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Abstract

The aim of our paper is twofold. First, we thoroughly study the set of meager
elements M(E), the center C(E) and the compatibility center B(E) in the setting
of atomic Archimedean lattice effect algebras E. The main result is that in
this case the center C(E) is bifull (atomic) iff the compatibility center B(E) is
bifull (atomic) whenever E is sharply dominating. As a by-product, we give
a new descriciption of the smallest sharp element over x ∈ E via the basic
decomposition of x. Second, we prove the Triple Representation Theorem for
sharply dominating atomic Archimedean lattice effect algebras.

Keywords: lattice effect algebra, center, atom, MacNeille completion, sharp
element, meager element

Introduction

The history of quantum structures started at the beginning of the 20th
century. Observable events constitute a Boolean algebra in a classical physical
system. Because event structures in quantum mechanics cannot be described by
Boolean algebras, Birkhoff and von Neumann introduced orthomodular lattices
which were considered as the standard quantum logic. Later on, orthoalge-
bras were introduced as the generalizations of orthomodular posets, which were
considered as ”sharp” quantum logic.

In the nineties of the twentieth century, two equivalent quantum structures,
D-posets and effect algebras were extensively studied, which were considered as
”unsharp” generalizations of the structures which arise in quantum mechanics,
in particular, of orthomodular lattices and MV-algebras.

In [16] Paseka and Riečanová published as open problem whether the center
C(E) is a bifull sublattice of an Archimedean atomic lattice effect algebra E.
This question was answered by M. Kalina in [10] who proved that C(E) need
not be a bifull sublattice of E even if C(E) is atomic.
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The aim of our paper is twofold. First, we thoroughly study the set of meager
elements M(E), the center C(E) and the compatibility center B(E) in the setting
of atomic Archimedean lattice effect algebras E. The main result of Section 2
is that in this case the center C(E) is bifull (atomic) iff the compatibility center
B(E) is bifull (atomic) whenever E is sharply dominating. As a by-product, we
give a new descriciption of the smallest sharp element over x ∈ E via the basic
decomposition of x. Second, in Section 3 we prove the Triple Representation
Theorem established by G. Jenča in [8] in the setting of complete lattice effect
algebras for sharply dominating atomic Archimedean lattice effect algebras.

1. Preliminaries and basic facts

Effect algebras were introduced by D.J. Foulis and M.K. Bennett (see [4])
for modelling unsharp measurements in a Hilbert space. In this case the set
E(H) of effects is the set of all self-adjoint operators A on a Hilbert space H

between the null operator 0 and the identity operator 1 and endowed with the
partial operation + defined iff A+B is in E(H), where + is the usual operator
sum.

In general form, an effect algebra is in fact a partial algebra with one partial
binary operation and two unary operations satisfying the following axioms due
to D.J. Foulis and M.K. Bennett.

Definition 1.1. [22] A partial algebra (E;⊕, 0, 1) is called an effect algebra if
0, 1 are two distinct elements and ⊕ is a partially defined binary operation on
E which satisfy the following conditions for any x, y, z ∈ E:

(Ei) x⊕ y = y ⊕ x if x⊕ y is defined,

(Eii) (x⊕ y)⊕ z = x⊕ (y ⊕ z) if one side is defined,

(Eiii) for every x ∈ E there exists a unique y ∈ E such that x⊕ y = 1 (we put
x′ = y),

(Eiv) if 1⊕ x is defined then x = 0.

We often denote the effect algebra (E;⊕, 0, 1) briefly by E. On every effect
algebra E a partial order ≤ and a partial binary operation ⊖ can be introduced
as follows:

x ≤ y and y ⊖ x = z iff x⊕ z is defined and x⊕ z = y .

If E with the defined partial order is a lattice (a complete lattice) then
(E;⊕, 0, 1) is called a lattice effect algebra (a complete lattice effect algebra).

Definition 1.2. Let E be an effect algebra. Then Q ⊆ E is called a sub-effect
algebra of E if

(i) 1 ∈ Q

(ii) if out of elements x, y, z ∈ E with x⊕y = z two are in Q, then x, y, z ∈ Q.
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If E is a lattice effect algebra and Q is a sub-lattice and a sub-effect algebra of
E, then Q is called a sub-lattice effect algebra of E.

Note that a sub-effect algebra Q (sub-lattice effect algebra Q) of an effect
algebra E (of a lattice effect algebra E) with inherited operation ⊕ is an effect
algebra (lattice effect algebra) in its own right.

For an element x of an effect algebra E we write ord(x) = ∞ if nx = x⊕x⊕
· · · ⊕ x (n-times) exists for every positive integer n and we write ord(x) = nx if
nx is the greatest positive integer such that nxx exists in E. An effect algebra
E is Archimedean if ord(x) < ∞ for all x ∈ E.

A minimal nonzero element of an effect algebra E is called an atom and E

is called atomic if below every nonzero element of E there is an atom.
For a poset P and its subposet Q ⊆ P we denote, for all X ⊆ Q, by

∨
Q X

the join of the subset X in the poset Q whenever it exists. Recall also Q ⊆ P

is densely embedded in P if for every element x ∈ P there exist S, T ⊆ Q such
that x =

∨
P S =

∧
P T .

We say that a finite system F = (xk)
n
k=1 of not necessarily different elements

of an effect algebra (E;⊕, 0, 1) is orthogonal if x1⊕x2⊕· · ·⊕xn (written
n⊕

k=1

xk or
⊕

F ) exists in E. Here we define x1⊕x2⊕· · ·⊕xn = (x1⊕x2⊕· · ·⊕xn−1)⊕xn

supposing that
n−1⊕
k=1

xk is defined and
n−1⊕
k=1

xk ≤ x′

n. We also define
⊕

∅ = 0.

An arbitrary system G = (xκ)κ∈H of not necessarily different elements of E
is called orthogonal if

⊕
K exists for every finite K ⊆ G. We say that for a

orthogonal system G = (xκ)κ∈H the element
⊕

G exists iff
∨
{
⊕

K | K ⊆ G

is finite} exists in E and then we put
⊕

G =
∨
{
⊕

K | K ⊆ G is finite}. We
say that

⊕
G is the orthogonal sum of G. (Here we write G1 ⊆ G iff there is

H1 ⊆ H such that G1 = (xκ)κ∈H1
).

An element u ∈ E is called finite if either u = 0 or there is a finite sequence
{a1, a2, . . . , an} of not necessarily different atoms of E such that u = a1 ⊕ a2 ⊕
· · ·⊕an. Note that any atom of E is evidently finite. An element v ∈ E is called
cofinite if v′ ∈ E is finite.

Elements x and y of a lattice effect algebra E are called compatible (x ↔ y

for short) if x ∨ y = x⊕ (y ⊖ (x ∧ y)) (see [13, 20]).
Remarkable sub-lattice effect algebras of a lattice effect algebra E are

(1) A block M of E, which is any maximal subset of pairwise compatible
elements of E (in fact M is a maximal sub-MV -algebra of E, see [20]).

(2) The set S(E) = {x ∈ E | x ∧ x′ = 0} of sharp elements of E (see [6], [7]),
which is an orthomodular lattice (see [9]).

(3) The compatibility center B(E) of E, B(E) =
⋂
{M ⊆ E | M is a block

of E} = {x ∈ E | x ↔ y for every y ∈ E} which is in fact an MV -algebra
(MV -effect algebra).

(4) The center C(E) = {x ∈ E | y = (y ∧ x) ∨ (y ∧ x′) for all y ∈ E} of
E is a Boolean algebra (see [5]). In every lattice effect algebra it holds
C(E) = B(E) ∩ S(E) = S(B(E)) (see [18] and [19]).
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All these sub-lattice effect algebras of a lattice effect algebra E are in fact
full sub-lattice effect algebras of E. This means that they are closed with respect
to all suprema and infima existing in E of their subsets [9, 21].

The MV -effect algebras E are precisely lattice effect algebras with a unique
block (i.e., E = B(E)).

The following statements are well known.

Statement 1.3. Let E be a lattice effect algebra. Then

(i) [9, Theorem 2.1] Assume b ∈ E, A ⊆ E are such that
∨
A exists in E and

b ↔ a for all a ∈ A. Then

(a) b ↔
∨
A.

(b)
∨
{b ∧ a : a ∈ A} exists in E and equals b ∧ (

∨
A).

(ii) [9, Theorem 3.7], [21, Theorem 2.8] S(E), B(E) and C(E) are full sub-
lattice effect algebras of E.

(iii) [15, Lemma 3.3] Let x, y ∈ E. Then x ∧ y = 0 and x ≤ y′ iff kx ∧ ly = 0
and kx ≤ (ly)′, whenever kx and ly exist in E.

(iv) [17, Proposition 1] Let {bα | α ∈ Λ} be a family of elements in E and let
a ∈ E with a ≤ bα for all α ∈ Λ. Then

(
∨

{bα | α ∈ Λ})⊖ a =
∨

{bα ⊖ a | α ∈ Λ}

if one side is defined.

(v) [25, Theorem 3.5] For every atom a ∈ E with ord(a) < ∞, naa is the
smallest sharp element over a.

(vi) [19, Corollary 4.3] Let x, y ∈ E. Then x⊕ y = (x ∨ y)⊕ (x ∧ y) whenever
x⊕ y exists.

(vii) [3, Proposition 1.8.7] Let b ∈ E, A ⊆ E are such that
∨
A exists in E and

b⊕ a exists for all a ∈ A. Then
∨
{b⊕ a : a ∈ A} = b⊕

∨
A.

(viii) [24, Lemma 4.1] Assume that z ∈ C(E). Then, for all x, y ∈ E with
x ≤ y′, (x⊕ y) ∧ z = (x ∧ z)⊕ (y ∧ z).

Statement 1.4. [23, Theorem 3.3] Let E be an Archimedean atomic lattice
effect algebra. Then to every nonzero element x ∈ E there are mutually distinct
atoms aα ∈ E and positive integers kα, α ∈ E such that

x =
⊕

{kαaα | α ∈ E} =
∨

{kαaα | α ∈ E},

and x ∈ S(E) iff kα = naα
= ord(aα) for all α ∈ E.

Statement 1.5. [14, Theorem 8] Let E be an atomic Archimedean lattice effect
algebra and let M = {Mκ|κ ∈ H} be a family of all atomic blocks of E. For
each κ ∈ H let Aκ be the set of all atoms of Mκ. Then:

(i) For each κ ∈ H, Aκ is a maximal pairwise compatible set of atoms of E.

(ii) For x ∈ E and κ ∈ H it holds x ∈ Mκ iff x ↔ Aκ.

(iii) M ∈ M iff there exists a maximal pairwise compatible set A of atoms of
E such that A ⊆ M and if M1 is a block of E with A ⊆ M1 then M = M1.
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(iv) E =
⋃
{Mκ|κ ∈ H}.

(v) B(E) =
⋂
{Mκ|κ ∈ H}.

(vi) C(E) =
⋂
{C(Mκ)|κ ∈ H} =

⋂
{S(Mκ)|κ ∈ H}.

(vii) S(E) =
⋃
{C(Mκ)|κ ∈ H} =

⋃
{S(Mκ)|κ ∈ H}.

Lemma 1.6. Let E be a lattice effect algebra and let b ∈ E, A ⊆ E are such
that

∨
A exists in E and b ⊕ a exists for all a ∈ A. Then b ⊕

∨
A exists in E

and b⊕
∨
A = (b ∨

∨
A)⊕

∨
{b ∧ a : a ∈ A}.

Proof. Clearly b ↔ a for all a ∈ A. By Statement 1.3, (i) we have that b ↔
∨
A

and
∨
{b ∧ a : a ∈ A} = b ∧ (

∨
A). Furthermore, b ≤ a′ for all a ∈ A and hence

b ≤
∧
{a′ | a ∈ A} = (

∨
A)′. Therefore b ⊕

∨
A exists. In view of Statement

1.3, (vi)

b⊕
∨

A = (b ∨
∨

A)⊕ (b ∧
∨

A) = (b ∨
∨

A)⊕
∨

{b ∧ a : a ∈ A}.

2. Bifull sub-lattice effect algebras of lattice effect algebras

Definition 2.1. For a poset L and a subset D ⊆ L we say that D is a
∨
-bifull

sub-poset of L iff, for any X ⊆ D ,
∨

LX exists iff
∨

D X exists, in which case∨
LX =

∨
D X . Dually, the notion of

∧
-bifull sub-poset of L is defined. We call

a subset D ⊆ L to be a bifull sub-poset of L if it is both
∨
-bifull and

∧
-bifull.

Remark 2.2. Clearly, if L is a complete lattice then D ⊆ L is a complete
sub-lattice of L (i.e., D inherits all suprema and infima of its subsets existing
in L) iff D is a bifull sub-poset of L. Moreover, if E is a lattice effect algebra
then a sub-lattice effect algebra D of E is a bifull sub-lattice effect algebra of E
iff it is

∨
-bifull.

An important class of effect algebras was introduced by S. Gudder in [6] and
[7]. Fundamental example is the standard Hilbert spaces effect algebra E(H).

For an element x of an effect algebra E we denote

x̃ =
∨

E{s ∈ S(E) | s ≤ x} if it exists and belongs to S(E)
x̂ =

∧
E{s ∈ S(E) | s ≥ x} if it exists and belongs to S(E).

Definition 2.3. ([6], [7].) An effect algebra (E,⊕, 0, 1) is called sharply dom-
inating if for every x ∈ E there exists x̂, the smallest sharp element such that
x ≤ x̂. That is x̂ ∈ S(E) and if y ∈ S(E) satisfies x ≤ y then x̂ ≤ y.

Recall that evidently an effect algebra E is sharply dominating iff for every
x ∈ E there exists x̃ ∈ S(E) such that x̃ ≤ x and if u ∈ S(E) satisfies u ≤ x

then u ≤ x̃ iff for every x ∈ E there exist a smallest sharp element x̂ over x and
a greatest sharp element x̃ below x.

In what follows set (see [8, 25])

M(E) = {x ∈ E | if v ∈ S(E) satisfies v ≤ x then v = 0}.

An element x ∈ M(E) is called meager. Moreover, x ∈ M(E) iff x̃ = 0.
Recall that x ∈ M(E), y ∈ E, y ≤ x implies y ∈ M(E) and x⊖ y ∈ M(E).
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Lemma 2.4. Let E be an effect algebra in which S(E) is a sub-effect algebra of
E and let x ∈ M(E) such that x̂ exists. Then

(i) x̂⊖ x ∈ M(E).

(ii) If y ∈ M(E) such that x ⊕ y exists and x ⊕ y = z ∈ S(E) then x̂ = z.

Moreover, if E is a lattice effect algebra then ŷ exists and ŷ = ̂̂x⊖ x = z.

Proof. (i): Let u ∈ S(E) such that u ≤ x̂ ⊖ x. Then x ≤ x̂ ⊖ u ∈ S(E) which
yields that x̂ ≤ x̂⊖ u. Hence u = 0, i.e., x̂⊖ x ∈ M(E).
(ii): Since x ≤ z and hence x̂ ≤ z we have x ⊕ y = z = x̂ ⊕ (z ⊖ x̂) and
x̂ = x⊕ (x̂⊖ x). This yields x⊕ y = x⊕ (x̂⊖ x)⊕ (z ⊖ x̂). By the cancellation
law we get y = (x̂⊖ x)⊕ (z ⊖ x̂)︸ ︷︷ ︸

∈S(E)

. Hence z ⊖ x̂ = 0, i.e., z = x̂.

Now, assume that E is a lattice effect algebra. Let u ∈ S(E), u ≥ y. Then
also u ∧ z ≥ y, u ∧ z ∈ S(E) and z ⊖ (u ∧ z) ∈ S(E). Then x ⊕ y = z =
y ⊕ ((u ∧ z) ⊖ y) ⊕ (z ⊖ (u ∧ z)). Therefore x = ((u ∧ z) ⊖ y) ⊕ (z ⊖ (u ∧ z)).
Since z ⊖ (u ∧ z) ∈ S(E) this yields z ⊖ (u ∧ z) = 0, i.e., z = u ∧ z ≤ u.

Lemma 2.5. Let E be an effect algebra in which S(E) is a sub-effect algebra of
E and let x ∈ E such that x̃ exists. Then

(i) x⊖ x̃ ∈ M(E) and x = x̃ ⊕ (x⊖ x̃) is the unique decomposition x =
xS ⊕ xM , where xS ∈ S(E) and xM ∈ M(E). Moreover, xS ∧ xM = 0 and
if E is a lattice effect algebra then x = xS ∨ xM .

(ii) If E is a lattice effect algebra such that x̂ exists then x̂⊖ x̃ and ̂̂x⊖ x

exist, x̂⊖ x̃ = x̂⊖ x̃ = ̂̂x⊖ x, x̂ = x̃⊕ x̂⊖ x̃ = x̃∨ x̂⊖ x̃ and x̃∧ x̂⊖ x̃ = 0.

Moreover, x̂⊖ x̃ = ̂(x̂⊖ x̃)⊖ (x̂ ⊖ x).

Proof. (i): Let v ∈ S(E), v ≤ x ⊖ x̃. Then v ⊕ x̃ ≤ x and v ⊕ x̃ ∈ S(E). Hence
v ⊕ x̃ ≤ x̃, i.e., v = 0, xM ∈ M(E) and x = x̃⊕ (x⊖ x̃).

Assume that there is a decomposition x = xS⊕xM such that xS ∈ S(E) and
xM ∈ M(E). Then xS ≤ x̃ and xM = x⊖xS = (x⊖x̃)⊕(x̃⊖xS) ≥ x̃⊖xS ∈ S(E).
It follows that x̃ ⊖ xS = 0 because xM ∈ M(E). Therefore, xM = x ⊖ x̃ and
xS = x̃.

We have x
′

S = 1⊖ xS ≥ x⊖ xS = xM . Hence xS ∧ xM ≤ xS ∧ x
′

S = 0.
Let E be a lattice effect algebra. By Statement 1.3, (vi) we have that

x = xS ⊕ xM = (xS ∨ xM )⊕ (xS ∧ xM ) = xS ∨ xM .
(ii): We have that x̂ ⊖ x̃ ≥ x ⊖ x̃, x̂ ⊖ x̃ ∈ S(E). Let z ∈ S(E) such that
z ≥ x ⊖ x̃. Let us put w = z ∧ (x̂ ⊖ x̃). Then w ≤ x̂ ⊖ x̃ hence w ⊕ x̃ ∈ S(E)
exists and w⊕ x̃ ≥ x. This yields that w⊕ x̃ ≥ x̂, i.e., z ≥ w ≥ x̂⊖ x̃. Therefore,

x̂⊖ x̃ = x̂⊖ x̃.
Since x̂⊖ x̃ ≤ 1⊖ x̃ = (x̃)′ we obtain that x̃ ∧ x̂⊖ x̃ ≤ x̃ ∧ (x̃)′ = 0.

We proceed similarly to prove that x̂⊖ x̃ = ̂̂x⊖ x. Evidently, x̂⊖ x̃ ≥ x̂⊖ x.
Let z ∈ S(E) such that z ≥ x̂⊖ x. We put w = z ∧ (x̂ ⊖ x̃). Then x̂⊖ x ≤
w ≤ x̂ ⊖ x̃ ≤ x̂. It follows that x̂⊖ w ≤ x and x̂⊖ w ∈ S(E) which yields that
x̂⊖ w ≤ x̃. Hence x̂⊖ x̃ ≤ w ≤ z.
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Moreover, ̂(x̂⊖ x̃)⊖ (x̂⊖ x) = x̂⊖ x̃ = x̂⊖ x̃.

As proved in [1], S(E) is always a sub-effect algebra in a sharply dominating
effect algebra E.

Corollary 2.6. [8, Proposition 15] Let E be a sharply dominating effect algebra.
Then every x ∈ E has a unique decomposition x = xS ⊕ xM , where xS ∈ S(E)
and xM ∈ M(E), namely x = x̃⊕ (x⊖ x̃).

Moreover, the following statement holds.

Statement 2.7. Let E be a lattice effect algebra. Then

(i) [12, Corollary 1] If E is a sharply dominating then S(E) is bifull in E.
(ii) [16, Lemma 2.7] If E is Archimedean and atomic then S(E) is bifull
in E.

First, we shall need an extension of Statement 1.3, (iii).

Lemma 2.8. Let E be a lattice effect algebra, x1, . . . , xn ∈ E, k1, . . . , kn ∈ N,
n ≥ 2 such that kixi exist in E for all 1 ≤ i ≤ n. Then

xi ∧ xj = 0 and xi ≤ x′

j for all 1 ≤ i < j ≤ n

iff
⊕n

j=1 kjxj exists and
⊕n

j=1 kjxj =
∨n

j=1 kjxj,
⊕

i∈I kixi ∧
⊕

j∈J kjxj = 0 and
⊕

j∈J kjxj ≤ (
⊕

i∈I kixi)
′

for all ∅ 6= I ⊂ {1, . . . , n}, J = {1, . . . , n} \ I.

Proof. Assume that xi ∧ xj = 0 and xi ≤ x′

j for all 1 ≤ i < j ≤ n. Let kixi

exist in E for all 1 ≤ i ≤ n. If n = 2 then from Statement 1.3, (iii) we know
that k1x1 ∧ k2x2 = 0, k1x1 ≤ (k2x2)

′ and k2x2 ≤ (k1x1)
′. Since k1x1 ↔ k2x2

we have that k1x1 ∨ k2x2 = k1x1 ⊕ (k2x2 ⊖ (k1x1 ∧ k2x2)) = k1x1 ⊕ k2x2. We
shall proceed by induction. Let n ∈ N be arbitrary, n ≥ 3 and assume that the
statement holds for every m < n. Let us take ∅ 6= I ⊂ {1, . . . , n} arbitrarily
and put J = {1, . . . , n} \ I. Hence |I| < n and |J | < n. Then we have (again
by Statement 1.3, (iii)) that kixi ∧ kjxj = 0 and kjxj ≤ (kixi)

′ for all i ∈ I and
j ∈ J . This and the induction assumption yield that

⊕
j∈J kjxj =

∨
j∈J kjxj ≤

(kixi)
′ for all i ∈ I. This is equivalent to kixi ≤ (

⊕
j∈J kjxj)

′ for all i ∈ I i.e.,⊕
i∈I kixi =

∨
i∈I kixi ≤ (

⊕
j∈J kjxj)

′. Furthermore, kjxj ↔ kixi for all i ∈ I

and j ∈ J implies by Statement 1.3, (i) that
⊕

i∈I

kixi ∧
⊕

j∈J

kjxj =
∨

i∈I

kixi ∧
∨

j∈J

kjxj =
∨

i∈I

∨

j∈J

(kixi ∧ kjxj︸ ︷︷ ︸
=0

) = 0.

Similarly by the induction assumption and Statement 1.3, (iii) and (vii),

⊕n
j=1 kjxj =

(⊕n−1
j=1 kjxj

)
⊕ knxn =

(∨n−1
j=1 kjxj

)
⊕ knxn

=
∨n−1

j=1 (kjxj ⊕ knxn) =
∨n−1

j=1 (kjxj ∨ knxn) =
∨n

j=1 kjxj .

The converse implication is evident.
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Corollary 2.9. Let E be an Archimedean lattice effect algebra and a1, . . . , an
mutually compatible different atoms from E, 1 ≤ ki ≤ nai

for all 1 ≤ i ≤ n.
Then k1a1⊕· · ·⊕knan exists and k1a1⊕· · ·⊕knan = k1a1∨· · ·∨knan . Moreover,
na1

a1 ⊕ · · · ⊕ nan
an = na1

a1 ∨ · · · ∨ nan
an is the smallest sharp element over

k1a1 ⊕ · · · ⊕ knan.

Theorem 2.10. Let E be an atomic Archimedean lattice effect algebra and let
x ∈ M(E). Let us denote Ax = {a | a an atom of E, a ≤ x} and, for any
a ∈ Ax, we shall put kxa = max{k ∈ N | ka ≤ x}. Then

(i) For any a ∈ Ax we have kxa < na.

(ii) The set Fx = {kxaa | a ∈ Ax} is orthogonal and

x =
⊕

{kxaa | a an atom of E, a ≤ x} =
⊕

Fx =
∨

Fx.

Moreover, for all B ⊆ Ax and all natural numbers lb < nb, b ∈ B such that
x =

⊕
{lbb | b ∈ B} we have that B = Ax and la = kxa for all a ∈ Ax i.e.,

Fx is the unique set of multiples of atoms from Ax such that its orthogonal
sum is x.

(iii) For every atomic block M of E, x ∈ M implies that [0, x] ⊆ M .

(iv) x ∈ B(E) implies that [0, x] ⊆ B(E).

(v) If x̂ exists then

x̂ = ̂̂x⊖ x =
⊕

{naa | a an atom of E, a ≤ x} =
∨

{naa | a ∈ Ax}

and

x̂⊖ x =
⊕

{(na − kxa)a | a ∈ Ax} =
∨

{(na − kxa)a | a ∈ Ax}.

(vi) If x is finite then [0, x] is a finite lattice, x =
⊕n

i=1 kiai =
∨n

i=1 kiai
for a suitable finite set Ax = {a1, . . . , an} of atoms of E and [0, x] ∼=∏n

i=1[0, kiai].

Proof. (i): Let a ∈ Ax. Since E is Archimedean we have kxa ≤ na. Assume that
kxa = na. Then 0 < naa ≤ x and naa ∈ S(E) by Statement 1.4, i.e., x 6∈ M(E),
a contradiction.

(ii): From Statement 1.4, (i) we know that there is a subset B ⊆ Ax and
natural numbers lb < nb, b ∈ B such that

x =
⊕

{lbb | b ∈ B} =
∨

{lbb | b ∈ B}.

Let us show that Fx = {lbb | b ∈ B}. Evidently, lb ≤ kxb < nb and lbb ≤ x for
all b ∈ B. Hence, for any finite subset D ⊆ B and for any c ∈ B, we have by
Corollary 2.9 that c⊕

⊕
{lbb | b ∈ D} exists. This yields that

⊕
{lbb | b ∈ D} ≤

c′ and therefore x ≤ c′ for all c ∈ B. Now, let a ∈ Ax. Then a ≤ x ≤ c′ for all
c ∈ B i.e., a ↔ c.
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We then have

0 6= kxaa = kxaa ∧ x = kxaa ∧
∨
{lbb | b ∈ B}

=
∨
{kxaa ∧ lbb | b ∈ B} = kxaa ∧ laa.

The third equation follows from Statement 1.3, (i) and the last equation follows
from the fact that a 6= b, a ↔ b implies kxaa ∧ lbb = 0. Hence kxa ≤ la ≤ kxa i.e.,
a ∈ B and lxa = ka. Therefore Ax = B and Fx = {lbb | b ∈ B}. The remaining
part of the statement is evident.
(iii): Let y ≤ x. Then y ∈ M(E), Ay ⊆ Ax and kya ≤ kxa for all a ∈ Ay. Recall
that by [16, Lemma 2.7 (i)] we know that M is a bifull sub-lattice effect algebra
of E. Since M is atomic we have that x =

⊕
M{lbb | b ∈ AM

x } =
⊕

E{lbb | b ∈
AM

x }; here AM
x = {a | a an atom of M, a ≤ x}. This immediately implies by

(ii) that the sets AM
x and Ax coincide. Therefore, Ax ⊆ M . Note also that M

is closed under arbitrary joins existing in E. Hence y =
∨
{kyaa | a ≤ y} ∈ M .

(iv): It follows immediately from (iii) and byB(E) =
⋂
{M ⊆ E | M is an atomic

block of E} (see 1.5).
(v): We have that x =

⊕
{kxaa | a an atom of E, a ≤ x}. Let a ∈ Ax. Then

a ≤ x ≤ x̂ ∈ S(E). Therefore naa ≤ x̂. Assume that z ∈ S(E), naa ≤ z for all
a ∈ Ax. Then kxaa ≤ z for all a ∈ Ax, i.e., x ≤ z. This yields that x̂ ≤ z, i.e.
x̂ =

∨
S(E){naa | a an atom of E, a ≤ x}. By Statement 2.7, (ii) we obtain that

x̂ =
∨

E{naa | a an atom of E, a ≤ x}. Let G ⊆ Ax, G finite. Then
⊕

{naa |
a ∈ G} =

∨
{naa | a ∈ G} ≤ x̂. Hence x̂ =

⊕
{naa | a an atom of E, a ≤ x}.

Further, we have

x̂⊖ x = (
⊕

{naa | a ∈ Ax})⊖ (
⊕

{kxaa | a ∈ Ax})

≥ (
⊕

{naa | a ∈ Ax, a 6= b} ⊕ nbb)⊖ (
⊕

{naa | a ∈ Ax, a 6= b} ⊕ kxb b)

= (nb − kxb ) b

for all b ∈ Ax. Now, let z ∈ E such that z ≥ (nb − kxb ) b for all b ∈ Ax.
Then also z ∧ (x̂ ⊖ x) ≥ (nb − kxb ) b. Hence (z ∧ (x̂⊖ x)) ⊕ kxb b ≥ nbb i.e.,
(z ∧ (x̂⊖ x))⊕

⊕
{kxaa | a ∈ Ax} ≥

∨
{naa | a ∈ Ax}. This yields

z ≥ z ∧ (x̂⊖ x) ≥ (
⊕

{naa | a ∈ Ax})⊖ (
⊕

{kxaa | a ∈ Ax}) = x̂⊖ x.

Therefore x̂⊖ x =
⊕

{(na − kxa)a | a ∈ Ax} =
∨
{(na − kxa)a | a ∈ Ax}.

The equality x̂ = ̂̂x⊖ x follows from Lemma 2.5, (ii).
(vi): Let x =

⊕n
i=1 kiai. By (ii) we have that the only atoms below x are

a1, . . . , an. Hence x =
⊕n

i=1 kiai =
∨n

i=1 kiai. From the proof of (iii) we
know that any element of [0, x] is of the form

∨n
i=1 liai for uniquely determined

natural numbers 0 ≤ li < nai
, 1 ≤ i ≤ n and conversely, for any system of

natural numbers 0 ≤ li < nai
, 1 ≤ i ≤ n,

∨n
i=1 liai ∈ [0, x]. This yields the

required isomorphism between [0, x] and
∏n

i=1[0, kiai].

Note that Theorem 2.10 (ii), (iv) immediately yields that the set of meager
(finite meager) elements of an atomic Archimedean lattice effect algebra is a
dual of a weak implication algebra introduced in [2].

Motivated by [8, Proposition 15] we have the following proposition.
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Proposition 2.11. Let E be an atomic Archimedean MV-effect algebra. Then:

(i) Let x ∈ M(E) and y ∈ E such that x ∧ y = 0 and x̂ exists. Then
x̂ ∧ y = 0.

(ii) M(E) is a
∨
-bifull sub-poset of E.

(iii) M(E) is a lattice ideal of E.

Proof. (i): As in Theorem 2.10 let us put Ax = {a | a an atom of E, a ≤ x}.
Evidently, a ∧ y = 0 and y ≤ a′ for all a ∈ Ax. Therefore by Statement
1.3, (iii) naa ∧ y = 0 for all a ∈ Ax. Then Theorem 2.10, (v) yields that
x̂ ∧ y =

∨
{naa | a ∈ Ax} ∧ y =

∨
{naa ∧ y | a ∈ Ax} = 0.

(ii): Let X ⊆ M(E). Assume that z =
∨

M(E) X exists. Let u ∈ E be an upper
bound of X . Hence also u∧z is an upper bound of X and clearly u∧z is meager.
Therefore z = u ∧ z ≤ u, i.e., z =

∨
E X .

Now, assume that z =
∨

E X exists. It is enough to check that z ∈ M(E).
Let t ∈ S(E), t ≤ z, t 6= 0. Then there exists an atom b ∈ E such that b ≤ t.
Let us put kxb = max{k | kb ≤ x} < nb (since any x ∈ X is meager) and
kb = max{kxb | x ∈ X} < nb. Hence also nbb ≤ t ≤ z and nbb = nbb ∧

∨
E X =∨

E{nbb ∧ x | x ∈ X} =
∨

E{k
x
b b | x ∈ X} = kbb < nbb, a contradiction. Hence

z̃ = 0 and z ∈ M(E).
(iii): It follows immediately from (ii) because M(E) is a downset in E and E is
a lattice.

Moreover we have

Proposition 2.12. Let E be an atomic Archimedean lattice effect algebra. Then

(i) For all X ⊆ B(E) ∩M(E),
∨

E X exists iff
∨

B(E) X exists, in which

case
∨

E X =
∨

B(E) X ∈ M(E).

(ii) B(E) ∩M(E) is a
∨
-bifull sub-poset of E.

Proof. (i): Let X ⊆ B(E) ∩M(E). Assume first that z =
∨

B(E) X exists. Any

x ∈ X is by Theorem 2.10 of the form x =
∨

E{k
x
aa | a ∈ Ax} =

∨
B(E){k

x
aa |

a ∈ Ax}, Ax ⊆ B(E)∩M(E). Hence z =
∨

B(E){
∨

B(E){k
x
aa | a ∈ Ax} | x ∈ X}.

Let us put ka = max{kxa | x ∈ X} < na. Then z =
∨

B(E){kaa | a ∈ Ax, x ∈ X}.

First, we shall show that z ∈ M(E). Assume that there is y 6= 0, y ≤ z,
y ∈ S(E). Then there is an atom c ∈ E such that c ≤ y i.e., also ncc ≤ y ≤ z.
Either c ∈ Ax for some x ∈ X or c∧ a = 0 for all a ∈ Ax, x ∈ X . Let c ∈ Ax for
some x ∈ X . Then ncc ∈ B(E). Therefore

ncc = ncc ∧ z = ncc ∧
∨

B(E){kaa | a ∈ Ax, x ∈ X}

=
∨

B(E){ncc ∧ kaa | a ∈ Ax, x ∈ X} = kcc < ncc,

a contradiction. Now, let c∧a = 0 for all a ∈ Ax, x ∈ X . Then c ↔ a yields that
kaa ≤ (ncc)

′ ∈ C(E). Hence z ≤ (ncc)
′. But ncc = ncc ∧ z ≤ ncc ∧ (ncc)

′ = 0
and we have a contradiction again. Hence z ∈ M(E).
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Now, let u ∈ E be an upper bound of X . Then also u ∧ z is an upper
bound of X , u ∧ z ≤ z ∈ B(E) ∩ M(E). From Theorem 2.10 we have that
u ∧ z ∈ B(E) ∩M(E). Hence z ≤ u ∧ z ≤ u i.e., z =

∨
E X .

Now, assume that
∨

E X exists. Then
∨

E X =
∨

B(E) X by Statement 1.3,

(i). Hence
∨

E X ∈ M(E) by the above argument.
(ii): It follows immediately from (i) because B(E) ∩ M(E) is a downset in
B(E).

The following statement is well known.

Statement 2.13. Let E be a sharply dominating Archimedean atomic lattice
effect algebra. Then

(i) [25, Theorem 3.4] For every x ∈ E, x 6= 0 there exists the unique wx ∈
S(E), unique set of atoms {aα|α ∈ Λ} and unique positive integers kα 6=
ord(aα) such that

x = wx ⊕ (
⊕

{kαaα|α ∈ Λ}).

We call such a decomposition the basic decomposition (BDE for short) of
x.

(ii) [16, Theorem 3.2] B(E) is sharply dominating and for every x ∈ B(E), x 6=
0 there exists the unique wx ∈ C(E), unique set {aα|α ∈ Λ} ⊆ B(E) of
atoms of E and unique positive integers kα 6= ord(aα) such that

x = wx ⊕ (
⊕

{kαaα|α ∈ Λ}).

(iii) [16, Theorem 3.1] Let M ⊆ E be an atomic block of E. Then M is
sharply dominating and, for every x ∈ M , there exists BDE of x in M

and it coincides with BDE of x in E.

Proposition 2.14. Let E be a sharply dominating atomic Archimedean lattice
effect algebra and let B ⊆ E be an atomic block of E. Then M(B) ⊆ M(E).

Proof. Let x ∈ M(B). Then by Theorem 2.10, (ii) x = 0⊕ (
⊕

B{kαaα|α ∈ Λ})
for a set of atoms {aα|α ∈ Λ} of B and positive integers kα 6= ord(aα). Since
B is a bifull sub-lattice effect algebra of E (see [16, Lemma 2.7 (i)]) we obtain
that x = 0 ⊕ (

⊕
E{kαaα|α ∈ Λ}). As E is sharply dominating we have from

Statement 2.13, (i) that x̃ = 0 and hence x ∈ M(E).

Let us recall the following statement

Statement 2.15. [11, Lemma 2] Let (E;⊕, 0, 1) be an Archimedean atomic
lattice effect algebra, x, y ∈ E, x ↔ y. Then there is an atomic block B of E
such that x, y ∈ B.

Similarly to [8, Proposition 23] for complete lattice effect algebras we have
now the following proposition.
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Proposition 2.16. Let E be a sharply dominating atomic Archimedean lattice
effect algebra and let x, y ∈ M(E). Then

(i) x ↔ y if and only if x ∨ y ∈ M(E),

(ii) If x⊕ y exists and x⊕ y = z ∈ S(E) then z = x̂ = ŷ.

Proof. (i): Assume first that x ↔ y. Then by Statement 2.15 there is an atomic
block B of E such that x, y ∈ B. Since B is an atomic Archimedean MV-effect
algebra and E is sharply dominating we have from Propositions 2.11 and 2.14
that x ∨ y ∈ M(B) ⊆ M(E).

Now, assume that x ∨ y ∈ M(E). Then from Theorem 2.10, (iii) we obtain
that [0, x ∨ y] is an MV-effect algebra. This yields that x ↔ y.

(ii): It follows immediately from Lemma 2.4.

Theorem 2.17. Let E be a sharply dominating atomic Archimedean lattice
effect algebra. Then for every x ∈ E, x 6= 0 there exists unique set of atoms
{aα | α ∈ Λ} (namely {a ∈ E | a an atom of E, a ≤ x⊖ x̃}) and unique positive
integers kα 6= naα

(namely kα = max{k ∈ N | kaα ≤ x}) such that

x = x̃⊕ (
⊕

{kαaα | α ∈ Λ}).

Moreover,
x = x̃⊕ (

∨
{kαaα | α ∈ Λ}) = x̃ ∨ (

∨
{kαaα | α ∈ Λ}),

0 = x̃ ∧ (
∨
{kαaα | α ∈ Λ}) = x̃ ∧ (

⊕
{kαaα | α ∈ Λ}),

x̂ =
∨
{x̃⊕ naα

aα | α ∈ Λ} = x̃⊕ (
∨
{naα

aα | α ∈ Λ})

= x̃⊕ (
⊕

{naα
aα | α ∈ Λ}) = x̃ ∨ (

∨
{naα

aα | α ∈ Λ}),

0 = x̃ ∧ (
∨
{naα

aα | α ∈ Λ}) = x̃ ∧ (
⊕

{naα
aα | α ∈ Λ}),

x̂ = x⊕
⊕

{(naα
− kα)aα | α ∈ Λ}

= x⊕ (
∨
{(naα

− kα)aα | α ∈ Λ}).

Proof. The first part of the statement follows immediately from Statement 2.13,
(i) and Theorem 2.10. Let us show the second, third and fourth parts.

We have by Theorem 2.10 that x ⊖ x̃ =
⊕

{kαaα | α ∈ Λ} =
∨
{kαaα | α ∈

Λ}. Hence by Lemma 2.5, (i) (x⊖ x̃)∧ x̃ = 0 and x̃∨ (x⊖ x̃) = x̃⊕ (x⊖ x̃) = x.

Since x̂⊖ x̃ exists we have from Theorem 2.10, (v) that x̂⊖ x̃ =
∨
{naα

aα | α ∈

Λ}. Therefore by by Lemma 2.5, (ii) we have that x̂ = x̃ ⊕ x̂⊖ x̃ = x̃ ∨ x̂⊖ x̃

and x̃∧ x̂ ⊖ x̃ = 0. Moreover, by Statement 1.3, (vii) x̃⊕ (
∨
{naα

aα | α ∈ Λ}) =∨
{x̃⊕ naα

aα | α ∈ Λ}.
The fourth part follows immediately from the precedings parts. Namely, by

Theorem 2.10, (v)

x̂⊖ x=(x̂⊖ x̃)⊖ (x ⊖ x̃) =
⊕

{(naα
− kα)aα | α ∈ Λ}

=
∨
{(naα

− kα)aα | α ∈ Λ}.
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Theorem 2.18. Let E be a sharply dominating atomic Archimedean lattice
effect algebra. Then the following conditions are equivalent:

(i) B(E) is bifull in E.

(ii) C(E) is bifull in E.

Proof. (i) =⇒ (ii): Note that from Statement 2.13, (ii) we know that B(E) is
sharply dominating. Hence by Statement 2.7 we obtain that C(E) = S(B(E))
is bifull in B(E). Since B(E) is bifull in E we have that C(E) is bifull in E.
(ii) =⇒ (i): Let S ⊆ B(E) and x =

∨
B(E) S exists. Assume first that x ∈

C(E). Then

x=
∨

B(E){s | s ∈ S} =
∨

B(E){ŝ | s ∈ S} =
∨

C(E){ŝ | s ∈ S} =
∨

E{ŝ | s ∈ S}

since C(E) is bifull in E and ŝ ∈ C(E).
Now, let z ∈ E, z ≥ s for all s ∈ S. Assume for a moment that z 6≥ x. Then

z ∧ x < x which yields that there is an atom c ∈ E such that c ≤ x ⊖ (x ∧ z).
Then c = c ∧ x = c ∧

∨
E{ŝ | s ∈ S} =

∨
E{c ∧ ŝ | s ∈ S} since c ↔ s and hence

x ↔ ŝ for all a ∈ S. Therefore, there is an element s ∈ S such that c ∧ ŝ = c

i.e. c ≤ ŝ.
By Theorem 2.17 and from Statement 2.13, (ii) we have that there exists

the unique set {aα | α ∈ Λ} ⊆ B(E) of atoms of E and unique positive integers
kα 6= naα

such that

s = s̃⊕ (
⊕

E{kαaα | α ∈ Λ}) = s̃⊕ (
∨

E{kαaα | α ∈ Λ}),

ŝ = s̃⊕ (
∨

E{naα
aα | α ∈ Λ}) = s̃ ∨ (

∨
E{naα

aα | α ∈ Λ}).

This gives rise to

c = c ∧ ŝ = (c ∧ s̃) ∨ (c ∧ (
∨

E{naα
aα | α ∈ Λ}))

since c ↔ s̃ ∈ B(E) and c ↔ aα ∈ B(E) for all α ∈ Λ.
Assume first that c = c ∧ s̃. Then from Statement 1.3, (v) we have ncc ≤

s̃ ≤ z ∧ x, a contradiction with c ≤ x⊖ (x ∧ z). So we obtain that

c = c ∧ (
∨

E{naα
aα | α ∈ Λ}) =

∨
E{c ∧ naα

aα | α ∈ Λ}.

Hence there is an atom aα of E, aα ∈ B(E), α ∈ Λ such that c = c∧ naα
aα.

Assume for a moment that c ∧ aα = 0. We have that c ↔ aα i.e., c⊕ aα exists.
By Statement 1.3, (iii) we have that c∧naα

aα = 0, a contradiction. So we have
shown that c = aα ∈ B(E). But x∧ c ≤ x⊖ c < x, x⊖ c ∈ B(E) and x⊖ c is an
upper bound of S, a contradiction with x =

∨
B(E){s | s ∈ S}. Therefore z ≥ x

and hence
∨

B(E) S =
∨

E S.

Now, let us assume that
∨

B(E) S = x ∈ B(E). Then we have that

x̂=x⊕ (x̂⊖ x) =
∨

B(E) S ⊕ (x̂⊖ x) =
∨

B(E){s⊕ (x̂ ⊖ x) | s ∈ S} ∈ C(E).
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Therefore by above considerations also x̂ =
∨

E{s⊕ (x̂ ⊖ x) | s ∈ S}. This and
Statement 1.3, (iv) yield

x= x̂⊖ (x̂ ⊖ x) = (
∨

E{s⊕ (x̂⊖ x) | s ∈ S})⊖ (x̂⊖ x) =
∨

E S.

Conversely, let S ⊆ B(E) and x =
∨

E S exists. Then by Statement 1.3, (ii)
we get that x =

∨
B(E) S.

Theorem 2.19. Let E be a sharply dominating atomic Archimedean lattice
effect algebra. Then the following conditions are equivalent:

(i) B(E) is atomic.

(ii) C(E) is atomic.

Proof. (i) =⇒ (ii): Let c ∈ C(E) ⊆ B(E), c 6= 0. Then there is an atom
a ∈ B(E) such that a ≤ c. Therefore by Statement 1.3, (v) naa ≤ c and
naa ∈ C(E) = B(E) ∩ S(E) since B(E) is a sub-lattice effect algebra of E.
It follows that [0, naa] = {0, a, . . . , naa} ⊆ B(E), as for every atom b of E,
b 6= a we have b ↔ a, which gives that b ∧ naa = 0, by Statement 1.3, (iii) and
this yields by Statement 1.4, (i) that any element below naa is of the form ka,
0 ≤ k ≤ naa. Hence {0, a, 2a, . . . , naa}∩C(E) = {0, naa}. This yields that naa

is an atom of C(E) below c.
(ii) =⇒ (i): Let x ∈ B(E), x 6= 0. If x 6∈ S(E) then by Statement 2.13, (ii)
there is an atom a ∈ B(E) such that a ≤ x ⊖ x̃ ≤ x. So let us assume that
x ∈ S(E) ∩ B(E) = C(E). Then there is by (ii) an atom c from C(E), c ≤ x.
Assume that there is an element y ∈ B(E) such that y < c. Then we have the
following possibilities:

(i) y 6∈ S(E) and by the above argument there is an atom a ∈ B(E) such
that a ≤ y < c ≤ x. Otherwise we have

(ii) y ∈ S(E) ∩ B(E) = C(E) which implies that y = 0.

Hence we obtain that B(E) is atomic.

Corollary 2.20. Let E be a sharply dominating atomic Archimedean lattice
effect algebra with a finite center C(E). Then B(E) is atomic and bifull in E.

3. Triple Representation Theorem for sharply dominating atomic

Archimedean lattice effect algebras

In what follows E will be always a sharply dominating atomic Archimedean
lattice effect algebra. Then S(E) is a sub-lattice effect algebra of E and M(E)
equipped with a partial operation ⊕M(E) which is defined, for all x, y ∈ M(E),
by x ⊕M(E) y exists if and only if x ⊕E y exists and x ⊕E y ∈ M(E) in which
case x⊕M(E) y = x⊕E y is a generalized effect algebra. Recall only that, for any
meager atom a ∈ E, we have that ordM(E)(a) = ordE(a)− 1. We are therefore
able to reconstruct the isotropic index in E of any atom from M(E). Moreover,
we have a map h : S(E) → 2M(E) that is given by h(s) = {x ∈ M(E) | x ≤ s}.
As in [8] for complete lattice effect algebras we will prove the following theorem.
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Triple Representation Theorem The triple (S(E),M(E), h) characterizes E
up to isomorphism.

We have to construct an isomorphic copy of the original effect algebra E

from the triple (S(E),M(E), h). To do this we will first construct the following
mappings in terms of the triple.

(M1) The mapping ̂ : M(E) → S(E).

(M2) For every s ∈ S(E), a mapping πs : M(E) → h(s), which is given by
πs(x) = x ∧E s.

(M3) The mapping R : M(E) → M(E) given by R(x) = x̂⊖E x.

(M4) The partial mapping S : M(E)×M(E) → S(E) given by S(x, y) is defined
if and only if the set S(x, y) = {z ∈ S(E) | z = (z ∧ x) ⊕E (z ∧ y)} has a
top element z0 ∈ S(x, y) in which case S(x, y) = z0.

Since E is sharply dominating and S(E) is bifull in E we have that, for all
x ∈ M(E),

x̂ =
∧

E

{s ∈ S(E) | x ∈ h(s)} =
∧

S(E)

{s ∈ S(E) | x ∈ h(s)}.

Similarly, for all s ∈ S(E) and for all x ∈ M(E), x ∧E s ∈ M(E). Hence

πs(x)= x ∧E s =
∨

E{y ∈ E | y ≤ x, y ≤ s}

=
∨

E{y ∈ M(E) | y ≤ x, y ∈ h(s)} =
∨

M(E){y ∈ M(E) | y ≤ x, y ∈ h(s)}.

Now, let us construct the mapping R. Let x ∈ M(E). If x = 0 we put
R(x) = 0. Let x 6= 0. As before let us denote by Ax = {a | a an atom of E,

a ≤ x} = {a | a an atom of M(E), a ≤ x} 6= ∅ and, for any a ∈ Ax, we shall
put kxa = max{k ∈ N | ka ≤ x} and na = ordM(E)(a) + 1. Hence 1 ≤ kxa ≤
ordM(E)(a). Therefore {kxaa | a ∈ Ax} ∪ {(na − kxa)a | a ∈ Ax} ⊆ M(E).
We know from Theorem 2.10, (ii) and (v) that x =

∨
E{k

x
aa | a ∈ Ax} =∨

M(E){k
x
aa | a ∈ Ax}, x̂⊖x =

∨
E{(na−kxa)a | a ∈ Ax} =

∨
M(E){(na−kxa)a |

a ∈ Ax} 6= 0, x̂⊖ x ∈ M(E).
What remains is the partial mapping S. Let x, y ∈ M(E). By Lemma

2.16, (ii) S(x, y) = {z ∈ S(E) | z = (z ∧ x) ⊕E (z ∧ y)} = {z ∈ S(E) | z =

π̂z(x) and R(πz(x)) = πz(y)}. Hence whether S(x, y) is defined or not we are
able to decide in terms of the triple. Since the eventual top element z0 of S(x, y)
is in S(E) our definition of S(x, y) is correct.

Lemma 3.1. Let E be a sharply dominating atomic Archimedean lattice effect
algebra, x, y ∈ M(E). Then x⊕E y exists in E iff S(x, y) is defined in terms of
the triple (S(E),M(E), h) and (x⊖M(E)(S(x, y)∧x))⊕M(E)(y⊖M(E)(S(x, y)∧y))

15



exists in M(E) such that (x⊖M(E) (S(x, y)∧x))⊕M(E) (y⊖M(E) (S(x, y)∧ y)) ∈
h(S(x, y)′). Moreover, in that case

x⊕E y = S(x, y)︸ ︷︷ ︸
∈S(E)

⊕E((x⊖M(E) (S(x, y) ∧ x))⊕M(E) (y ⊖M(E) (S(x, y) ∧ y))
︸ ︷︷ ︸

∈M(E)

).

Proof. Assume first that x ⊕E y exists in E and let us put z = x ⊕E y. Then
z = zS ⊕E zM such that zS ∈ S(E) and zM ∈ M(E) is BDE of z in E. Since
x ↔ y by Statement 2.15 there is an atomic block B of E such that x, y, z ∈ B.
We know from Statement 2.13, (iii) that B is sharply dominating and BDE of
z ∈ B in B and BDE of z in E coincide. This yields that zS , zM ∈ B. Therefore
zS ∈ C(B) and by Statement 1.3, (viii) we have that zS = zS ∧ (x ⊕E y) =
zS ∧ (x⊕B y) = (zS ∧x)⊕B (zS ∧ y) = (zS ∧x)⊕E (zS ∧ y). Hence zS ∈ S(x, y).
Now, assume that u ∈ S(x, y). Then u = (u ∧ x) ⊕E (u ∧ y) ≤ x ⊕E y. Since
u ∈ S(E) we have that u ≤ zS , i.e., zS is the top element of S(x, y). Moreover,
we have

zS ⊕E zM =x⊕E y

=((S(x, y) ∧ x)⊕E (x ⊖E (S(x, y) ∧ x)))⊕E

((S(x, y) ∧ y)⊕E (y ⊖E (S(x, y) ∧ y)))
=S(x, y)⊕E ((x⊖M(E) (S(x, y) ∧ x))⊕E (y ⊖M(E) (S(x, y) ∧ y))).

Because zS = S(x, y) it follows that zM = (x⊖M(E) (S(x, y) ∧ x))⊕E (y ⊖M(E)

(S(x, y) ∧ y)), i.e., zM = (x ⊖M(E) (S(x, y) ∧ x)) ⊕M(E) (y ⊖M(E) (S(x, y) ∧ y))
and evidently zM ∈ h(z′S).

Conversely, let us assume that S(x, y) is defined in terms of (S(E),M(E), h),
(x⊖M(E) (S(x, y)∧x))⊕M(E) (y⊖M(E) (S(x, y)∧y)) exists in M(E) and (x⊖M(E)

(S(x, y)∧x))⊕M(E)(y⊖M(E)(S(x, y)∧y)) ∈ h(S(x, y)′). Then (x⊖M(E)(S(x, y)∧
x))⊕M(E) (y ⊖M(E) (S(x, y) ∧ y)) ≤ S(x, y)′, i.e.,

S(x, y)⊕E ((x ⊖M(E) (S(x, y) ∧ x)) ⊕M(E) (y ⊖M(E) (S(x, y) ∧ y)))
= ((S(x, y) ∧ x) ⊕E (S(x, y) ∧ y))⊕E

((x ⊖E (S(x, y) ∧ x))⊕E (y ⊖E (S(x, y) ∧ y))) = x⊕E y

is defined.

Theorem 3.2. Let E be a sharply dominating atomic Archimedean lattice effect
algebra. Let T(E) be a subset of S(E)×M(E) given by

T(E) = {(zS, zM ) ∈ S(E)×M(E) | zM ∈ h(z′S)}.

Equip T(E) with a partial binary operation ⊕T(E) with (xS , xM )⊕T(E) (yS , yM )
is defined if and only if

(i) S(xM , yM ) is defined,

(ii) zS = xS ⊕S(E) yS ⊕S(E) S(xM , yM ) is defined,

(iii) zM = (xM ⊖M(E) (S(xM , yM )∧xM ))⊕M(E) (yM ⊖M(E) (S(xM , yM )∧yM ))
is defined,
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(iv) zM ∈ h(z′S).

In this case (zS , zM ) = (xS , xM ) ⊕T(E) (yS , yM ). Let 0T(E) = (0E , 0E) and
1T(E) = (1E , 0E). Then T(E) = (T(E),⊕T(E), 0T(E), 1T(E)) is an effect algebra
and the mapping ϕ : E → T(E) given by ϕ(x) = (x̃, x⊖E x̃) is an isomorphism
of effect algebras.

Proof. Evidently, ϕ is correctly defined since, for any x ∈ E, we have that
x = x̃ ⊕E (x ⊖ x̃) = xS ⊕E xM , xS ∈ S(E) and xM ∈ M(E). Hence ϕ(x) =
(xS , xM ) ∈ S(E) × M(E) and xM ∈ h(x′

S). Let us check that ϕ is bijective.
Assume first that x, y ∈ E such that ϕ(x) = ϕ(y). We have x = x̃⊕E (x⊖E x̃) =
ỹ ⊕E (y ⊖E ỹ) = y. Hence ϕ is injective. Let (xS , xM ) ∈ S(E) × M(E) and
xM ∈ h(x′

S). This yields that x = xS ⊕E xM exists and evidently by Lemma
2.5, (i) x̃ = xS and x ⊖E x̃ = xM . It follows that ϕ is surjective. Moreover,
ϕ(0E) = (0E , 0E) = 0T(E) and ϕ(1E) = (1E , 0E) = 1T(E).

Now, let us check that, for all x, y ∈ E, x⊕E y is defined iff ϕ(x)⊕T(E) ϕ(y)
is defined in which case ϕ(x⊕E y) = ϕ(x)⊕T(E) ϕ(y). For any x, y, z, u ∈ E we
obtain

z = x⊕E y ⇐⇒ z = (x̃⊕E (x⊖E x̃))⊕E (ỹ ⊕E (y ⊖E ỹ))
⇐⇒ z = (x̃⊕E ỹ)⊕E ((x ⊖E x̃)⊕E (y ⊖E ỹ)) ⇐⇒ by Lemma 3.1
u = S(x⊖E x̃, y ⊖E ỹ) and
z = (x̃⊕E ỹ)⊕E (u⊕E((x⊖E x̃)⊖E (u ∧ (x⊖E x̃)))

⊕E((y ⊖E ỹ)⊖E (u ∧ (y ⊖E ỹ))))
⇐⇒ u = S(x⊖E x̃, y ⊖E ỹ) and
z = (x̃⊕E ỹ ⊕E u)⊕E(((x ⊖E x̃)⊖E (u ∧ (x⊖E x̃)))

⊕E ((y ⊖E ỹ)⊖E (u ∧ (y ⊖E ỹ))))
⇐⇒ u = S(x⊖E x̃, y ⊖E ỹ) and
z = (x̃⊕S(E) ỹ⊕S(E) u)⊕E (((x ⊖E x̃)⊖M(E) (u ∧ (x⊖E x̃)))

⊕M(E) ((y ⊖E ỹ)⊖M(E) (u ∧ (y ⊖E ỹ))))
⇐⇒ (x̃, x⊖E x̃)⊕T(E) (ỹ, y ⊖E ỹ) is defined and
ϕ(z)=(x̃⊕S(E) ỹ ⊕S(E) S(x⊖E x̃, y ⊖E ỹ), ((x ⊖E x̃)⊖ (S(x⊖E x̃, y ⊖E ỹ)∧

(x⊖E x̃)))⊕M(E) ((y ⊖E ỹ)⊖ (S(x⊖E x̃, y ⊖E ỹ) ∧ (y ⊖E ỹ))))
=(x̃, x⊖E x̃)⊕T(E) (ỹ, y ⊖E ỹ) = ϕ(x) ⊕T(E) ϕ(y).

Altogether, T(E) = (T(E),⊕T(E), 0T(E), 1T(E)) is an effect algebra and the
mapping ϕ : E → T(E) is an isomorphism of effect algebras.

The Triple Representation Theorem then follows immediately.

Remark 3.3. Recall that our method may be also used in the case of complete
lattice effect algebras as a substitute of the method from [8] since we need only
Lemma 2.16, (ii) and Lemma 3.1 to show that Theorem 3.2 hols for complete
lattice effect algebras. But to show that Lemma 2.16, (ii) and Lemma 3.1 hold
for complete lattice effect algebras is an easy task.

Now, using Theorems 2.19 and 3.2 we can prove the following Triple Repre-
sentation Theorem for B(E) of sharply dominating atomic Archimedean lattice
effect algebras E with atomic center C(E).
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Theorem 3.4. Let E be a sharply dominating atomic Archimedean lattice effect
algebra with atomic center C(E). Let T(B(E)) be a subset of C(E) × (M(E) ∩
B(E)) given by

T(B(E)) = {(zC , zMB) ∈ C(E)× (M(E) ∩ B(E)) | zMB ∈ h(z′C) ∩ B(E)}.

Let us put ⊕T(B(E)) := ⊕T(E)/T(B(E))×T(B(E))
and let 0T(B(E)) = (0E , 0E) and

1T(B(E)) = (1E , 0E). Then T(B(E)) = (T(B(E)),⊕T(B(E)), 0T(B(E)), 1T(B(E)))
is an effect algebra and the mapping ϕB(E) : B(E) → T(B(E)) given by ϕB(E) =
ϕ/B(E) is an isomorphism of effect algebras.

Proof. Recall that from Statement 2.13, (ii) and Theorem 2.19 we know that
B(E) is a sharply dominating atomic Archimedean lattice effect algebra. More-
over, S(B(E)) = C(E), M(B(E)) = M(E)∩B(E), hB(E)(c) = h(c)∩B(E) for all
c ∈ C(E) and, for all y ∈ B(E), we have that by Statement 2.13, (ii) ỹ ∈ C(E)
and ŷ ∈ C(E). Since B(E) and C(E) are sub-lattice effect algebras of E we
obtain that the mappings (M1)-(M4) for the triple (C(E),M(B(E)), hB(E)) are
natural restrictions of the mappings (M1)-(M4) for the triple (S(E),M(E), h).
Invoking Theorem 3.2 we obtain the required statement.
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[3] A. Dvurečenskij, S. Pulmannová: New Trends in Quantum Structures,
Kluwer Acad. Publ., Dordrecht/Ister Science, Bratislava 2000.

[4] D.J. Foulis, M.K. Bennett, Effect algebras and unsharp quantum logics,
Found. Phys. 24 (1994), 1325–1346.

[5] R.J. Greechie, D.J. Foulis, S. Pulmannová, The center of an effect algebra,
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[15] J. Paseka, Z. Riečanová, Wu Junde, Almost orthogonality and Hausdorff
interval topologies of atomic lattice effect algebras, Kybernetika, 46 (2010),
953–970.
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