Skip to main content
Log in

β-Interval attribute reduction in variable precision rough set model

  • Original Paper
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

The differences of attribute reduction and attribute core between Pawlak’s rough set model (RSM) and variable precision rough set model (VPRSM) are analyzed in detail. According to the interval properties of precision parameter β with respect to the quality of classification, the definition of attribute reduction is extended from a specific β value to a specific β interval in order to overcome the limitations of traditional reduct definition in VPRSM. The concept of β-interval core is put forward which will enrich the methodology of VPRSM. With proposed ordered discernibility matrix and relevant interval characteristic sets, a heuristic algorithm can be constructed to get β-interval reducts. Furthermore, a novel method, with which the optimal interval of precision parameter can be determined objectively, is introduced based on shadowed sets and an evaluation function is also given for selecting final optimal β-interval reduct. All the proposed notions in this paper will promote the development of VPRSM both in theory and practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • An A, Shan N, Chan C (1996) Discovering rules for water demand prediction: an enhanced rough set approach. Eng Appl Artif Intell 9:645–653

    Article  Google Scholar 

  • Anantaram C, Nagaraja G, Nori KV (1998) Verification of accuracy of rules in a rule based system. Data Knowl Eng 27:115–138

    Article  Google Scholar 

  • Beynon M (2000) An investigating of β-reduct selection within the variable precision rough sets model. In: The second international conference on rough sets and current trend in computing (RSCTC 2000). LNAI 2005:114–122

  • Beynon M (2001) Reducts within the variable precision rough sets model: a further investigation. Eur J Oper Res 134:595–597

    Article  Google Scholar 

  • Beynon M (2003) The introduction and utilization of (l-u)-graphs in the extended variable precision rough sets model. Int J Intell Syst 18:1035–1055

    Article  MATH  Google Scholar 

  • Beynon M, Peel MJ (2001) Variable precision rough set theory and data discretization:an application to corporate failure prediction. Int J Manag Sci 29:561–576

    Google Scholar 

  • Dimitras AI et al (1999) Business failure using rough sets. Eur J Oper Res 114:263–280

    Article  MATH  Google Scholar 

  • Dubois D, Prade H (1999) Rough fuzzy sets and fuzzy rough sets. Int J Gen Syst 17:191–209

    Article  Google Scholar 

  • Greco S, Matarazzo B, Slowinski R (2008) Parameterized rough set model using rough membership and Bayesian confirmation measures. Int J Approx Reason 49:285–300

    Article  MATH  MathSciNet  Google Scholar 

  • Herbert JP, Yao JT (2009) Criteria for choosing a rough set model. Comput Math Appl 57:908–918

    Article  MATH  Google Scholar 

  • Jelonek J, Krawiec K, Slowinski R (1995) Rough set reduction of attributes and their domains for neural networks. Int J Comput Intell 11:339–347

    Google Scholar 

  • Katzberg JK, Ziarko W (1993) Variable precision rough sets with asymmetric bounds. In: Ziarko W, Rijsbergen CJ (eds) Rough sets, fuzzy sets and knowledge discovery. Springer, New York, pp 167–177

    Google Scholar 

  • Mushrif MM, Ray AK (2008) Color image segmentation: rough-set theoretic approach. Pattern Recogn Lett 29:483–493

    Article  Google Scholar 

  • Pawlak Z (1982) Rough sets. Int J Comput Inf Sci 11:314–356

    Article  MathSciNet  Google Scholar 

  • Pawlak Z, Skowron A (2007) Rudiments of rough sets. Inf Sci 177:3–27

    Article  MATH  MathSciNet  Google Scholar 

  • Pawlak Z, Wong SKM, Ziarko W (1988) Rough sets: probabilistic versus deterministic approach. Int J Man Mach Stud 29:81–95

    Article  MATH  Google Scholar 

  • Pedrycz W (1998) Shadowed sets: representing and processing fuzzy sets. IEEE T Syst Man Cybern B 28:103–109

    Article  Google Scholar 

  • Pedrycz W (1999) Shadowed sets: bridging fuzzy and rough sets. In: Pal SK, Skowron A (eds) Rough fuzzy hybridization a new trend in decision-making. Springer, Singapore, pp 179–199

    Google Scholar 

  • Pedrycz W (2005) Interpretation of clusters in the framework of shadowed sets. Pattern Recogn Lett 26:2439–2449

    Article  Google Scholar 

  • Pedrycz W (2009) From fuzzy sets to shadowed sets: interpretation and computing. Int J Intell Syst 24:48–61

    Article  MATH  Google Scholar 

  • Pedrycz W, Bukovich G (2002) Granular computing with shadowed sets. Int J Intell Syst 17:173–197

    Article  MATH  Google Scholar 

  • Shen Q, Chouchoulas A (2002) A rough-fuzzy approach for generating classification rules. Pattern Recogn Lett 35:2425–2438

    MATH  Google Scholar 

  • Skowron A, Rauszer C (1991) The discernibility matrices and functions in information systems. In: Slowinski R (eds) Intelligent decision support: handbook of applications and advances of the rough sets theory. Kluwer, Dordrecht, pp 331–362

    Google Scholar 

  • Slezak D (2003) Attribute reduction in the Bayesian version of variable precision rough set model. Electron Notes Theor Comput Sci 82:1–11

    Google Scholar 

  • Slezak D, Ziarko W(2002) Bayesian rough set model. In: Proceedings of the international workshop on foundation of data mining (FDM’2002). Maebashi, Japan, pp 131–135

  • Slezak D, Ziarko W (2005) The investigation of the Bayesian rough set model. Int J Approx Reason 40:81–91

    Article  MATH  MathSciNet  Google Scholar 

  • Su C-T, Hsu J-H (2006) Precision parameter in the variable precision rough sets model: an application. Int J Manag Sci 34:149–157

    Google Scholar 

  • Thangavel K, Pethalakshmi A (2009) Dimensionality reduction based on rough set theory: a review. Appl Soft Comput 9:1–12

    Article  Google Scholar 

  • Wang J, Miao DQ (1998) Analysis on attribute reduction strategies of rough set. J Comput Sci Technol 13:189–193

    Article  MATH  MathSciNet  Google Scholar 

  • Wang JY, Zhou J (2009) Research of reduct features in the variable precision rough set model. Neurocomputing 72:2643–2648

    Article  Google Scholar 

  • Wang RZ, Miao DQ, Hu GR et al (2006) Discernibility matrix based algorithm for reduction of attributes. In: Butz CJ (eds) Web intelligence and intelligent agent technology. IEEE Computer Society, Hong Kong, pp 477–480

    Google Scholar 

  • Wojciech K et al (2008) Stochastic dominance-based rough set model for ordinal classification. Inf Sci 178:4019–4037

    Article  MATH  Google Scholar 

  • Yao YY (2003) Probabilistic approaches to rough sets. Expert Syst 20:287–297

    Article  Google Scholar 

  • Yao Y Y (2007) Decision-theoretic rough set modes. In: Proceedings of RSKT’07. LNAI 4481:1–12

  • Yao YY (2008) Probabilistic rough set approximations. Int J Approx Reason 49:255–271

    Article  MATH  Google Scholar 

  • Yao YY, Wong SKM (1992) A decision theoretic framework for approximating concepts. Int J Man Mach Stud 37:793–809

    Article  Google Scholar 

  • Yao YY, Zhao Y (2008) Attribute reduction in decision-theoretic rough set model. Inf Sci 178:3356–3373

    Article  MATH  MathSciNet  Google Scholar 

  • Yao YY, Wong SKM, Lingras P (1990) A decision-theoretic rough set model. In: Ras ZW et al (eds) Methodologies for intelligent systems. North-Holland, New York, pp 17–24

  • Yao Y Y, Zhao Y, Wang J (2006) On reduct construction algorithms. In: Proceedings of RSKT’06. LNAI 4062:297–304

  • Zhu W, Wang FY (2003) Reduction and axiomization of covering generalized rough sets. Inf Sci 152:217–230

    Article  MATH  Google Scholar 

  • Ziarko W (1993) Variable precision rough set model. J Comput Syst Sci 46:44–54

    Article  MathSciNet  Google Scholar 

  • Ziarko W (1999) Decision making with probabilistic decision tables. In: Proceedings of RSFDGrC’99. LNAI 1711:463–471

Download references

Acknowledgments

The authors wish to grateful acknowledge anonymous reviews for their valuable comments and recommendations. This work was supported by National Natural Science Foundation of China (Serial No. 60475019, 60775036, 60970061) and the Ph.D. programs Foundation of Ministry of Education of China (Serial No. 20060247039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhou.

Appendix

Appendix

See Table 8.

Table 8 WINE data set

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, J., Miao, D. β-Interval attribute reduction in variable precision rough set model. Soft Comput 15, 1643–1656 (2011). https://doi.org/10.1007/s00500-011-0693-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-011-0693-4

Keywords

Navigation