)\exp \left[ { - i\theta \left( {\log \omega } \right)} \right] $$

We have

$$ \begin{aligned} C = & \int\limits_{0}^{ + \infty }\rho \left( {\log \omega } \right)d\log \omega \exp {\left\{ { - \frac{{\sigma_{\omega }^{2} }}{2}\left[ {\log \left( {\frac{\omega }{{\omega_{0} }}} \right)} \right]^{2} } \right\}}\\ & \quad \times \exp {\left[ { - i\left( {\log \left( {\frac{\omega }{{\omega_{0} }}} \right) - \phi + \theta \left( {\log \omega } \right)} \right)} \right]} \\ & \quad + \int\limits_{0}^{ + \infty } {\rho \left( {\log \omega } \right)d\log \omega \exp \left\{ { - \frac{{\sigma_{\omega }^{2} }}{2}\left[ {\log \left( {\frac{\omega }{{k\omega_{0} }}} \right)} \right]^{2} } \right\}}\\ &\quad \times \exp \left[ { - i\left( {\log \left( {\frac{\omega }{{k\omega_{0} }}} \right) - \phi + \theta \left( {\log \omega } \right)} \right)} \right]\\ & \quad \times\exp \left[ { - i\log \omega \log \left( {1 + {{\Updelta}}d} \right)} \right] \\ \end{aligned} $$

According to the physiological data of Pollen and Ronner (1981), the spatial frequency ratio \( (k) \) is within one-fourth octave. This means \( 0.84 \le k \le 1.19. \) In addition, it is shown in Fig. 9 of Sanada and Ohzawa (2006) that the frequency ratios of most cells concentrate around unit. Therefore, it can be reasonably assumed that the frequency ratio \( k \) is not too far away from unit. In this case, the response of a model complex cell \( \left( R \right) \) can be approximated as

$$R \approx \left[{\begin{array}{*{20}l} & \int\limits_{0}^{ + \infty } {\rho \left( {\log \omega } \right)d\log \omega \exp \left[ { - \frac{{\sigma_{\omega }^{2} }}{2}\left( {\log \frac{\omega }{{\omega_{0} }}} \right)^{2} } \right]} \\& \quad \times\cos \left( {\log \frac{\omega }{{\omega_{0} }} - \phi + \theta \left( {\log \omega } \right)} \right) \\ & \quad +\int\limits_{0}^{ + \infty } {\rho \left( {\log \omega } \right)d\log \omega \exp \left[ { - \frac{{\sigma_{\omega }^{2} }}{2}\left( {\log \frac{\omega }{{\omega_{0} }}} \right)^{2} } \right]}\\&\quad \times\cos \left( {\log \frac{\omega }{{k\omega_{0} }} - \phi + \log \omega \log \left( {1 + \Updelta d} \right) + \theta \left( {\log \omega } \right)} \right)\end{array} } \right] ^{2} \\+\left[{\begin{array}{*{20}l}& \int\limits_{0}^{ + \infty } {\rho \left( {\log \omega } \right)d\log \omega \exp \left[ { - \frac{{\sigma_{\omega }^{2} }}{2}\left( {\log \frac{\omega }{{\omega_{0} }}} \right)^{2} } \right]}\\ &\quad\times { \sin \left( {\log \frac{\omega }{{\omega_{0} }} - \phi + \theta \left( {\log \omega } \right)} \right)} \\ & \quad +\int\limits_{0}^{ + \infty } \rho \left( {\log \omega } \right)d\log \omega \exp \left[ { - \frac{{\sigma_{\omega }^{2} }}{2}\left( {\log \frac{\omega }{{\omega_{0} }}} \right)^{2} } \right]\\ &\quad\times\sin \left( {\log \frac{\omega }{{k\omega_{0} }} - \phi + \log \omega \log \left( {1 + \Updelta d} \right) + \theta \left( {\log \omega } \right)} \right)\end{array} }\right]^{2} $$

With sum-to-product trigonometric identity, we have

$$ R = \left[{\begin{array}{*{20}l} & [2\rho \left( {\log \omega } \right)d\log \omega \exp \left[ { - \frac{{\sigma_{\omega }^{2} }}{2}\left( {\log \frac{\omega }{{\omega_{0} }}} \right)^{2} } \right] \\ & \quad \int\limits_{0}^{ + \infty } \cos \left( {\log \frac{\omega }{{\sqrt k \omega_{0} }} - \phi + \frac{{\log \omega \log \left( {1 + {{\Updelta}}d} \right)}}{2} + \theta \left( {\log \omega } \right)} \right)\\&\quad \times\cos \left( {\frac{1}{2}\left( {\log \omega \log \left( {1 + {{\Updelta}}d} \right) - \log k} \right)} \right)\end{array} } \right]^{2} \\ + \left[{\begin{array}{*{20}l}& 2\rho \left( {\log \omega } \right)d\log \omega \exp \left[ { - \frac{{\sigma_{\omega }^{2} }}{2}\left( {\log \frac{\omega }{{\omega_{0} }}} \right)^{2} } \right] \\ & \quad \int\limits_{0}^{ + \infty} \sin \left( {\log \frac{\omega }{{\sqrt k \omega_{0} }} - \phi + \frac{{\log \omega \log \left( {1 + {{\Updelta}}d} \right)}}{2} + \theta \left( {\log \omega } \right)} \right)\\&\quad \times\cos \left( {\frac{1}{2}\left( {\log \omega \log \left( {1 + {{\Updelta}}d} \right) - \log k} \right)} \right)\end{array}}\right]^{2} $$

By the theorem that the square of a single integration is equivalent to a double integration

$$ \left( {\int {f(x)dx} } \right)^{2} = \iint {f(x)f(x')dxdx'} $$

The previous result can be simplified as

$$ \begin{aligned}R &= 4 \iint \limits_{{0 < \omega ,\omega^{\prime} < + \infty }} \exp \left[ { - \frac{{\sigma_{\omega }^{2} }}{2}\left( {\log \frac{\omega }{{\omega_{0} }}} \right)^{2} } \right]\\& \quad \times\cos \left( {\frac{1}{2}\left( {\log \omega \log \left( {1 + {{\Updelta}}d} \right) - \log k} \right)} \right) \hfill \\&\quad\times\exp \left[ { - \frac{{\sigma_{\omega }^{2} }}{2}\left( {\log \frac{{\omega^{\prime}}}{{\omega_{0} }}} \right)^{2} } \right]\\& \quad \times \cos \left( {\frac{1}{2}\left( {\log \omega^{\prime}\log \left( {1 + {{\Updelta}}d} \right) - \log k} \right)} \right)\\& \quad\times\alpha \rho \left( {\log \omega } \right)d\log \omega \rho \left( {\log \omega^{\prime}} \right)d\log \omega^{\prime}\end{aligned} $$
(B8)

where

$$\alpha = \cos \left( \begin{gathered}\theta ( \log {\omega } ) - \theta ( \log {\omega^{\prime}} ) + \log \frac{\omega }{{\omega^{\prime}}} \\ + {\frac{1}{2}} \log ( {1 + {{\delta}}d} ) \log \frac{\omega }{{\omega^{\prime}}} \end{gathered}\right)$$
(B9)

Equation B8 is a general expression of the response of our model complex cell and can be further specialized for a particular stimulus if the property of that stimulus in frequency domain is available.

For a broadband stimulus, its Fourier magnitude remains approximately constant across the whole spatial frequency domain and is independent of its phase. Therefore we let

$$ \rho \left( {\log \omega } \right) = \rho $$

Also note that \( \alpha \) in Eq. B9 is usually not a constant since the Fourier phase is random. Therefore Eq. B10 is an approximated specialization of Eq. B8 by letting \( \alpha = 1. \)

$$ R_{\text{noise}} = \frac{{8\pi \rho^{2} }}{{\sigma_{\omega }^{2} }}\exp \left[ { - \frac{1}{{4\sigma_{\omega }^{2} }}\log^{2} \left( {1 + {{\Updelta}}d} \right)} \right]\cos^{2} \left[ {\frac{1}{2}\left( {\log \omega_{0} \log \left( {1 + {{\Updelta}}d} \right) - \log k} \right)} \right] $$
(B10)

Bar stimulus can be represented by a delta function

$$ I(x) = \left\{ \begin{gathered} 1,\quad x = x_{b} \hfill \\ 0,\quad x \ne x_{b} \hfill \\ \end{gathered} \right. $$

And its Fourier transform is

$$ \rho \left( {\log \omega } \right) = 1,\theta \left( {\log \omega } \right) = x_{b} \log \omega $$

Thanks to its linear Fourier phase, \( \alpha \) of Eq. B9 is as a constant. Substitute this result into Eq. B8 yields Eq. B10 but with \( \rho = 1. \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, L., Hu, Z. Modeling neuronal response to disparity gradient. Soft Comput 13, 1175–1185 (2009). https://doi.org/10.1007/s00500-009-0423-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-009-0423-3

Keywords

Navigation