Skip to main content
Log in

Bi-objective parallel machines scheduling with sequence-dependent setup times using hybrid metaheuristics and weighted min–max technique

  • Original Paper
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In the literature of multi-objective problem, there are different algorithms to solve different optimization problems. This paper presents a min–max multi-objective procedure for a dual-objective, namely make span, and sum of the earliness and tardiness of jobs in due window machine scheduling problems, simultaneously. In formulation of min–max method when this method is combined with the weighting method, the decision maker can have the flexibility of mixed use of weights and distance parameter to yield a set of Pareto-efficient solutions. This research extends the new hybrid metaheuristic (HMH) to solve parallel machines scheduling problems with sequence-dependent setup time that comprises three components: an initial population generation method based on an ant colony optimization (ACO), a simulated annealing (SA) as an evolutionary algorithm employs certain probability to avoid becoming trapped in a local optimum, and a variable neighborhood search (VNS) which involves three local search procedures to improve the population. In addition, two VNS-based HMHs, which are a combination of two methods, SA/VNS and ACO/VNS, are also proposed to solve the addressed scheduling problems. A design of experiments approach is employed to calibrate the parameters. The non-dominated sets obtained from HMH and two best existing bi-criteria scheduling algorithms are compared in terms of various indices and the computational results show that the proposed algorithm is capable of producing a number of high-quality Pareto optimal scheduling plans. Aside, an extensive computational experience is carried out to analyze the different parameters of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aarts E, Lenstra JK (1997) Search in combinatorial optimization. Wiley, New York

    MATH  Google Scholar 

  • Ahuja RK, Ergun O, Orlin JB, Punnen AP (2002) A survey of very large-scale neighborhood search techniques. Discrete Apply Math 123:75–102

    Article  MathSciNet  MATH  Google Scholar 

  • Almeida MT, Centeno M (1998) A composite heuristic for the single machine early/tardy job scheduling problem. Comput Oper Res 25:625–635

    Article  MATH  Google Scholar 

  • Andersson J (2000) A survey of multiobjective optimization in engineering design, in: technical report LiTH-IKP-R-1097. Department of Mechanical Engineering, Linköping University, Linköping

    Google Scholar 

  • Angel E, Bampis E, Kononov A (2003) On the approximate tradeoff for bicriteria batching and parallel machines scheduling problems. Theor Comput Sci 306(1–3):319–338

    Article  MathSciNet  MATH  Google Scholar 

  • Anger FD, Lee CY, Martin-Vega LA (1986) Single-machine scheduling with tight windows. Research Paper, 86–16, University of Florida

  • Arroyo JEC, Armentano VA (2005) Genetic local search for multi-objective flowshop scheduling problems. Eur J Oper Res 167:717–738

    Article  MathSciNet  MATH  Google Scholar 

  • Balakrishnan N, Kanet JJ, Sridharan SV (1999) Early/tardy scheduling with sequence dependent setups on uniform parallel machines. Comput Oper Res 26:127–141

    Article  MathSciNet  MATH  Google Scholar 

  • Birman M, Mosheiov G (2004) A note on a due-date assignment on a two-machine flow-shop. Comput Oper Res 31:473–480

    Article  MathSciNet  MATH  Google Scholar 

  • Bülbül K, Kaminsky P, Yano C (2007) Preemption in single machine earliness/tardiness scheduling. J Scheduling 10:271–292

    Article  MATH  Google Scholar 

  • Carlos A, Coello C, Christiansen AD (1995) An approach to multiobjective optimization using genetic algorithms. Fuzzy Logic Evol Prog 5:411–416; ASME Press, USA

    Google Scholar 

  • Chen ZL (1996) Scheduling and common due date assignment with earliness-tardiness penalties and batch delivery costs. Eur J Oper Res 93:49–60

    Article  MATH  Google Scholar 

  • Chen ZL, Lee CY (2002) Parallel machines scheduling with a common due window. Eur J Oper Res 136:512–527

    Article  MathSciNet  MATH  Google Scholar 

  • Chen ZL, Powell WB (1999) A column generation based decomposition algorithm for a parallel machines just-in-time scheduling problem. Eur J Oper Res 116:221–233

    Google Scholar 

  • Cheng TCE, Sin CCS (1990) A state-of-the art review of parallel machine scheduling research. Eur J Oper Res 47:271–292

    Article  MATH  Google Scholar 

  • Cochran JK, Horng S-M, Fowler JW (2003) A multi-population genetic algorithm to solve multi-objective scheduling problems for parallel machines. Comput Oper Res 30:1087–1102

    Article  MathSciNet  MATH  Google Scholar 

  • Corley HW (1980) A new scalar equivalence for Pareto optimization. IEEE Trans Automat Control 25(4):829–830

    Article  MathSciNet  MATH  Google Scholar 

  • Das SR, Gupta JND, Khumawala BM (1995) A savings index heuristic algorithm for flowshop scheduling with sequence dependent setup times. J Oper Res Soc 46:1365–1473

    MATH  Google Scholar 

  • Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, New York

    MATH  Google Scholar 

  • Dorigo M, Stuetzle T (2004) Ant colony optimization. MIT Press, Boston

    Book  MATH  Google Scholar 

  • Driessel R, Mönch L (2010) Variable neighborhood search approaches for scheduling jobs on parallel machines with sequence-dependent setup times, precedence constraints, and ready times. Comput Indus Eng. doi:10.1016/j.cie.2010.07.001

  • Emmons H (1987) Scheduling to a common due-date on parallel uniform processors. Naval Res Logist Q 34:803–810

    Article  MathSciNet  MATH  Google Scholar 

  • Esteve B, Aubijoux C, Chartier A, Tkindt V (2006) A recovering beam search algorithm for the single machine just-in-time scheduling problem. Eur J Oper Res 172:798–813

    Article  MathSciNet  MATH  Google Scholar 

  • Fandel G, Spronk J (1985) Multiple criteria decision methods and applications. Springer, Berlin

    Google Scholar 

  • Gajpal Y, Rajendran C (2006) An ant-colony optimization algorithm for minimizing the completion-time variance of jobs in flowshops. Int J Prod Econ 101:259–272

    Article  Google Scholar 

  • Gordon V, Proth JM, Chu C (2002) A survey of the state-of-the-art of common due-date assignment and scheduling research. Eur J Oper Res 135:1–25

    Article  MathSciNet  Google Scholar 

  • Gravel M, Price WL, Gagne C (2000) Scheduling in a Alcan aluminium factory using a genetic algorithm. Int J Prod Res 38(13):3031–3041

    Article  Google Scholar 

  • Hansen P, Mladenovic N, Dragan U (2004) Variable neighborhood search for the maximum clique. Discrete Appl Math 145(1):117–125

    Article  MathSciNet  MATH  Google Scholar 

  • Heady RB, Zhu Z (1998) Minimizing the sum of job earliness and tardiness in a multimachine system. Int J Prod Res 36:1619–1632

    Article  MATH  Google Scholar 

  • Herrmann JW, Lee CY (1993) On scheduling to minimize earliness-tardiness and batch delivery costs with a common due date. Eur J Oper Res 70:272–288

    Article  MATH  Google Scholar 

  • Hoogeveen JA (2005) Multicriteria scheduling. Eur J Oper Res 167:592–623

    Article  MathSciNet  MATH  Google Scholar 

  • Huang S, Cai L, Zhang X (2010) Parallel dedicated machine scheduling problem with sequence-dependent setups and a single server. Comput Ind Eng 58(1):165–174

    Google Scholar 

  • Hwang C-L, Masud ASM (1979) Multiple objectives decision making-methods and applications. Springer, Berlin

    Google Scholar 

  • Hwang C, Paidy S, Yoon K (1980) Mathematical programming with multiple objectives: a tutorial. Comput Oper Res 7(1):5–31

    Article  Google Scholar 

  • Janiak A, Kozan E, Lichtenstein M, Oguz C (2007) Metaheuristic approaches to the hybrid flowshop scheduling problem with a cost-related criterion. Int J Prod Econ 105:407–424

    Article  Google Scholar 

  • Kim D, Kim K, Jang W, Chen F (2002) Unrelated parallel machines scheduling with setup times using simulated annealing. Robot Comput Integr Manuf 18:223–231

    Article  Google Scholar 

  • Kima DW, Na DG, Chenb FF (2003) Unrelated parallel machines scheduling with setup times and a total weighted tardiness objective. Comput Integr Manuf 19:173–181

    Article  Google Scholar 

  • Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680

    Article  MathSciNet  Google Scholar 

  • Kramer FJ, Lee CY (1994) Due window scheduling for parallel machines. Math Comput Model 20:69–89

    Article  MathSciNet  Google Scholar 

  • Kubiak W, Lou S, Sethi R (1990) Equivalence of mean flow time problems and mean absolute deviation problems. Oper Res Lett 9:371–374

    Article  MATH  Google Scholar 

  • Kurz ME, Askin RG (2004) Scheduling flexible flow lines with sequence-dependent setup times. Eur J Oper Res 159:66–82

    Google Scholar 

  • Lam K (1997) New trends in parallel machine scheduling. Int J Oper Prod Manage 17(3):326–338

    Article  Google Scholar 

  • Lam K, Xing W (1997) New trends in parallel machines scheduling. Int J Oper Manage 17:326–338

    Article  Google Scholar 

  • Lamothe J, Marmier F, Dupuy M, Gaborit P, Dupont L (2010) Scheduling rules to minimize total tardiness in a parallel machine problem with setup and calendar constraints. Comput Oper Res. doi:10.1016/j.cor.2010.07.007

  • Lauff V, Werner F (2004) Scheduling with common due date, earliness and tardiness penalties for multimachine problems: a survey. Math Comput Model 40:637–655

    Article  MathSciNet  MATH  Google Scholar 

  • Leung JY-T (2004) Handbook of scheduling: algorithms, models, and performance analysis. Chapman & Hall\CRP, The Netherlands

    MATH  Google Scholar 

  • Li K, Sivakumar AI, Kumar Ganesan V (2008) Complexities and algorithms for synchronized scheduling of parallel machine assembly and air transportation in consumer electronics supply chain. Eur J Oper Res 187(2):442–455

    Article  MATH  Google Scholar 

  • Lin CH, Liao CJ (2003) Makespan minimization subject to flowtime optimality on identical parallel machines. Comput Oper Res 31:1655–1666

    Article  MathSciNet  Google Scholar 

  • Logendrana R, Mcdonellb B, Smuckera B (2007) Scheduling unrelated parallel machines with sequence-dependent setups. Comput Oper Res 11:3420–3438

    Article  Google Scholar 

  • MacCarthy BL, Liu J (1993) Addressing the gap in scheduling research: a review of optimization and heuristic methods in production scheduling. Int J Prod Res 31:59–79

    Article  Google Scholar 

  • Miettinen K (1999) Nonlinear multiobjective optimization. Kluwer, Boston

    MATH  Google Scholar 

  • Mladenovic N, Hansen P (1997) Variable neighborhood search. Comput Oper Res 24:1097–1100

    Article  MathSciNet  MATH  Google Scholar 

  • Mokotoff E (2001) Parallel machine scheduling problems: a survey. Asia-Pacific J Oper Res 18:193–242

    MathSciNet  MATH  Google Scholar 

  • Montgomery DC (2000) Design and analysis of experiments. Wiley, Fifth ed., New York

    Google Scholar 

  • Norman B, Bean J (1999) A genetic algorithm methodology for complex scheduling problems. Naval Res Logist 46:199–211

    Google Scholar 

  • Osyczka A (1984) Multicriterion optimization in engineering with FORTRAN programs. Wiley, New York

    Google Scholar 

  • Pinedo M (2002) Scheduling theory, algorithms and systems. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Rios-Mercado RZ, Bard JF (1998) Computational experience with a branch-and-cut algorithm for flowshop scheduling with setups. Comput Oper Res 25(5):351–366

    Article  MATH  Google Scholar 

  • Rocha de Paula M, Ravetti MG, Mateus GR, Pardalos PM (2007) Solving parallel machines scheduling problems with sequence-dependent setup times using variable neighborhood search. IMA J Manage Math 18:101–115

    Article  MATH  Google Scholar 

  • Rocha de Paula MMG, Mateus GR, Pardalos PM (2008) Exact algorithms for a scheduling problem with unrelated parallel machines and sequence and machine-dependent setup times. Comput Oper Res 35(4):1250–1264

    Article  MathSciNet  Google Scholar 

  • Rocha de Paula M, Mateus GR, Ravetti MG (2010) A non-delayed relax-and-cut algorithm for scheduling problems with parallel machines, due dates and sequence-dependent setup times. Comput Oper Res 37(5):938–949

    Article  MathSciNet  MATH  Google Scholar 

  • Setämaa-Kärkkäinen A, Miettinen K, Vuori J (2007) Heuristic for a new multiobjective scheduling problem. Opt Lett 1:213–225

    Article  MATH  Google Scholar 

  • Sivrikaya-Serifoglu F, Ulusoy G (1999) Parallel machines scheduling with earliness and tardiness penalties. Comput Oper Res 26:773–787

    Article  MathSciNet  MATH  Google Scholar 

  • Steuer R (1986) Multiple criteria optimization: theory. Wiley Computation and Application, New York

    MATH  Google Scholar 

  • Stützle, T., 1998. An ant approach for the flowshop problem. In: Zimmerman H (ed) Proceedings of the sixth European congress on intelligent techniques and soft computing (EUFIT’98), vol 3. Verlag Mainz: Aachen, Germany, pp 1560–1564

  • Suresh V, Chaudhuri D (1996) Bicriteria scheduling problem for unrelated parallel machines. Comput Ind Eng 30:77–82

    Article  Google Scholar 

  • Talbi E (2002) A taxonomy of hybrid metaheuristics. J Heuristics 8(5):541–564

    Article  Google Scholar 

  • Tavakkoli-Moghaddam R, Rahimi-Vahed A, Hossein Mirzaei A (2007) A hybrid multi-objective immune algorithm for a flow shop scheduling problem with bi-objectives: weighted mean completion time and weighted mean tardiness. Inf Sci 177:5072–5090

    Article  MATH  Google Scholar 

  • Tavakkoli-Moghaddam R, Taheri F, Bazzazi M, Izadi M, Sassani F (2009) Design of a genetic algorithm for bi-objective unrelated parallel machines scheduling with sequence-dependent setup times and precedence constraints. Comput Oper Res 36(12):3224–3230

    Article  MATH  Google Scholar 

  • Tian P, Ma J, Zhang DM (1999) Application of the simulated annealing algorithm to the combinatorial optimization problem with permutation property: an investigation of generation mechanism. Eur J Oper Res 118:81–94

    Article  MATH  Google Scholar 

  • Varadharajan TK, Rajendran C (2005) A multi-objective simulated annealing algorithm for scheduling in flowshops to minimize the makespan and total flowtime of jobs. Eur J Oper Res 167(3):772–795

    Article  MathSciNet  MATH  Google Scholar 

  • Wan G, Yen BPC (2002) Tabu search for single machine scheduling with distinct due windows and weighted earliness/tardiness penalties. Eur J Oper Res 142:271–281

    Article  MathSciNet  MATH  Google Scholar 

  • Yang T (2009) An evolutionary simulation–optimization approach in solving parallel-machine scheduling problems—a case study. Comput Ind Eng 56(3):1126–1136

    Article  Google Scholar 

  • Yao X (1995) A new simulated annealing algorithm. Int J Comput Math 56:161–168

    Article  MATH  Google Scholar 

  • Yeung WK, Oğuz C, Cheng TCE (2004) Two-stage flowshop earliness and tardiness machine scheduling involving a common due window. Int J Prod Econ 90:421–434

    Article  Google Scholar 

  • Yu L, Shih HM, Pfund M, Carlyle WM, Fowler JW (2002) Scheduling of unrelated parallel machines: an application to PWB manufacturing. IEEE Trans 34:921–931

    Google Scholar 

  • Zadeh L (1963) Optimality and non-scalar-valued performance criteria. IEEE Transn Automat Control 8:59–60

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zandieh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behnamian, J., Zandieh, M. & Fatemi Ghomi, S.M.T. Bi-objective parallel machines scheduling with sequence-dependent setup times using hybrid metaheuristics and weighted min–max technique. Soft Comput 15, 1313–1331 (2011). https://doi.org/10.1007/s00500-010-0673-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-010-0673-0

Keywords

Navigation