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Abstract

The aim of our paper is twofold. First, we thoroughly study the set of meager
elements M(F), the center C(F) and the compatibility center B(F) in the setting
of atomic Archimedean lattice effect algebras E. The main result is that in
this case the center C(E) is bifull (atomic) iff the compatibility center B(E) is
bifull (atomic) whenever E is sharply dominating. As a by-product, we give
a new descriciption of the smallest sharp element over x € E via the basic
decomposition of x. Second, we prove the Triple Representation Theorem for
sharply dominating atomic Archimedean lattice effect algebras.
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Introduction

The history of quantum structures started at the beginning of the 20th
century. Observable events constitute a Boolean algebra in a classical physical
system. Because event structures in quantum mechanics cannot be described by
Boolean algebras, Birkhoff and von Neumann introduced orthomodular lattices
which were considered as the standard quantum logic. Later on, orthoalge-
bras were introduced as the generalizations of orthomodular posets, which were
considered as ”sharp” quantum logic.

In the nineties of the twentieth century, two equivalent quantum structures,
D-posets and effect algebras were extensively studied, which were considered as
”unsharp” generalizations of the structures which arise in quantum mechanics,
in particular, of orthomodular lattices and MV-algebras.

In ﬂﬁ] Paseka and Riecanova published as open problem whether the center
C(F) is a bifull sublattice of an Archimedean atomic lattice effect algebra FE.
This question was answered by M. Kalina in [10] who proved that C(E) need
not be a bifull sublattice of F even if C'(F) is atomic.
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The aim of our paper is twofold. First, we thoroughly study the set of meager
elements M(F), the center C(F) and the compatibility center B(F) in the setting
of atomic Archimedean lattice effect algebras E. The main result of Section 2
is that in this case the center C(F) is bifull (atomic) iff the compatibility center
B(FE) is bifull (atomic) whenever F is sharply dominating. As a by-product, we
give a new descriciption of the smallest sharp element over x € E via the basic
decomposition of x. Second, in Section 3 we prove the Triple Representation
Theorem established by G. Jenca in B] in the setting of complete lattice effect
algebras for sharply dominating atomic Archimedean lattice effect algebras.

1. Preliminaries and basic facts

Effect algebras were introduced by D.J. Foulis and M.K. Bennett (see [4])
for modelling unsharp measurements in a Hilbert space. In this case the set
E(H) of effects is the set of all self-adjoint operators A on a Hilbert space H
between the null operator 0 and the identity operator 1 and endowed with the
partial operation + defined iff A+ B is in E(H), where + is the usual operator
sum.

In general form, an effect algebra is in fact a partial algebra with one partial
binary operation and two unary operations satisfying the following axioms due
to D.J. Foulis and M.K. Bennett.

Definition 1.1. ﬂﬂ] A partial algebra (E;®,0,1) is called an effect algebra if
0, 1 are two distinct elements and & is a partially defined binary operation on
E which satisfy the following conditions for any z,y, z € E:

(Ei) z@y=y@®zif x @y is defined,
(Eil) (x@y)®z=2® (y® z) if one side is defined,

(Eiii) for every = € FE there exists a unique y € E such that z @y = 1 (we put
o' =y),
(Eiv) if 1@ z is defined then z = 0.

We often denote the effect algebra (E;@®,0,1) briefly by E. On every effect
algebra E a partial order < and a partial binary operation & can be introduced
as follows:

r<y and ySr=z iff t® 2z isdefined and x® z=1y.

If F with the defined partial order is a lattice (a complete lattice) then
(E;,0,1) is called a lattice effect algebra (a complete lattice effect algebra).

Definition 1.2. Let E be an effect algebra. Then Q C F is called a sub-effect
algebra of E if

(i) 1e@
(ii) if out of elements x,y, z € F with x @y = 2 two are in @, then z,y, 2 € Q.



If ' is a lattice effect algebra and @ is a sub-lattice and a sub-effect algebra of
E, then Q is called a sub-lattice effect algebra of E.

Note that a sub-effect algebra @ (sub-lattice effect algebra Q) of an effect
algebra E (of a lattice effect algebra E) with inherited operation @ is an effect
algebra (lattice effect algebra) in its own right.

For an element x of an effect algebra E we write ord(z) = co if ne = x@a @
-+ @ x (n-times) exists for every positive integer n and we write ord(z) = n, if
n, is the greatest positive integer such that n,x exists in E. An effect algebra
E is Archimedean if ord(z) < oo for all z € E.

A minimal nonzero element of an effect algebra F is called an atom and E
is called atomic if below every nonzero element of E there is an atom.

For a poset P and its subposet Q C P we denote, for all X C @Q, by VQ X
the join of the subset X in the poset @@ whenever it exists. Recall also Q C P
is densely embedded in P if for every element x € P there exist ST C @ such
that . =\ p S =ApT.

We say that a finite system F' = (x3,)7_, of not necessarily different elements
n

of an effect algebra (E; @, 0, 1) is orthogonal if x1 Bxo®- - - D, (written € zy, or
k=1
P F) exists in E. Here we define 1 1o - Bx, = (21 B 12D - BTp_1) BTy

n—1 n—1

supposing that @ zj, is defined and @@ =, < z/,. We also define @0 = 0.
k=1 k=1

An arbitrary system G = (x).ecny of not necessarily different elements of E

is called orthogonal if @ K exists for every finite K C G. We say that for a
orthogonal system G = (2 )recpm the element @ G exists iff V(P K | K C G
is finite} exists in £ and then we put @G = \/{P K | K C G is finite}. We
say that @ G is the orthogonal sum of G. (Here we write G3 C G iff there is
H, C H such that G1 = (24)kem, )-

An element u € F is called finite if either u = 0 or there is a finite sequence
{a1,as,...,a,} of not necessarily different atoms of F such that u = a1 ® azs B
--@ay. Note that any atom of E is evidently finite. An element v € F is called
cofinite if v' € F is finite.

Elements = and y of a lattice effect algebra E are called compatible (x <+ y
for short) if z Vy =z ® (y© (z Ay)) (see [13, 20]).

Remarkable sub-lattice effect algebras of a lattice effect algebra E are

(1) A block M of E, which is any maximal subset of pairwise compatible
clements of E (in fact M is a maximal sub-MV-algebra of E, see [20]).

(2) The set S(E) = {z € E | 2 A2’ = 0} of sharp elements of E (see [6], [7]),
which is an orthomodular lattice (see [9]).

(3) The compatibility center B(E) of E, B(E) = (\{M C E | M is a block
of E} = {z € E |z <> y for every y € E} which is in fact an MV-algebra
(MV-effect algebra).

(4) The center C(E) = {z € E |y = (yAz)V (yAx) forally € E} of
E is a Boolean algebra (see [5]). In every lattice effect algebra it holds
C(E) = B(E)NS(E) = S(B(E)) (see [18] and [19]).



All these sub-lattice effect algebras of a lattice effect algebra F are in fact
full sub-lattice effect algebras of E. This means that they are closed with respect
to all suprema and infima existing in £ of their subsets ﬂQ, ]

The MV -effect algebras E are precisely lattice effect algebras with a unique
block (i.e., E = B(E)).

The following statements are well known.

Statement 1.3. Let E be a lattice effect algebra. Then

(i) [9, Theorem 2.1] Assume b € E, A C E are such that \/ A exists in E and
b<> a foralla € A. Then
(a) b+ \ A.
(b) V{bAa:ae A} exists in E and equals b A (\/ A).
(i) 9, Theorem 3.7], [21, Theorem 2.8] S(E), B(E) and C(E) are full sub-
lattice effect algebras of E.
(iii) ﬂﬁ, Lemma 3.3] Let z,y € E. Then x Ay =0 and z <y iff ke Nly=0
and kx < (ly)', whenever kx and ly exist in E.
(iv) [L7, Proposition 1] Let {bq | & € A} be a family of elements in E and let
a € E with a < by, for all « € A. Then

(\/{ba|a€A})@a:\/{ba6a|a€A}

if one side is defined.
(v) [25, Theorem 3.5] For every atom a € E with ord(a) < oo, nga is the
smallest sharp element over a.
(vi) [19, Corollary 4.3] Let x,y € E. Then z @&y = (xVy) & (z A y) whenever
T Dy emwists.
(vii) [3, Proposition 1.8.7] Let b € E, A C E are such that \/ A exists in E and
b® a exists for alla € A. Then \/[{b®a:ae€ A} =bd\/ A.
(viii) [24, Lemma 4.1] Assume that z € C(E). Then, for dall z,y € E with
<y, (xdy)hz=(xAz2)® (yA=z).

Statement 1.4. ﬂﬁ, Theorem 3.3] Let E be an Archimedean atomic lattice
effect algebra. Then to every nonzero element x € E there are mutually distinct
atoms a,, € E and positive integers ko, o € € such that

x = @{kaaa lae &} = \/{kaaa | a € &Y,
and x € S(E) iff ko = ng, = ord(aq) for all a € £.

Statement 1.5. ﬂﬂ, Theorem 8] Let E be an atomic Archimedean lattice effect
algebra and let M = {M,|k € H} be a family of all atomic blocks of E. For
each k € H let A, be the set of all atoms of M,,. Then:

(i) For each k € H, A, is a maximal pairwise compatible set of atoms of E.

(ii) For x € E and k € H it holds x € M,, iff x < A,.
(ili) M € M iff there exists a mazimal pairwise compatible set A of atoms of
E such that A C M and if My is a block of E with A C My then M = M;.



(iv) E = U{M|x € H}.

v) B(E) = N{My|r € HY.

(vi) C(E) = {C(My)|k € HY = {S(Mx)|r € H}.
(vii) S(E) =U{C(My)|x € H} = U{S(M,)|x € H}.

Lemma 1.6. Let E be a lattice effect algebra and let b € E, A C E are such
that \/ A exists in E and b ® a exists for all a € A. Then b@® \/ A exists in E
andbd\/ A= (bVVA)@V{bAa:ac A}.

Proof. Clearly b <+ a for all a € A. By Statement [[3] (i) we have that b <+ \/ A
and VV{bAa:ae A} =bA (V A). Furthermore, b < a’ for all @ € A and hence
b< AN{d' | a€ A} = (\JA). Therefore b @ \/ A exists. In view of Statement

L3 (vi)
bo\/A=0v\Aobr\/A)=0bv\/AHe\/{bra:ac A},

2. Bifull sub-lattice effect algebras of lattice effect algebras

Definition 2.1. For a poset L and a subset D C L we say that D is a \/-bifull
sub-poset of L iff, for any X C D, \/; X exists iff \/, X exists, in which case
VX =V pX. Dually, the notion of A-bifull sub-poset of L is defined. We call
a subset D C L to be a bifull sub-poset of L if it is both \/-bifull and A-bifull.

Remark 2.2. Clearly, if L is a complete lattice then D C L is a complete
sub-lattice of L (i.e., D inherits all suprema and infima of its subsets existing
in L) iff D is a bifull sub-poset of L. Moreover, if F is a lattice effect algebra
then a sub-lattice effect algebra D of E is a bifull sub-lattice effect algebra of
iff it is \/-bifull.

An important class of effect algebras was introduced by S. Gudder in ﬂa] and
ﬂﬂ] Fundamental example is the standard Hilbert spaces effect algebra E(H).

For an element = of an effect algebra E we denote

=Vgei{seSE)|s<x} if it exists and belongs to S(E)
=Npl{s€eSE)|s>x} if it exists and belongs to S(E).

Definition 2.3. ([d], [7].) An effect algebra (E,,0,1) is called sharply dom-
inating if for every x € F there exists Z, the smallest sharp element such that
x <Z. That is € S(E) and if y € S(F) satisfies v < y then z < y.

8]) RN

Recall that evidently an effect algebra E is sharply dominating iff for every
x € F there exists T € S(F) such that T < x and if u € S(F) satisfies u < x
then u < 7 iff for every x € E there exist a smallest sharp element T over x and
a greatest sharp element Z below x.

In what follows set (see [8, [25])
M(E) ={x € E | if v € S(F) satisfies v < x then v = 0}.

An element x € M(E) is called meager. Moreover, x € M(E) iff z = 0.
Recall that € M(E), y € F, y < z implies y € M(F) and x © y € M(E).



Lemma 2.4. Let E be an effect algebra in which S(E) is a sub-effect algebra of
E and let x € M(E) such that T exists. Then

(i) Tox e M(E).
(i) If y € M(E) such that x ®y exists and x Sy = z € S(E) then T = z.

Moreover, if E is a lattice effect algebra then y exists and Yy =T © x = 2.

Proof. (i): Let u € S(E) such that u < Z©x. Then z < T © u € S(E) which
yields that z <z © u. Hence u =0, i.e., T © x € M(E).
(ii): Since z < z and hence ¥ < z we have x Py = 2 = TP (2 ©7) and
T=z®(Tox) Thisyleldszdy=2® (TS )P (25 7). By the cancellation
law we get y = (T 2) @ (2 7). Hence 207 =0, ie, z =17.

——

es(E)

Now, assume that E is a lattice effect algebra. Let u € S(E), v > y. Then
alsou ANz >y, uNz € S(E) and 20 (uAz) € S(E). Thenz by = z =
y® (uNz)oy) @ (20 (uAz)). Therefore x = (uhz) S y) D (20 (uA 2)).
Since z © (u A z) € S(E) this yields z© (uA z) =0, ie, z=uAz < u. O

Lemma 2.5. Let E be an effect algebra in which S(E) is a sub-effect algebra of
E and let © € E such that T exists. Then

(i) zox € M(E) and x = 2 @ (x ©T) is the unique decomposition x =
xs @ xpr, where xg € S(E) and xpr € M(E). Moreover, xg Axp =0 and
if E is a lattice effect algebra then ©x = xg V xpr.

(ii) If E is a lattice effect algebra such that T exists then 207 andz 0w

—_—

erist, TOT =201 =20z, T=0@xO0x=2VeOT andz ANz o1 =0.
Moreover, 76T = (20 2)© (T O x).

Proof. (i): Let v € S(E), v <2z 6Z. Thenv @z <z and v® T € S(E). Hence
ver<z ie,v=0zy e ME)andz =26 (xo7T).

Assume that there is a decomposition x = g @ x s such that zg € S(E) and
zym € M(E). Thenzg < T and zp = x0zg = (207)®(x0xg) > TOxs € S(E).
It follows that & © g = 0 because xj; € M(FE). Therefore, z)y = 2 © 2 and
rs — T.

We have 3::9 =16xg>x0xs =xp. Hence xg A xpy st/\x:g =0.

Let E be a lattice effect algebra. By Statement [[3] (vi) we have that

r=xs®ry =(xsVay)d(xsAzy) =25V T)N.
(ii): We have that Z©Z > z© %, o x € S(E). Let z € S(E) such that
z2>x0%. Letusput w=2A (S 7Z). Then w < TS 7T hence w ®x € S(FE)
exists and/u@ff > x. This yields that w®z > 7, i.e., 2 > w > £S5 7. Therefore,
TOT=201. .

Sincezor <1607 = (T) we obtain that TAx 0z <Z A (z) = 0.

We proceed similarly to prove that 7o T = f/@\x Evidently, 761 > 7 © x.
Let z € S(E) such that z > 20xz. Weput w=2A(Z©Z). Then 7oz <
w<zoz <z It follows that TO w < x and T © w € S(F) which yields that
T70w<2 Hencezoz <w < 2.



—

Moreover, (20 T)S (TS0 x) =20 =2 O1.
O

As proved in ﬂ], S(FE) is always a sub-effect algebra in a sharply dominating
effect algebra F.

Corollary 2.6. B, Proposition 15] Let E be a sharply dominating effect algebra.
Then every x € E has a unique decomposition x = xg @ xpr, where xg € S(E)
and xpr € M(E), namely x =2 @ (z © T).

Moreover, the following statement holds.

Statement 2.7. Let E be a lattice effect algebra. Then
(i) , Corollary 1] If E is a sharply dominating then S(E) is bifull in E.
(i) |16, Lemma 2.7] If E is Archimedean and atomic then S(E) is bifull
m E.

First, we shall need an extension of Statement [[3] (iii).

Lemma 2.8. Let E be a lattice effect algebra, x1,...,x, € E, k1,..., ky, € N,
n > 2 such that k;z; exist in E for all 1 <i <mn. Then

i Nay =0 andxigx;-foralllﬁi<j§n
iff
D) kjz; exists and _, kjz; =\, kja;,
@iel kle A ®j€J kj:Ej = 0 and ®jEJ ijj S (®i61 kle)’
forall 0 AT C{1,...,n}, J={1,...,n}\ I

Proof. Assume that z; Az; = 0 and z; < 3:; forall 1 <1i < j <n. Let kz;
exist in E for all 1 <4 < n. If n = 2 then from Statement [[3] (iii) we know
that kll'l A\ kgi[:g = O, klxl S (kgxg)/ and kz,@g S (kll'l)/. Since klxl — kgi[:g
we have that k1$1 vV kQ.IQ = k1$1 (&) (kQZEQ © (klxl A kQIEQ)) = k1I1 D kQ.IQ. We
shall proceed by induction. Let n € N be arbitrary, n > 3 and assume that the
statement holds for every m < n. Let us take ) # I C {1,...,n} arbitrarily
and put J = {1,...,n} \ I. Hence |I| < n and |J| < n. Then we have (again
by Statement [[3] (iii)) that k;x; Akjz; = 0 and kjz; < (k;x;)" for alli € T and
j € J. This and the induction assumption yield that @ ¢ ; kjz; = Ve, kjz; <
(kix;)" for all ¢ € I. This is equivalent to k;x; < (EB]EJ kjx;) for alli € I ie.,
Dicrkivi = Vep ki < (EBJEJ k;jx;) . Furthermore, kjz; <+ k;x; for all ¢ € T
and j € J implies by Statement [[3] (i) that

@kzxz A @kaj = \/ kixi A \/ kjr; = \/ \/ (kiws A ijj) =0.
=0

i€l JjeJ i€l JjeJ el jeJ

Similarly by the induction assumption and Statement [[3] (iii) and (vii),

n n—1 n—1
EBj:l kjrj = (@j:l ijj) © kpry = (\/jzl ijj) © knn
n—1 n—1 n
= Vo1 (kjzj @ knxn) = ViZ; (kjzy Vknan) = Vo kjz;j.
The converse implication is evident. |



Corollary 2.9. Let E be an Archimedean lattice effect algebra and aq,. .., a,
mutually compatible different atoms from E, 1 < k; < ng, for all 1 < i < n.
Then kia1®- - -®kpay, exists and k1a,1®- - -Bkpan = kia1 V- - -Vkya, . Moreover,
Ng A1 B -+ B Ng, an = Ng, a1 V -+ V ng, an is the smallest sharp element over
k1a1 DD knan.

Theorem 2.10. Let E be an atomic Archimedean lattice effect algebra and let
x € M(E). Let us denote A, = {a | a an atom of E, a < z} and, for any
a € Ay, we shall put k¥ = maz{k € N | ka < x}. Then

(i) For any a € Ay we have k¥ < ng.
(ii) The set Fy = {k%a| a € Ay} is orthogonal and

:@{k§a|a an atom of E, an}:@Fw:\/Fm,

Moreover, for all B C A, and all natural numbers l, < ny,b € B such that
x=@{lb| b e B} we have that B = A, and l, = k¥ for all a € A, i.e.,
F, is the unique set of multiples of atoms from A, such that its orthogonal
sum is x.

(iil) For every atomic block M of E, x € M implies that [0,2] C M.
(iv) x € B(E) implies that [0,2] C B(E).
(v) If T exists then

E:i?/e\:c:@{naa|aanatom of E, agx}:\/{naa| ac Ay}
and
x@x—@{ —kwa|aEA}—\/{ o —kDa| a€ A}

(vi) If z is finite then [0,z] is a finite lattice, * = @, kia; = Vi kia;
for a suitable finite set Ay = {a1,...,an} of atoms of E and [0,x] =

H?:l [O, kzaz] .

Proof. (i): Let a € A,. Since E is Archimedean we have k¥ < n,. Assume that
kX = ng. Then 0 < nga < x and nga € S(E) by Statement [ i.e., z & M(E),
a contradiction.

(ii): From Statement [[4] (i) we know that there is a subset B C A, and
natural numbers [, < ny, b € B such that

z=EP{b|be B} =\/{lb|be B}.

Let us show that F, = {l[;b | b € B}. Evidently, I, < kj < ny and [;b < x for
all b € B. Hence, for any finite subset D C B and for any ¢ € B, we have by
Corollary 2.9 that ¢ ® @{lyb | b € D} exists. This yields that @{lb | b€ D} <
¢’ and therefore x < ¢ for all ¢ € B. Now, let a € A,. Then a < x < ¢ for all
ce€ Bie.,a<+c



We then have

0#k'a = kf¥aNz=kZaN\{lb]|bec B}
= V{kZanlb|be B} =k¥a Alya.

The third equation follows from Statement [[.3] (i) and the last equation follows
from the fact that a # b, a <> b implies k7a A ;b = 0. Hence k¥ <1, < k¥ i.e.,
a € B and ¥ = k,. Therefore A, = B and F,, = {l;b | b € B}. The remaining
part of the statement is evident.
(ili): Let y < z. Then y € M(E), A, C A, and kY < k? for all a« € A,. Recall
that by |16, Lemma 2.7 (i)] we know that M is a bifull sub-lattice effect algebra
of E. Since M is atomic we have that z = @,,{l;b| b€ AY} =@ {lb|be
AMY: here AM = {a | a an atom of M, a < z}. This immediately implies by
(ii) that the sets AM and A, coincide. Therefore, A, C M. Note also that M
is closed under arbitrary joins existing in E. Hence y = \/{k¥%a | a <y} € M.
(iv): It follows immediately from (iii) and by B(E) = (\{M C E'| M is an atomic
block of E} (see[LH).
(v): We have that z = @{k¥a | a an atom of E, a < z}. Let a € A,. Then
a <z <Z € S(E). Therefore n,a < z. Assume that z € S(E), nga < z for all
a € Ay. Then k¥a < z for all a € Ay, ie., x < z. This yields that ¥ < z, i.e.
Z = Vgp){naea | aan atom of £, a < z}. By Statement2.7 (ii) we obtain that
T =\Vg{nea| aanatomof E, a < z}. Let G C A,, G finite. Then @{nqa |
a€G}=\V{n.a| a€ G} <Z. Hence ¥ = P{nqa| a an atom of E, a < x}.
Further, we have

TOw (D{nwalac A}) o (Bikialac A})
(P{naea|aec Ay,a# b} ®npb) © (P{nea | a € Ay, a # b} ®ELD)
(ny — ki) b

vl

for all b € A,. Now, let z € E such that z > (n, —k7)b for all b € A,.
Then also z A (Z © x) > (np —kf)b. Hence (zA (T O x)) @ kfb > mb ie.,
N (Zox)dP{kfa|ac Az} > VV{nea | a € A, }. This yields

z>zN@ox)> (P{nealac Ar}) © (D{kialac Ay}) =T O .

Therefore T © @ = @{(ng —k¥)a| a € Ay} = \{(ne —k¥)a| a € Az},
The equality = = 7 O follows from Lemma 23 (ii).

(vi): Let # = @, kia;. By (ii) we have that the only atoms below z are
ai,...,an. Hence z = @ | kia; = \/|_, kia;. From the proof of (iii) we
know that any element of [0, z] is of the form \/"_, l;a; for uniquely determined
natural numbers 0 < [; < ng,, 1 < i < n and conversely, for any system of
natural numbers 0 < I; < ng,, 1 < i < mn, \/i_, l;a; € [0,2]. This yields the
required isomorphism between [0, 2] and [];_, [0, k;a;]. O

Note that Theorem [ZT0 (ii), (iv) immediately yields that the set of meager
(finite meager) elements of an atomic Archimedean lattice effect algebra is a
dual of a weak implication algebra introduced in E]

Motivated by [8, Proposition 15] we have the following proposition.



Proposition 2.11. Let E be an atomic Archimedean MV-effect algebra. Then:

(i) Let x € M(E) and y € E such that x ANy = 0 and T exists. Then
Ay =0.

(i) M(E) is a \/-bifull sub-poset of E.

(iil) M(FE) is a lattice ideal of E.

Proof. (i): As in Theorem 210 let us put A, = {a | @ an atom of E, a < x}.
Evidently, a Ay = 0 and y < o for all a € A,. Therefore by Statement
L3 (iii) nqa Ay = 0 for all @ € A;. Then Theorem [ZI0] (v) yields that
TAy=\{nea| a€ A} Ny=V{nwaAy| ac€ A} =0.

(ii): Let X € M(E). Assume that z = \/y;p) X exists. Let u € E be an upper
bound of X. Hence also uA z is an upper bound of X and clearly uA z is meager.
Therefore z =u Az <wu, ie, z=\X.

Now, assume that z = \/, X exists. It is enough to check that z € M(E).
Let t € S(E), t < z, t # 0. Then there exists an atom b € E such that b < ¢.
Let us put kf = max{k | kb < z} < np (since any z € X is meager) and
ky = max{k} | x € X} < np. Hence also npb <t < z and npb = mpb A\ p X =
Ve{mwbAha |z e X} =Vp{kib |z € X} = kyb < npb, a contradiction. Hence
zZ=0and z € M(E).

(iii): It follows immediately from (ii) because M(F) is a downset in F and E is
a lattice. O

Moreover we have

Proposition 2.12. Let E be an atomic Archimedean lattice effect algebra. Then

(i) For all X C B(E) NM(E), Vg X exists iff Vpp) X ezists, in which
case V p X = V() X € M(E).
(i) B(E)NM(E) is a \/-bifull sub-poset of E.

Proof. (i): Let X € B(E) N M(E). Assume first that z = \/p ) X exists. Any
z € X is by Theorem R.I0 of the form z = \/ p{kfa | a € Az} = Vg {kia |
a € Az}, Ay C B(E)NM(E). Hence z = Vg5 {Vpplksa | a € As} [z € X}
Let us put k, = max{k7 | @ € X} <nq. Then z = /g p){kaa | a € Az, x € X}.

First, we shall show that z € M(E). Assume that there is y # 0, y < z,
y € S(E). Then there is an atom ¢ € F such that ¢ < y i.e., also n.c <y < z.
Either c € A, forsomexz € X orcAa=0foralla € A,z € X. Let c € A, for
some x € X. Then n.c € B(E). Therefore

NeC = MNCNZ :ncc/\\/B(E){kaa |a€ A,z € X}

= \/B(E){ncc/\kaa |a€ Ay, x € X} = kee < nee,

a contradiction. Now, let cAa =0 foralla € A,,x € X. Then ¢ <> a yields that
kga < (nec)’ € C(E). Hence z < (nec). But nec = nee Az < nee A (nee) =0
and we have a contradiction again. Hence z € M(E).
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Now, let v € E be an upper bound of X. Then also u A z is an upper
bound of X, u Az < z € B(E) N M(E). From Theorem we have that
uNz€B(E)NM(E). Hence z <uAz<uie, z=\yX.

Now, assume that \/p X exists. Then \/p X = V) X by Statement [L.3]
(i). Hence \/; X € M(FE) by the above argument.

(ii): It follows immediately from (i) because B(E) N M(E) is a downset in
B(E). O

The following statement is well known.

Statement 2.13. Let E be a sharply dominating Archimedean atomic lattice
effect algebra. Then

(i) , Theorem 3.4] For every x € E,x # 0 there exists the unique w, €
S(E), unique set of atoms {aq|a € A} and unique positive integers ko #
ord(ay) such that

z=w, ® (P{katale € A}).

We call such a decomposition the basic decomposition (BDE for short) of
x.

(i) [16, Theorem 3.2] B(E) is sharply dominating and for every z € B(E),z #
0 there exists the unique w, € C(E), unique set {as|lac € A} C B(E) of
atoms of E and unique positive integers ko # ord(as) such that

T = wy D (@{kaaam € A}).

(i) [16, Theorem 3.1] Let M C E be an atomic block of E. Then M is
sharply dominating and, for every x € M, there exists BDE of x in M
and it coincides with BDE of x in E.

Proposition 2.14. Let E be a sharply dominating atomic Archimedean lattice
effect algebra and let B C E be an atomic block of E. Then M(B) C M(E).

Proof. Let x € M(B). Then by Theorem [ZI0, (ii) z = 0 ® (P g{kaaala € A})
for a set of atoms {an|a € A} of B and positive integers k, # ord(a,). Since
B is a bifull sub-lattice effect algebra of E (see [16, Lemma 2.7 (i)]) we obtain
that = 0 ® (B p{katala € A}). As E is sharply dominating we have from
Statement T3 (i) that 7 = 0 and hence z € M(E). O

Let us recall the following statement

Statement 2.15. [11, Lemma 2] Let (E;®,0,1) be an Archimedean atomic
lattice effect algebra, x,y € E, x <> y. Then there is an atomic block B of E
such that x,y € B.

Similarly to B, Proposition 23] for complete lattice effect algebras we have
now the following proposition.
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Proposition 2.16. Let E be a sharply dominating atomic Archimedean lattice
effect algebra and let xz,y € M(E). Then

(i) x <>y if and only if vV y € M(E),
(il) Ifx @y exists and x By =z € S(E) then z =2 = 7.

Proof. (i): Assume first that <+ y. Then by Statement [ZT0] there is an atomic
block B of E such that z,y € B. Since B is an atomic Archimedean MV-effect
algebra and F is sharply dominating we have from Propositions 2.11] and 2.14]
that « Vy € M(B) C M(E).

Now, assume that z Vy € M(E). Then from Theorem 210 (iii) we obtain
that [0,z V y] is an MV-effect algebra. This yields that x > y.

(ii): It follows immediately from Lemma 241 O

Theorem 2.17. Let E be a sharply dominating atomic Archimedean lattice
effect algebra. Then for every x € E,x # 0 there exists unique set of atoms
{ada | @ € A} (namely {a € E | a an atom of E, a < xST}) and unique positive
integers ko # nq, (namely ko, = max{k € N | ka, < x}) such that

=716 (Pl{kaaa | @ € A}).

Moreover,
=28 (\V{kato |a€A}) =2V (V{kato | a € A}),
0=20A(\{kato | a€A})=TA(BD{kata | o € A}),
T=V{Zo®ngan|lace A} =T® (\V{na, 0| a€A})

=T (P{na,0alacA}) =2V (\{n. a.|ae€A}),
0=2A(V{ne,aa|a€A})=2AN(PD{na,aa|acA}),

ZT=28@P{(na, —ka)aa | @ € A}
=2® (V{(na, — ka)aa | @ € A}).

Proof. The first part of the statement follows immediately from Statement 2.13]
(i) and Theorem 2T0l Let us show the second, third and fourth parts.

We have by Theorem 210 that * © & = P{kaaa | @ € A} = \/{kaao | a €
A}. Hence by Lemma 23] (i) (z02)AZ=0and 2V (z0%) =2® (z07) = .
Since 7 © 7 exists we have from Theorem 210, (v) that 107 = V{na, aq | o €
A}. Therefore by by Lemma [Z3] (ii) we have that Z = 7 & 10T =3VIO7
and TAz O % = 0. Moreover, by Statement [[L3] (vil) Z® (\/{na,0a | @ € A}) =
VA{Z ®na a0 | a € A},

The fourth part follows immediately from the precedings parts. Namely, by

Theorem 210, (v)
Tox=To0r)c(x0) =P{(na, — ka)aa | @ € A}
=V{(na., — ka)aa | a € A}.
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O

Theorem 2.18. Let E be a sharply dominating atomic Archimedean lattice
effect algebra. Then the following conditions are equivalent:

(i) B(E) is bifull in E.
(ii) C(E) is bifull in E.

Proof. (i) = (ii): Note that from Statement [ZI3] (ii) we know that B(E) is
sharply dominating. Hence by Statement 2.7 we obtain that C(E) = S(B(FE))
is bifull in B(E). Since B(E) is bifull in F we have that C(E) is bifull in E.
(i) = (i): Let S C B(E) and @ = V) S exists. Assume first that = €
C(FE). Then

r=\Vpm{s|s€St=Vpp{sls€St=Vepris|seSt=Vg{s|ses}

since C(E) is bifull in E and § € C(E).

Now, let z € E, z > s for all s € S. Assume for a moment that z # x. Then
z Az < z which yields that there is an atom ¢ € E such that ¢ <z 6 (z A 2).
Thenc=cAz=cA\p{5]|se€ S}t =\Vg{cA5|sec S} since c <+ s and hence
x <> § for all a € S. Therefore, there is an element s € S such that cAS = ¢
ie. ¢ <5,

By Theorem 217 and from Statement T3] (ii) we have that there exists
the unique set {a, | @ € A} C B(F) of atoms of F and unique positive integers
ko # Mg, such that

s = 50 (@plkata |a € A}) =58 (Vplkaaa | a € A}),

5 = 5®(Ve{naaa [a €A}) =5V (Ve{ne,aa. | o € A}).
This gives rise to
¢ = cANs=(cAS)V(cA(Ve{nawaa|aeA}))

since ¢ <> s € B(F) and ¢ > a, € B(E) for all a« € A.
Assume first that ¢ = ¢ A'S. Then from Statement [[3 (v) we have n.c <
$ < z Az, a contradiction with ¢ < 2 & (x A z). So we obtain that

c = cN(Vp{na,aa|aeA})=Ve{cAng an|aec A}

Hence there is an atom a,, of E, a, € B(E), a € A such that ¢ = cAng, aq.
Assume for a moment that ¢ A a, = 0. We have that ¢ <> a, i.e., ¢ ® a, exists.
By Statement [[3] (iii) we have that ¢ Ang,_ a, = 0, a contradiction. So we have
shown that ¢ = ao € B(E). Bt e Ac<zSc<z,26c€B(E) and xS cis an
upper bound of S, a contradiction with z = \/g ) {s | s € S}. Therefore z > =
and hence /gy S = Vg S.

Now, let us assume that \/p5) S = 2 € B(E). Then we have that

T=28(T01)=\VppS®@oz)=\ppise@o)|seS}eCE).
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Therefore by above considerations also z = \/;{s ® (T © z) | s € S}. This and
Statement [[3] (iv) yield

=70 @ocz)=(Veg{s®(@or)|seSHo(Tox)=Vgs.

Conversely, let S C B(E) and z = \/ S exists. Then by Statement [3] (ii)
we get that = /g 5. O

Theorem 2.19. Let E be a sharply dominating atomic Archimedean lattice
effect algebra. Then the following conditions are equivalent:

(i) B(E) is atomic.
(ii) C(E) is atomic.

Proof. (i) = (ii): Let ¢ € C(E) C B(E), ¢ # 0. Then there is an atom
a € B(E) such that a < c¢. Therefore by Statement [[3] (v) nqa < ¢ and
nea € C(E) = B(E) N S(E) since B(E) is a sub-lattice effect algebra of E.
It follows that [0,n.a] = {0,a,...,n,a} C B(FE), as for every atom b of E,
b # a we have b <> a, which gives that b A n,a = 0, by Statement [[3] (iii) and
this yields by Statement [l (i) that any element below n,a is of the form ka,
0 <k < nga. Hence {0,a,2a,...,n,a} NC(E) = {0,n4,a}. This yields that n,a
is an atom of C(F) below c.

(i) = (i): Let x € B(F), v # 0. If x ¢ S(F) then by Statement [2Z13] (ii)
there is an atom a € B(F) such that « < 2 ©7 < z. So let us assume that
xz € S(E)NB(E) = C(E). Then there is by (ii) an atom ¢ from C(E), ¢ < z.
Assume that there is an element y € B(E) such that y < ¢. Then we have the
following possibilities:

(i) v ¢ S(E) and by the above argument there is an atom a € B(E) such
that a <y < ¢ < z. Otherwise we have
(ii) y € S(E) NB(E) = C(E) which implies that y = 0.

Hence we obtain that B(E) is atomic. O

Corollary 2.20. Let E be a sharply dominating atomic Archimedean lattice
effect algebra with a finite center C(E). Then B(FE) is atomic and bifull in E.

3. Triple Representation Theorem for sharply dominating atomic
Archimedean lattice effect algebras

In what follows E will be always a sharply dominating atomic Archimedean
lattice effect algebra. Then S(F) is a sub-lattice effect algebra of E and M(E)
equipped with a partial operation ©yy(g) which is defined, for all z,y € M(E),
by * ©n\ygy y exists if and only if x ©p y exists and x ©py € M(E) in which
case T D\(p) Y = TDE Y is a generalized effect algebra. Recall only that, for any
meager atom a € E, we have that ordy(g)(a) = ordg(a) — 1. We are therefore
able to reconstruct the isotropic index in F of any atom from M(FE). Moreover,
we have a map h : S(E) — 2M(F) that is given by h(s) = {z € M(E) | = < s}.
Asin B] for complete lattice effect algebras we will prove the following theorem.
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Triple Representation Theorem The triple (S(E), M(E), h) characterizes E
up to isomorphism.

We have to construct an isomorphic copy of the original effect algebra F
from the triple (S(E), M(E), h). To do this we will first construct the following
mappings in terms of the triple.

(M1) The mapping ~ : M(E) — S(FE).

(M2) For every s € S(FE), a mapping 75 : M(E) — h(s), which is given by
ms(x) =z AR s.

(M3) The mapping R : M(E) — M(FE) given by R(x) =7 ©p .

(M4) The partial mapping S : M(E) x M(E) — S(E) given by S(x,y) is defined
if and only if the set 8(x,y) ={z € S(E) |z = (2 Ax) @g (2 Ay)} has a
top element zg € 8(x,y) in which case S(z,y) = 2o.

Since E is sharply dominating and S(E) is bifull in £ we have that, for all
x € M(E),

T= /\{s €ES(E) |z eh(s)} = /\ {s €S(E) |z € h(s)}.

S(E)
Similarly, for all s € S(E) and for all x € M(E), z Ag s € M(E). Hence

ms(@)=zAps=Vply e E|ly<azy<s}
=Vely e M(E) [y <z,y € hi(s)} =V yyp{y € M(E) |y < 2,y € h(s)}.

Now, let us construct the mapping R. Let x € M(E). If x = 0 we put
R(z) = 0. Let x # 0. As before let us denote by A, = {a | a an atom of E,
a<z}={al] aanatomof M(E), a <z} # () and, for any a € A,, we shall
put k7 = max{k € N | ka < z} and n, = ordyyg)(a) + 1. Hence 1 < k7 <
ordyg)(a). Therefore {kja | a € Az} U{(n, —ki)a | a € Az} € M(E).
We know from Theorem ZI0 (ii) and (v) that z = /g {kla | a € A} =
Vuplkaal a € A}, 20z =Vp{(na—kf)a | a € As} = Vypy{(na—kg)a |
a€ A} #0, 70z € M(E).

What remains is the partial mapping S. Let z,y € M(FE). By Lemma
@(ii) S(r,y) ={z€S(E) | z=cAx)Br(zAy)} ={2€SE)|z=
7. (x) and R(m.(z)) = 7.(y)}. Hence whether S(z,y) is defined or not we are
able to decide in terms of the triple. Since the eventual top element z of 8(z, y)
is in S(E) our definition of S(x,y) is correct.

Lemma 3.1. Let E be a sharply dominating atomic Archimedean lattice effect
algebra, x,y € M(E). Then x ®gpy exists in E iff S(x,y) is defined in terms of

the triple (S(E), M(E), h) and (xS () (S (2, y)A\2)) Du(m) (yOmm) (S (2, ) Ay))
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exists in M(E) such that (x Onepy (S(2,y) Ax)) ey (Y Omee) (S(z,y) Ay)) €
h(S(x,y)"). Moreover, in that case

r®py=S(z,y) ©e((r Omm) (S(z,y) Ax)) Ome) (¥ Ome) (S(2,y) Ay))).
——

€S(E) eM(E)

Proof. Assume first that x @ y exists in F and let us put z = x @g y. Then
z = zg @p zym such that zg € S(E) and z); € M(F) is BDE of z in E. Since
x <> y by Statement there is an atomic block B of E such that x,y, z € B.
We know from Statement 2.I3] (iii) that B is sharply dominating and BDE of
z € Bin B and BDE of z in E coincide. This yields that zg, zpr € B. Therefore
zg € C(B) and by Statement [[3 (viii) we have that zg = z5 A (z Bp y) =
z2sN(x®pYy) = (zs ANx)®p (25 Ny) = (2zs Ax) DE (25 Ay). Hence zg € 8(x,y).
Now, assume that v € 8(z,y). Then u = (uAz) ®g (uAy) < x®py. Since
u € S(E) we have that u < zg, i.e., zg is the top element of 8(z,y). Moreover,
we have

28 O 2 =2 DR Y
=((S(z,y) Nz) ®E (zoE (S(z,
((S(z,y) Ny) @ (yor (S(z

= 8(2,y) ® (v Sui(e) (S(2,9) A 2)) Br (¥ Suic (S(, 1) Ap))).

Because zg = S(w,y) it follows that 2 = (z Omm) (S(7,y) A1) OE (¥ Om(E)
(S(@) A ). iees 21 = (@ Oracr) (S(.) A2) Graiy (7 Srucr) (S ) A )
and evidently zas € h(2%).

Conversely, let us assume that S(x,y) is defined in terms of (S(E), M(E), h),
(zomm) (S(z,y)Ax)) ©mee) (YOME) (S(2,y) Ay)) exists in M(E) and (2 O (g
(S(z, y)Ax)) Eram) (YOm(r) (S(2,9)Ay)) € h(S(2,y)"). Then (xOn(m) (S(x; y)A
7)) Ome) (Y Ome) (S(@,y) Ay)) < S(x,y), ie.,

S(x,y) ®r (x Omr) (S(z,y) A7) BMmr) (¥ Omr) (S(2,9) AYy)))
= ((S(x,y) Nz) ©E (S(z,y) Ny))OE
(ror (S(x,y) A1) ©r (yOr (S(T,¥) ANY) =2OFRY

is defined. O

Theorem 3.2. Let E be a sharply dominating atomic Archimedean lattice effect
algebra. Let T(E) be a subset of S(E) x M(E) given by

T(E) = {(zs,2m) € S(E) x M(E) | 2ps € h(25)}-

Equip T(E) with a partial binary operation ©r gy with (vs, ) ey (Ys, yam)
is defined if and only if

(i) S(xzar,ynr) is defined,

(ii) zg = zg Ds(p) Ys Ps(m) S(xar,ynr) is defined,

(iii) zm = (zm Omp) (S(@n,ym) Axzar)) Dace)y (Y Omee) (S(@ar, yar) Aynr))
is defined,
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(iv) zam € h(zy).
In this case (zs,zn) = (vs,20m) Dr(E) (Ys,ym). Let Opgy = (0g,0g) and
lrgy = (1g,0g). Then T(E) = (T(E), D1(g), 01(E), Lr(E)) is an effect algebra
and the mapping ¢ : E — T(FE) given by ¢(x) = (T, O T) is an isomorphism
of effect algebras.

Proof. Evidently, ¢ is correctly defined since, for any z € FE, we have that
r=T@p (O = x5 ®r M, vs € S(E) and zp € M(E). Hence p(x) =
(xs,xam) € S(E) x M(E) and zp € h(xy). Let us check that ¢ is bijective.
Assume first that =,y € E such that p(x) = ¢(y). Wehavex = T®g (zOpT) =
y®r (y©ry) = y. Hence ¢ is injective. Let (zg,zp) € S(E) x M(E) and
xzar € h(x’y). This yields that * = g g 2 exists and evidently by Lemma
23 (i) 7 = 2g and 2 ©5 & = xp. It follows that ¢ is surjective. Moreover,
QD(OE) = (OE,OE) = OT(E) and gD(lE) = (1E;0E) = 1T(E)-

Now, let us check that, for all 2,y € E, x ©p y is defined iff (x) gy p(y)
is defined in which case ¢(x ©ry) = ©(z) Dr(g) ¢(y). For any z,y,2,u € £ we
obtain

2=x0py = 2=(TOp (vOp7)) O (YOE (YyOE V)
<— z=(@epy) ®r(xSp2)®r(yoryY) <= by Lemmal3I
u=S(xEerpZ,yory) and
2= 2 ®pY) &r (WOE(zOE7Z) S (UA (xSE T)))
Ce((yory) o (uA (yOEY))))
— u=S8(x0pZ,yOr7y) and
2= T PpyPru)de(((x ©pT) O (UA (zOE T)))
o (yOErY) Ok (WA (YOET))))
— u=S8(x0pZ,yOry) and
2= (T Ds(p) YDsm)u) BE (r ©F T) Omp) (uA (T OF T)))
Ome) (Y OrY) Omer) (WA (yOrY))))
<~ (T,70pT) ®rE) U,y ©py) is defined and
0(2)=(Z ©g(p) Y Bs(p) S(x O T,y OrY), (z0pT) © (S(r ©p Z,y Op Y)A
(z0r7))) Omr) (YyOEY) © (S(x O T,y ORY) A (YyOEY))))
=(T,2 O T) O1(r) (Y, OF Y) = ¢(T) D1(r) P(Y)-

Altogether, T(E) = (T(E), ®r (), Org), lr(g)) is an effect algebra and the
mapping ¢ : E — T(FE) is an isomorphism of effect algebras. O

The Triple Representation Theorem then follows immediately.

Remark 3.3. Recall that our method may be also used in the case of complete
lattice effect algebras as a substitute of the method from ﬂE] since we need only
Lemma [ZT0] (ii) and Lemma [3] to show that Theorem hols for complete
lattice effect algebras. But to show that Lemma 2T6, (ii) and Lemma B hold
for complete lattice effect algebras is an easy task.

Now, using Theorems and we can prove the following Triple Repre-
sentation Theorem for B(E) of sharply dominating atomic Archimedean lattice
effect algebras E with atomic center C(E).
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Theorem 3.4. Let E be a sharply dominating atomic Archimedean lattice effect
algebra with atomic center C(E). Let T(B(E)) be a subset of C(E) x (M(E) N
B(E)) given by

T(B(E)) = {(z¢,2zmuB) € C(E) x (M(E)NB(E)) | zmB € h(ze) NB(E)}.

Let us put Or(B(E)) = @T(E)/T(B(E))XT(B(E)) and let Opp(py) = (0p,0r) and
lrwm) = (1g,0g). Then T(B(E)) = (T(B(E)), &r®m(r). 01B(82): 1TB(E)
is an effect algebra and the mapping p(p) : B(E) — T(B(E)) given by ¢p(g) =
@ /B(E) 15 an isomorphism of effect algebras.

Proof. Recall that from Statement T3] (ii) and Theorem we know that
B(FE) is a sharply dominating atomic Archimedean lattice effect algebra. More-
over, S(B(E)) = C(E), M(B(E)) = M(E)NB(E), hg(g)(c) = h(c)NB(E) for all
c € C(F) and, for all y € B(E), we have that by Statement I3 (ii) y € C(F)
and y € C(E). Since B(E) and C(E) are sub-lattice effect algebras of E we
obtain that the mappings (M1)-(M4) for the triple (C(E), M(B(E)), hg(g)) are
natural restrictions of the mappings (M1)-(M4) for the triple (S(E), M(E), h).
Invoking Theorem we obtain the required statement. O

Acknowledgements

J. Paseka gratefully acknowledges Financial Support of the Ministry of Edu-
cation of the Czech Republic under the project MSM0021622409 and of Masaryk
University under the grant 0964/2009.

References

[1] G. Cattaneo, A unified framework for the algebra of unsharp quantum
mechanics, Inter. J. Theor. Phys. 36 (1997), 3085-3117.

[2] 1. Chajda, R. Halas, J. Kiihr, Implication in MV-algebras, Algebra Univer-
salis 52 (2004), 377-382.

[3] A. Dvurecenskij, S. Pulmannovd: New Trends in Quantum Structures,
Kluwer Acad. Publ., Dordrecht/Ister Science, Bratislava 2000.

[4] D.J. Foulis, M.K. Bennett, Effect algebras and unsharp quantum logics,
Found. Phys. 24 (1994), 1325-1346.

[5] R.J. Greechie, D.J. Foulis, S. Pulmannovd, The center of an effect algebra,
Order 12 (1995), 91-106.

[6] S. P. Gudder, Sharply dominating effect algebras, Tatra Mt. Math. Publ.
15 (1998), 23-30.

[7] S.P.Gudder, S-dominating effect algebras, Inter. J. Theor. Phys. 37 (1998),
915-923.

18



[8] G. Jenca, Sharp and Meager Elements in Orthocomplete Homogeneous
Effect Algebras, Order 27 (2010), 41-61.

[9] G. Jenca, Z. Riecanové, On sharp elements in lattice ordered effect algebras,
BUSEFAL 80 (1999), 24-29.

[10] M. Kalina, On central atoms of Archimedean atomic lattice effect algebras,
Kybernetika 46 (2010), 609-620.

[11] M. Kalina, V. Olejcek, J. Paseka, Z. Riecanové, Sharply Dominating MV-
Effect Algebras, Inter. J. Theor. Phys., 2010, doi:10.1007/s10773-010-0338-

X.

[12] M. Kalina, J. Paseka, Z. Rie¢anovd, Sharply Orthocomplete Effect Alge-
bras, Acta Polytechnica, 50 (2010), 51-56.

[13] F. Kopka, Compatibility in D-posets, Inter. J. Theor. Phys. 34 (1995),
1525-1531.

[14] K. Mosnd, Atomic lattice effect algebras and their sub-lattice effect alge-
bras, J. Electrical Engineering 58 (No 7/S) (2007), 3-6.

[15] J. Paseka, Z. Riecanovd, Wu Junde, Almost orthogonality and Hausdorff
interval topologies of atomic lattice effect algebras, Kybernetika, 46 (2010),
953-970.

[16] J. Paseka, Z. Riecanovd, The inheritance of BDE-property in sharply dom-
inating lattice effect algebras and (o0)-continuous states, Soft Computing,
doi: 10.1007/s00500-010-0561-7.

[17] J. Paseka, Modularity, Atomicity and States in Archimedean Lattice Effect
Algebras, SIGMA, (003), 6 (2010), 9 pages, doi:10.3842/SIGMA.2010.003.

[18] Z. Riecanovd, Compatibility and central elements in effect algebras, Tatra
Mountains Math. Publ. 16 (1999), 151-158.

[19] Z. Riecanova, Subalgebras, intervals and central elements of generalized
effect algebras, Inter. J. Theor. Phys. 38 (1999), 3209-3220.

[20] Z. Riecanova, Generalization of blocks for D-lattices and lattice-ordered
effect algebras, Inter. J. Theor. Phys. 39

[21] Z. Riecanové, Orthogonal Sets in Effect Algebras, Demonstratio Mathe-
matica, 34 (2001), no.3, 525-532.

[22] Z. Riecanova, Proper Effect Algebras Admitting No States, Inter. J. Theor.
Phys. 40 (2001), 1683-1691.

[23] Z. Riecanovd, Smearings of states defined on sharp elements onto effect
algebras, Inter. J. Theor. Phys. 41 (2002), 1511-1524.

19



[24] Z. Rietanové, Continuous Lattice Effect Algebras Admitting Order-
Continuous States, Fuzzy Sests and Systems 136 (2003), 41-54.

[25] Z. Riecanova, Wu Junde, States on sharply dominating effect algebras,
Science in China Series A:Mathematics 51 (2008), 907-914.

20



	1 Preliminaries and basic facts
	2 Bifull sub-lattice effect algebras of lattice effect algebras
	3 Triple Representation Theorem for sharply dominating atomic Archimedean lattice effect algebras

