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Abstract 

 

Hough transform (HT) has been the most common method for circle detection, exhibiting robustness, but adversely 

demanding considerable computational effort and large memory requirements. Alternative approaches include 

heuristic methods that employ iterative optimization procedures for detecting multiple circles. Since only one circle 

can be marked at each optimization cycle, multiple executions must be enforced in order to achieve multi-detection. 

This paper presents an algorithm for automatic detection of multiple circular shapes that considers the overall process 

as a multi-modal optimization problem. The approach is based on the artificial bee colony (ABC) algorithm, a swarm 

optimization algorithm inspired by the intelligent foraging behavior of honey bees. Unlike the original ABC 

algorithm, the proposed approach presents the addition of a memory for discarded solutions. Such memory allows 

holding important information regarding other local optima which might have emerged during the optimization 

process. The detector uses a combination of three non-collinear edge points as parameters to determine circle 

candidates. A matching function (nectar- amount) determines if such circle candidates (bee-food-sources) are actually 

present in the image. Guided by the values of such matching functions, the set of encoded candidate circles are 

evolved through the ABC algorithm so that the best candidate (global optimum) can be fitted into an actual circle 

within the edge-only image. Then, an analysis of the incorporated memory is executed in order to identify potential 

local optima, i.e., other circles. The proposed method is able to detect single or multiple circles from a digital image 

through only one optimization pass. Simulation results over several synthetic and natural images, with a varying 

range of complexity, validate the efficiency of the proposed technique regarding its accuracy, speed, and robustness.  

 

Keywords: Circle detection; artificial bee colony; nature-inspired algorithms; intelligent image processing.  

 
1. Introduction 

 
The problem of detecting circular features holds paramount importance for image analysis in industrial 

applications such as automatic inspection of manufactured products and components, aided vectorization 

of drawings, target detection, etc. [1]. Solving common challenges for object localization is normally 

approached by two techniques: deterministic and stochastic. The former includes the application of 

Hough transform-based methods [2], the use of geometric hashing and other template or model-based 

matching techniques [3, 4]. On the other hand, stochastic techniques include random sample consensus 

techniques [5], simulated annealing [6] and genetic algorithms (GA) [7]. 

 

Template and model matching techniques were the first approaches to be applied to shape detection. 

Although several methods have now been developed for solving such a problem [8], shape coding 

techniques and a combination of shape properties have been successfully tested on representing different 

objects. Their main drawbacks are related to the contour extraction step from real images and to their 

deficiencies in dealing with pose invariance except for very simple objects. 

 

The circle detection in digital images is commonly solved through the Circular Hough Transform [9]. A 

typical Hough-based approach employs an edge detector and some edge information to infer locations 

and radii values. Peak detection is then performed by averaging, filtering and histogramming within the 

transform space. Unfortunately, such an approach requires a large storage space as the 3-D cells include 

parameters (x, y, r) that augment the computational complexity and yield a low processing speed. The 

accuracy of parameters for the extracted circles is poor, particularly under noisy conditions [10].  

 

In the particular case of a digital image holding a significant width and height, and some densely 

populated edge pixels, the required processing time for Circular Hough Transform makes it prohibitive to 
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be deployed in real time applications. In order to overcome such a problem, some other researchers have 

proposed new approaches following Hough transform principles, yielding the probabilistic Hough 

transform [11], the randomized Hough transform (RHT) [12], the fuzzy Hough transform [13] and some 

other topics as is widely discussed by Becker in [14].  

 

As an alternative to Hough Transform-based techniques, the problem of shape recognition in computer 

vision has also been handled through optimization methods. Ayala–Ramirez et al. presented a GA based 

circle detector [15] that is capable of detecting multiple circles over real images, but fails frequently while 

detecting imperfect circles. On the other hand, Dasgupta et al. [16] have recently proposed an automatic 

circle detector using the bacterial foraging optimization algorithm (BFOA) as optimization procedure. 

However, both methods employ an iterative scheme to achieve multiple-circle detection, which executes 

the algorithm as many times as the number of circles to be found demands. Only one circle can be found 

at each run yielding quite a long execution time. 

 

An impressive growth in the field of biologically inspired meta-heuristics for search and optimization has 

emerged during the last decade. Some bio-inspired examples like genetic algorithm (GA) [17] and 

differential evolution (DE) [18] have been applied to solve complex optimization problems, while swarm 

intelligence (SI) has recently attracted interest from several fields. The SI core lies in the analysis of the 

collective behavior of relatively simple agents working on decentralized systems. Such systems typically 

gather an agent’s population that can communicate with each other while sharing a common environment. 

Despite a non-centralized control algorithm regulating its behavior, the agent can solve complex tasks by 

analyzing a given global model and harvesting cooperation to other agents. Therefore, a novel global 

behavior evolves from interaction among agents as can be seen in case of ant colonies, animal herding, 

bird flocking, fish schooling, honey bees, bacteria, and many more. Swarm-based algorithms, such as 

particle swarm optimization [19], ant colony optimization [20] and bacterial foraging optimization 

algorithm (BFOA) [21] have already been successfully applied to several engineering applications.  

 

Karaboga has recently presented one bee-swarm algorithm for solving numerical optimization problems, 

which is known as the artificial bee colony (ABC) method [22]. Inspired by the intelligent foraging 

behavior of a honeybee swarm, the ABC algorithm consists of three essential components: food source 

positions, nectar- amount and different honey bee classes. Each food source position represents a feasible 

solution for the problem under consideration, and the nectar-amount of a food source represents the 

quality of such solution corresponding to its fitness value. Each class of bees symbolizes one particular 

operation for generating new candidate food source positions (candidate solutions). 

 

The ABC algorithm starts by producing a randomly distributed initial population (food source locations). 

After initialization, an objective function evaluates whether such candidates represent an acceptable 

solution (nectar-amount) or not. Guided by the values of such an objective function, the candidate 

solutions are evolved through different ABC operations (honey bee types). When the fitness function 

(nectar-amount) cannot be further improved after a maximum number of cycles, its related food source is 

assumed to be abandoned and replaced by a new randomly chosen food source location. However, in 

order to contribute towards the solution of multi-modal optimization problems, our proposal suggests that 

such abandoned solutions are not to be discarded; instead, they are to be arranged into a so-called 

“exhausted-source memory” that contains valuable information regarding global and local optima that 

have been emerging with the evolution of optimization. 

 

Although ABC draws several similarities with other bio-inspired algorithms, there are some significant 

issues to be discussed: ABC does not depend upon the best member within the population in order to 

update the particle’s motion as is done by PSO [23]; it does not require all particles for computing 

parameters such as the pheromone concentration, which determines the overall performance, as is 

demanded by ACO [24]. In contrast, ABC uses randomly chosen particles to calculate new motion 

vectors, contributing towards augmenting the population diversity. Similar to DE, ABC does require a 

selection operation that allows individuals to access a fair chance of being elected for recombination 

(diversity). However, ABC holds a second modification operation that follows a random “roulette 

selection”, allowing some privileges for best located solutions and augmenting the convergence speed 

[25]. In contrast to the local particle modifications executed by BFOA, ABC employs operators that 

tolerate modifications over the full search space for each parameter, avoiding typical oscillations around 

the optimum produced by BFOA [26]. The performance of ABC algorithm has been compared with other 

optimization methods such as GA, DE and PSO [27,28]. The results showed that ABC can produce 

optimal solutions and thus is more effective than other methods in several optimization problems. Such 
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characteristics have motivated the use of ABC to solve different sorts of engineering problems such as 

signal processing [29,30], flow shop scheduling [31], structural inverse analysis [32], clustering [33,34], 

vehicle path planning [35] and electromagnetism [36].  

 

This paper presents an algorithm for the automatic detection of multiple circular shapes from complicated 

and noisy images, which does not take into consideration the conventional-Hough transform principles. 

The detection process is approached as a multi-modal optimization problem. The ABC algorithm searches 

the entire edge-map looking for circular shapes by considering a combination of three non-collinear edge 

points that represent candidate circles (food source locations) in the edge-only image of the scene. An 

objective function is used to measure the existence of a candidate circle over the edge-map. Guided by the 

values of such an objective function, the set of encoded candidate circles are evolved through the ABC 

algorithm so that the best candidate can be fitted into the most circular shape within the edge-only image. 

A subsequent analysis of the incorporated exhausted-source memory is then executed in order to identify 

potential useful local optima (other circles). The approach generates a fast sub-pixel detector that can 

effectively identify multiple circles in real images despite circular objects exhibiting significant occluded 

sections. Experimental evidence shows the effectiveness of the method for detecting circles under various 

conditions. A comparison with one state-of-the-art GA-based method [15], the BFOA [16] and the RHT 

algorithm [12] on different images has been included to demonstrate the performance of the proposed 

approach. Conclusions of the experimental comparison are validated through statistical tests that support 

the discussion suitably. 

 

The paper is organized as follows: Section 2 provides information regarding the ABC algorithm. Section 

3 depicts the implementation of the proposed circle detector. The complete multiple-circle detection 

procedure is presented in Section 4. Experimental outcomes after applying the proposed approach are 

stated in Section 5 and some relevant conclusions are discussed in Section 6. 

 

 

2. Artificial Bee Colony (ABC) algorithm  

 

The ABC algorithm assumes the existence of a set of operations that may resemble some features of the 

honey bee behavior. For instance, each solution within the search space includes a parameter set 

representing food source locations. The “fitness value” refers to the food source quality that is strongly 

linked to the food’s location. The process mimics the bee’s search for valuable food sources yielding an 

analogous process for finding the optimal solution. 

 

2.1 Biological bee profile 

 

The minimal model for a honey bee colony consists of three classes: employed bees, onlooker bees and 

scout bees. The employed bees will be responsible for investigating the food sources and sharing the 

information with recruit onlooker bees. They, in turn, will make a decision on choosing food sources by 

considering such information. The food source having a higher quality will have a larger chance to be 

selected by onlooker bees than those showing a lower quality. An employed bee, whose food source is 

rejected as low quality by employed and onlooker bees, will change to a scout bee to randomly search for 

new food sources. Therefore, the exploitation is driven by employed and onlooker bees while the 

exploration is maintained by scout bees. The implementation details of such bee-like operations in the 

ABC algorithm are described in the next sub-section. 

 

2.2 Description of the ABC algorithm 
 

Resembling other swarm based approaches, the ABC algorithm is an iterative process. It starts with a 

population of randomly generated solutions or food sources. The following three operations are applied 

until a termination criterion is met [28]: 

 

1. Send the employed bees. 

2. Select the food sources by the onlooker bees. 

3. Determine the scout bees. 

 

 

2.2.1 Initializing the population 
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The algorithm begins by initializing 
p

N  food sources. Each food source is a D-dimensional vector 

containing the parameter values to be optimized, which are randomly and uniformly distributed between 

the pre-specified lower initial parameter bound 
low

j
x  and the upper initial parameter bound

high

j
x . 

 

,
rand(0,1) ( );

low high low

j i j j j
x x x x= + ⋅ −  

1,2, , ;    1, 2, , .
p

j D i N= =K K  

(1) 

 

with j and i being the parameter and individual indexes respectively. Hence, 
,j i

x is the jth parameter of the 

ith individual.  

 

2.2.2 Send employed bees 

 

The number of employed bees is equal to the number of food sources. At this stage, each employed bee 

generates a new food source in the neighborhood of its present position as follows: 

 

, , , , ,
( );

j i j i j i j i j k
v x x xφ= + −  

{ } { }1,2, , ; 1,2, ,pk N j D∈ ∈K K  

(2) 

 

,j i
x  is a randomly chosen j parameter of the ith individual and k is one of the 

p
N  food sources, satisfying 

the condition i k≠ . If a given parameter of the candidate solution 
i
v  exceeds its predetermined 

boundaries, that parameter should be adjusted in order to fit the appropriate range. The scale factor 
,j i

φ is 

a random number between [ 1,1]− . Once a new solution is generated, a fitness value representing the 

profitability associated with a particular solution is calculated. The fitness value for a minimization 

problem can be assigned to each solution 
i
v by the following expression: 

 

1
           if 0

1

1 ( )     if 0

i

ii

i i

J
Jfit

abs J J

 ≥ += 
 + <

 
(3) 

 

where 
i
J  is the objective function to be minimized. A greedy selection process is thus applied between 

i
v  and 

i
x . If the nectar- amount (fitness) of 

i
v  is better, then the solution

i
x  is replaced by 

i
v ; otherwise, 

i
x remains. 

 

2.2.3 Select the food sources by the onlooker bees 

 

Each onlooker bee (the number of onlooker bees corresponds to the food source number) selects one of 

the proposed food sources, depending on their fitness value, which has been recently defined by the 

employed bees. The probability that a food source will be selected can be obtained from the following 

equation: 

 

1

p

i

i N

i

i

fit
Prob

fit
=

=

∑
 (4) 

 

where 
i

fit is the fitness value of the food source i, which is related to the objective function value (
i
J ) 

corresponding to the food source i. The probability of a food source being selected by onlooker bees 

increases with an increase in the fitness value of the food source. After the food source is selected, 

onlooker bees will go to the selected food source and select a new candidate food source position inside 

the neighborhood of the selected food source. The new candidate food source can be expressed and 

calculated by (2). In case the nectar-amount, i.e., fitness of the new solution, is better than before, such 

position is held; otherwise, the last solution remains. 
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2.2.4 Determine the scout bees 

 

If a food source i (candidate solution) cannot be further improved through a predetermined trial number 

known as “limit”, the food source is assumed to be abandoned and the corresponding employed or 

onlooker bee becomes a scout. A scout bee explores the searching space with no previous information, 

i.e., the new solution is generated randomly as indicated by (1). In order to verify if a candidate solution 

has reached the predetermined “limit”, a counter 
i
A  is assigned to each food source i. Such a counter is 

incremented consequent to a bee-operation failing to improve the food source’s fitness.  

 

  

2.3 Exhausted-source memory 

 

Though the classic ABC algorithm eliminates the abandoned food sources, our approach considers the 

exhausted food sources (solutions) through avoiding their discharge by saving them into the exhausted-

source memory. Such recorded solutions contain valuable information regarding global and local optima 

that emerged during the optimization process. 

 

 

3. Circle detection using ABC 

 

3.1 Data preprocessing 

 

The ABC circle detector involves a pre-processing stage that requires marking the object’s contour by 

applying a single-pixel edge detection method. For our purpose, such a task is accomplished by the 

classical Canny algorithm. Then, the locations of the found edge pixels are stored within the 

vector { }1 2
, , ,

pE
P p p p= K , 

p
E  being the total number of edge pixels in the image. 

 
3.2 Individual representation 

 
In order to construct each candidate circle C (or food-source within the ABC framework), indexes

1
i , 

2
i  

and 
3
i representing three edge points previously stored in vector P must be combined. Therefore, each 

food-source is encoded as one circle 
1 2 3

{ , , }i i iC p p p= , which is characterized by three 

points
1i
p ,

2i
p and

3i
p that lie on its own circumference. Such candidate circle is labeled as a potential 

solution for the detection problem.  Considering the configuration of the edge points in Fig. 1, the circle 

centre 
0 0

( , )x y and the radius r of C can be calculated using simple geometric equations [37]. 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 

 

Fig. 1. Circle candidate (individual) built from the combination of points
1i
p ,

2i
p and

3i
p . 

 

 

3.3 Objective function 

 

r  
1i
p  

2i
p  

3i
p  

0 0
( , )x y  

C 
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In order to calculate the matching error produced by a candidate circle C, its circumference coordinates 

are calculated as a virtual shape that must be validated, i.e., confirm whether C really exists in the edge-

map. Such circumference coordinates are grouped within the test set
1 2

{ , , , }
sN

S s s s= K , with 

s
N representing the number of points over which the existence of an edge point, corresponding toC , 

should be verified. 

 

In this approach, the set S is generated by the midpoint circle algorithm (MCA) [38]. The MCA, which is 

considered to be the quickest method providing a sub-pixel precision [39,40], calculates the required 

points for digitally drawing a circle. Considering that the function 2 2 2( , )
Circle
f x y x y r= + −  defines a 

circular primitive, MCA introduces an error e as a measurement for the deviation of the halfway pixel 

position (sub-pixel distance) characterized by ( , )Circlee f x y= , with e being zero for locations lying on the 

circumference, positive for those outside and negative for those occupying the interior. The minimum 

error (i.e., the error shown by the pixel lying closer to the ideal circumference) is used to decide which 

pixel should be set next as the best circle boundary approximation. On the other hand, the computation 

time of MCA is reduced by considering the symmetry among circles. Circle sections lying at adjacent 

octants within one quadrant, are symmetric with respect to the 45° line dividing two octants. Taking 

advantage of such symmetry property, MCA generates all pixel positions around a circle by calculating 

only the first octant. Therefore, other octants are inferred from the first one by using simple symmetry 

relationships. For more details, see [41]. 

 

The objective function J(C) represents the matching error produced between the pixels S (calculated by 

MCA) of the circle candidate C  and the pixels that actually exist in the edge image, yielding: 

 

1

( )

( ) 1

Ns

v

v

E s

J C
Ns

== −
∑

 

(5) 

 
where ( )

v
E s is a function that verifies the pixel existence in the 

v
s location ( ( , ))

v v v
s x y= , with 

v
s S∈  

and 
s

N  being the number of pixels lying on the perimeter corresponding to C currently under testing. 

Hence, the function ( )
v

E s is defined as: 

 

1 if the pixel ( , ) is an edge point
( )

0 otherwise

v v

v

x y
E s

= 


 (6) 

 

      
                                 (a)                                                           (b)                                                          (c) 

 
Fig. 2. Procedure to evaluate the objective function J(C): (a) the original edge-map, (b) the virtual shape generated by 

MCA considering 
1 2 3

{ , , }i i iC p p p= . (c) shows the comparison operation between the original edge-map shown in (a) 

and the virtual shape presented by (b). 

 

A value near to zero of J(C) implies a better response from the “circularity” operator and represents a 

better nectar- amount within the ABC framework. Fig. 2 shows the procedure to evaluate the objective 

function J(C).  First, three edge points (as they are exhibited by Fig. 2a) encode a candidate circle C. 

Then, by using the MCA, a circular virtual shape is built (see Fig. 2b). Such virtual shape, which is 

C

1i
P

2i
P

3i
P1i

P

2i
P

3i
P



Please cite this article as:  

Cuevas, E., Sención-Echauri, F., Zaldivar, D., Pérez-Cisneros, M. Multi-circle detection on images using artificial bee 

colony (ABC) optimization, Soft Computing, 16 (2), (2012),  pp. 281-296. 

 

 7 

characterized by the vector S, groups a determined number 
s

N  of pixel coordinates that are shown by Fig. 

2b as 56. Finally, the virtual shape is compared with the original edge-map, point by point, in order to 

find matches between virtual and edge pixels. Fig. 2c shows the comparison operation between the 

original edge-map (Fig. 2a) and the virtual shape (Fig. 2b). As a result, only eighteen edge pixels are 

common to both images yielding: 

1

( , ) 18

Ns

v v

v

E x y

=

=∑  and therefore, ( ) 0.67J C ≈ . 

 

3.3. ABC Implementation 

 

The implementation of the proposed algorithm can be summarized by the following steps: 

 

Step 1: Apply the Canny filter to the original image and store edge pixels within vector P. 

Step 2: Initialize required parameters of the ABC algorithm. Set the colony’s size, the abandonment 

limit and the maximum number of cycles. 

Step 3: Initialize
C

N circle candidates 
b
C (original food sources) with (1, , )

C
b N∈ K , and clear all 

counters
b
A .  

Step 4: Obtain the matching fitness (food source quality) for each circle candidate
b
C  using (5). 

Step 5: Repeat steps 6 to 10 until a termination criterion is met. 

Step 6: Modify the circle candidates as stated by (2) and evaluate its matching fitness (send employed 

bees onto food sources). Likewise, update all counters
b
A .  

Step 7 Calculate the probability value 
b

Prob for each circle candidate
b
C . Such probability value 

will be used as a preference index by onlooker bees (4). 

Step 8: Generate new circles candidates (using the (2)) from current candidates according to their 

probability 
b

Prob  (Send onlooker bees to their selected food source). Likewise, update 

counters 
b
A . 

Step 9: Obtain the matching fitness for each circle candidate
b
C  and calculate the best circle 

candidate (solution). 

Step 10: Stop modifying the circle candidate 
b
C  (food source) whose counter 

b
A  has reached its 

counter “limit” and save it as a possible solution (global or local optimum) in the exhausted-

source memory. Clear 
b
A and generate a new circle candidate according to (1). 

Step 11: Analyze solutions previously stored in the exhausted-source memory (see Section 5). The 

memory holds solutions (any other potential circular shape in the image) generated through 

the evolution of the optimization algorithm.  

 

In ABC algorithm, the steps 6 to 10 are repeated until a termination criterion is met. Typically, two stop 

criteria have been employed for meta-heuristic algorithms: either an upper limit of the fitness function is 

reached or an upper limit of the number of generations is attained [42]. The first criterion requires an 

extensive knowledge of the problem and its solutions [43]. On the contrary, by considering the stop 

criterion based on the number of generations, feasible solutions may be found by exploring the search 

space through several iterations. For our purpose, the number of iterations as stop criterion is employed in 

order to allow the multi-circle detection. Hence, if a solution representing a valid circle appears at early 

stages, it would be stored in the exhausted-source memory and the algorithm continues detecting other 

feasible solutions until depleting the iteration number. Therefore, the main issue is to define a fair 

iteration number, which should be big enough to allow finding circles at the image and small enough to 

avoid an exaggerated computational cost. For this study, such a number was experimentally defined as 

300. 

 

4. The multiple-circle detection procedure 
 

The original ABC algorithm considers the so-called abandonment limit, which aims to stop the local 

exploration for a candidate solution after a trial number is reached. All “stuck solutions”, i.e., those that 

do not improve further during the optimization cycle are supposed to be discarded and replaced by other 

randomly generated solutions. However, this paper proposes the use of an “exhausted-source memory” to 
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store information regarding local optima that represent possible solutions for the multi-circle detection 

problem. 

 

Several heuristic methods have been employed for detecting multiple circles as an alternative to classical 

Hough transform-based techniques [15, 16]. Such strategies imply that only one circle can be marked per 

optimization cycle, forcing a multiple execution of the algorithm in order to achieve multiple-circle 

detection. The surface representing J(C) holds a multimodal nature, which contains several global and 

local optima that are related to potential circular shapes in the edge-map. This paper aims to solve the 

objective function J(C) using only one optimization procedure by assuming the multi-detection problem 

as a multimodal optimization issue.  

 

The multi-detection problem can be summarized as follows: guided by the values of a matching function, 

the set of encoded circle candidates are evolved through the ABC algorithm and the best circle candidate 

(global optimum) is considered to be the first detected circle over the edge-only image. Then, an analysis 

of the incorporated exhausted-source memory is executed in order to identify other local optima (other 

circles). The analysis includes two operations: arraignment and extraction. In the arraignment, food 

sources that are held by the memory are organized in descending order according to their J(C). Once the 

exhausted-source memory has been arranged, the goal is to extract circles considered to be different (local 

optima) from it. Such discrimination is accomplished by comparing all elements in the arranged memory.  

 

Several local optima (i.e., circles slightly shifted or holding small deviations) can represent the same 

circle. Therefore, a distinctiveness factor 
dis

E  is required to measure the mismatch between two given 

circles (food-sources) as follows: 

 

( ) ( ) ( )2 2 2

dis A B A B A BE x x y y r r= − + − + −  (7) 

 

where ( ),
A A
x y  and 

A
r  are the coordinates of the centre and radius of the circle 

AC  respectively, while 

( ),
B B
x y and 

B
r  are the corresponding parameters of the circle 

BC . In order to decide whether two circles 

must be considered different, a threshold value 
THs

E is defined as follows: 

 

( ) ( ) ( )2 2 2

max min1 1
THS

E cols rows r rα= − + − + −  (8) 

 

where rows and cols refer to the number of rows and columns in the image respectively. 
max
r and 

min
r are 

the maximum and minimum radii for representing feasible candidate circles, whileα is a sensitivity factor 

affecting the discrimination between circles. A high value of α  allows circles to be significantly different 

and still be considered as the same shape while a low value would imply that two circles with slight 

differences in radii or positions could be considered as different instances. The 
THs

E value calculated by 

(8) allows discriminating circles with no consideration about the image size. 

 

In order to find “sufficiently different” circles, the elements of the arranged exhausted-source memory 

must be contrasted. Each element is compared with the others by using (7). A circle is considered 

different enough if its distinctiveness factor 
dis

E (found in the comparison) surpasses the threshold
THs

E . 

 

The multiple-circle detection procedure can thus be described as follows: 

 

Step 1: The best solution found by the ABC algorithm and all candidate circles held by the 

exhausted-source memory are organized in a decreasing order of their matching fitness, 

yielding a new vector { }1
, ,

C Ne
M C C= K , with Ne being the size of the exhausted-source 

memory plus one. 

Step 2: The candidate circle 
1C  showing the highest matching fitness is identified as the first 

circle shape
1CS  as it is stored within a vector Ac of actual circles. 

Step 3: The distinctiveness factor 
dis

E for the candidate circle 
mC  (element m in 

C
M ) is 
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compared with every element in Ac .  If 
di THs SE E> is true for each pair of solutions 

(those present in Ac  and in the candidate circle 
mC ), then 

mC  is considered as a new 

circle shape CS  and is added to the vector Ac . Otherwise, the next circle candidate 
1mC +  

is evaluated and 
mC  is discarded. 

Step 4: Step 3 is repeated until all Ne candidate circles in 
C

M  have been analyzed. 

 

Summarizing the overall procedure, Fig. 3 shows the outcome of the ABC-based circular detector. The 

input image (Fig. 3a) has a resolution of 256 x 256 pixels and shows two circles and two ellipses with a 

different circularity factor. Fig. 3b presents the detected circles with a red overlay. Fig. 3c shows the 

candidate circles held by the exhausted-source memory after the optimization process. Fig. 3d presents 

the resulting image after the previously described discrimination procedure has been applied. 
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(c)      (d) 

Fig. 3. ABC-based circular detector performance: (a) the original image and (b) all detected circles as an overlay (c) 

Candidate circles held by the exhausted-source memory after optimization process and (d) remaining circles after the 

discrimination process. 

 

 5. Experimental Results 
 

Experimental tests have been developed in order to evaluate the performance of the circle detector. The 

experiments address the following tasks:  

 

(1) Circle localization,  

(2) Shape discrimination,  

(3) Circular approximation: occluded circles and arc detection. 

 

Table 1 presents the parameters for the ABC algorithm in this study. They have been retained for all test 

images after being experimentally defined. 

 

Colony size Abandonment limit Number of cycles α  limit 
20 100 300 0.05 30 

Table 1. ABC detector parameters 
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All the experiments have been executed over a Pentium IV 2.5 GHz computer under C language 

programming. All the images are pre-processed by the standard Canny edge detector using the image-

processing toolbox for MATLAB R2008a. 

 

 

  
(a)                (b) 

  
(c)      (d) 

Fig. 4. Circle localization over synthetic images. The image (a) shows the original image while (b) presents the 

detected circles as an overlay. The image in (c) shows a second image with salt & pepper noise and (d) shows 

detected circles as a red overlay. 
 

5.1 Circle localization  

 

5.1.1. Synthetic images  

 

The experimental setup includes the use of several synthetic images of 320x240 pixels. All images 

contain varying amounts of circular shapes and some have also been contaminated by added noise so as to 

increase the complexity of the localization task. The algorithm is executed over 100 times for each test 

image, successfully identifying and marking all circles in the image. The detection has proved to be 

robust to translation and scaling, requiring less than 1s. Fig. 4 shows the outcome after applying the 

algorithm over two images taken from the experimental set. 

 

5.1.2. Natural images  

 

This experiment tests the circle detection on real-life images. Twenty five test images of 640x480 pixels 

have been captured using a digital camera under an 8-bit color format. Each natural scene includes 

circular shapes that have been pre-processed through the Canny edge detection algorithm before being fed 

to the ABC procedure. Fig. 5 shows a multiple-circle detection over a natural image.    
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(c)                                                                                         (d) 

                               

 
Fig. 5. Circle detection algorithm over natural images: (a) the original image (b) the detected circles as a red overlay 

(c) candidate circles lying at the exhausted-source memory after the optimization and (d) detected circles after 

finishing the discrimination process. 

 

  
(a)      (b) 

Fig. 6. Shape discrimination over synthetic images: (a) the original image contaminated by salt & pepper noise (b) 

detected circles as an overlay. 

 

5.2. Shape discrimination tests  

 

This section discusses the detector’s ability to differentiate circular patterns over any other shape, which 

might be present in the image. Fig. 6 shows five different synthetic shapes within an image of 540x300 

pixels that has been contaminated by salt & pepper noise. Fig. 7 repeats the experiment over real-life 

images. 
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(a)      (b) 

Fig. 7. Shape discrimination in real-life images: (a) original image and (b) the detected circle as an overlay. 

 

5.3 Circular approximation: occluded circles and arc detection. 

 

The ABC detector algorithm is able to detect occluded or imperfect circles as well as partially defined 

shapes such as arc segments. The relevance of such functionality comes from the fact that imperfect 

circles are commonly found in typical computer vision applications. Since circle detection has been 

considered as an optimization problem, the ABC algorithm allows finding circles that may approach a 

given shape according to fitness values for each candidate. Fig. 8a shows some examples of circular 

approximation. Likewise, the proposed algorithm is able to find circle parameters that better approach an 

arc or an occluded circle. Fig. 8b and 8c show some examples of this functionality. A small value for 

J(C), i.e., near zero, refers to a circle while a slightly bigger value accounts for an arc or an occluded 

circular shape. Such a fact does not represent any trouble as circles can be shown following the obtained 

J(C) values. 

 

5.4 Performance evaluation 

 

In order to enhance the algorithm analysis, the ABC proposed algorithm is compared with the BFAOA 

and the GA circle detectors over a set of common images.   

 

The GA algorithm follows the proposal of Ayala-Ramirez et al., which considers the population size as 

70, the crossover probability as 0.55, the mutation probability as 0.10 and the number of elite individuals 

as 2. The roulette wheel selection and the 1-point crossover operator are both applied. The parameter 

setup and the fitness function follow the configuration suggested in [15]. The BFAOA algorithm follows 

the implementation from [16] considering the experimental parameters as: S=50, 100
c

N = , 

4,
s

N =
ed

1,N =
ed

0.25P = , attract 0.1d = , attract 0.2w = , 
repellant

10w =
repellant

0.1h = , 400λ =  and 6ψ = . 

Such values are found to represent the best configuration set according to [16]. 

 

 
 

 

 

 

 

 

(a) 
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(b) 

 

 

 

 

 

 

 

(c) 

 
 

 
Fig. 8. ABC approximating circular shapes and arc sections. 

 

Images rarely contain perfectly-shaped circles. Therefore, aiming for a test on accuracy for a single-circle, 

the detection is challenged by a ground-truth circle, which is determined manually from the original edge-

map. The parameters ( , , )
true true true
x y r of the reference circle are computed considering the best matching 

circle that has been previously defined over the edge-map. If the centre and the radius of the detected 

circle are defined as ( , )
D D
x y and

D
r , then an error score (Es) can be chosen as follows: 

 

( )Es= true D true D true Dx x y y r rη µ⋅ − + − + ⋅ −  (9) 

 

The central point difference ( )true D true Dx x y y− + −  represents the centre shift for the detected circle as it 

is compared with a benchmark circle. The radio mismatch ( )true Dr r−  accounts for the difference between 

their radii. η  and µ  represent two weighting parameters, which are to be applied separately to the central 

point difference and to the radius mismatch for the final error Es. In this study, they are chosen as 

0.05η = and 0.1µ = . This particular choice ensures that the radii difference would be strongly weighted 

in comparison to the difference in the central circular positions of manually detected and machine-

detected circles. In order to use an error metric for multiple-circle detection, the averaged Es produced 

from each circle in the image is considered. Such criterion, defined as the multiple error (ME), is 

calculated as follows: 

 

1

1
ME= Es

NC

R

RNC =

  ⋅ 
 

∑  (10) 

 

where NC represents the number of circles actually present the image. In case the ME is less than 1, the 

algorithm is considered successful; otherwise it is said to have failed in the detection of the circle set. 

Notice that for 0.05η =  and 0.1µ = , it yields ME<1, which accounts for a maximal tolerated average 

difference on radius length of 10 pixels, whereas the maximum average mismatch for the centre location 

can be up to 20 pixels. In general, the success rate (SR) can thus be defined as the percentage of achieving 

success after a certain number of trials. 
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Fig. 9. Test images and their detected circles using the ABC detector. The results show the best and the worst case 

obtained throughout 35 runs. 

Fig. 9 shows six images that have been used to compare the performance of the GA-based algorithm [15], 

the BFOA method [16] and the proposed approach. The performance is analyzed by considering 35 

different executions for each algorithm over six images. Table 2 presents the averaged execution time, the 

success rate (SR) in percentage and the averaged multiple error (ME). The best entries are bold-cased in 

Table 2. Closer inspection reveals that the proposed method is able to achieve the highest success rate 

with the smallest error, and still requires less computational time for most cases. Fig. 9 also exhibits the 

resulting images after applying the ABC detector. Such results present the best and the worst cases 

obtained throughout 35 runs.  

 

A non-parametric statistical significance proof called Wilcoxon’s rank sum test for independent samples 

[44-46] has been conducted at 5% significance level on the multiple error (ME) data of Table 2. Table 3 

reports the p-values produced by Wilcoxon’s test for the pair-wise comparison of multiple error (ME) 

between two groups. One group corresponds to ABC versus GA and the other corresponds to ABC versus 

BFOA, one at a time. As a null hypothesis, it is assumed that there is no significant difference between 

the mean values of the two groups. The alternative hypothesis considers a significant difference between 

the mean values of both groups. All p-values reported in the table are less than 0.05 (5% significance 

level), which is a strong evidence against the null hypothesis, indicating that the best ABC mean values 

for the performance are statistically significant and have not occurred by chance.  

 
 

Image 

 

Averaged execution time ± Standard 
deviation (s) 

 

 

Success rate (SR) (%) 

 

Averaged ME ± Standard deviation 

  
GA 

 
BFOA 

 
ABC 

 
GA 

 
BFOA 

 
ABC 

 
GA 

 
BFOA 

 
ABC 

 

(a) 2.23±(0.41) 1.71±(0.51) 0.21±(0.22) 94 100 100 0.41±(0.044) 0.33±(0.052) 0.22±(0.033) 
(b) 3.15±(0.39) 2.80±(0.65) 0.36±(0.24) 81 95 98 0.51±(0.038) 0.37±(0.032) 0.26±(0.041) 

(c) 4.21±(0.11) 3.18±(0.36) 0.20±(0.19) 79 91 100 0.48±(0.029) 0.41±(0.051) 0.15±(0.036) 

(d) 5.11±(0.43) 3.45±(0.52) 1.10±(0.24) 93 100 100 0.45±(0.051) 0.41±(0.029) 0.25±(0.037) 
(e) 6.33±(0.34) 4.11±(0.14) 1.61±(0.17) 87 94 100 0.81±(0.042) 0.77±(0.051) 0.37±(0.055) 
(f) 7.62±(0.97) 5.36±(0.17) 1.95±(0.41) 88 90 98 0.92±(0.075) 0.88±(0.081) 0.41±(0.066) 

 
Table 2. The averaged execution-time, success rate and the averaged multiple error for the GA-based algorithm, the 

BFOA method and the proposed ABC algorithm, considering the six test images shown in Fig. 9 

 
Image p-Value 

 ABC vs. GA ABC vs. BFOA 

   
(a) 1.8061e-004 1.8288e-004 
(b) 1.7454e-004 1.9011e-004 
(c) 1.7981e-004 1.8922e-004 
(d) 1.7788e-004 1.8698e-004 
(e) 1.6989e-004 1.9124e-004 
(f) 1.7012e-004 1.9081e-004 

Table 3.  p-values from Wilcoxon’s test, comparing ABC with GA and BFOA over the ME from Table 2. 

 

Fig. 10 demonstrates the relative performance of ABC in comparison with the RHT algorithm following 

the proposal in [12]. All images belonging to the test are complicated and contain different noise 

conditions. The performance analysis is achieved by considering 35 different executions for each 

algorithm over the three images. The results, exhibited in Fig. 10, present the median-run solution (when 

the runs were ranked according to their final ME value) obtained throughout the 35 runs. On the other 

hand, Table 4 reports the corresponding averaged execution time, success rate (in %), and average 

multiple error (using (10)) for ABC and RHT algorithms over the set of images. Table 4 shows a decrease 

in performance of the RHT algorithm as noise conditions change. Yet the ABC algorithm holds its 

performance under the same circumstances. 
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Image 
 

Average time ± Standard deviation (s) 

 

 
Success rate 

(SR) (%) 

 
Average ME ± Standard deviation 

  
RHT 

 
ABC 

 
RHT 

 
ABC 

 
RHT 

 
ABC 

(I) 7.82±(0.34) 0.20±(0.31) 100 100 0.19±(0.041) 0.20±(0.021) 

(II) 8.65±(0.48) 0.23±(0.28) 70 100 0.47±(0.037) 0.18±(0.035) 

(III) 10.65±(0.48) 0.22±(0.21) 18 100 1.21±(0.033) 0.23±(0.028) 

 

Table 4. Average time, success rate and averaged error for ABC and HT, considering three test images 
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Fig. 10. Relative performance of RHT and ABC 

 

6. Conclusions 
 

This paper has presented an algorithm for the automatic detection of multiple circular shapes from 

complicated and noisy images without considering the conventional Hough Transform principles. The 

detection process is considered to be similar to a multi-modal optimization problem. In contrast to other 

heuristic methods that employ an iterative procedure, the proposed ABC method is able to detect single or 

multiple circles over a digital image by running only one optimization cycle. The ABC algorithm 

searches the entire edge-map for circular shapes by using a combination of three non-collinear edge 
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points as candidate circles (food positions) in the edge-only image. A matching function (objective 

function) is used to measure the existence of a candidate circle over the edge-map. Guided by the values 

of this matching function, the set of encoded candidate circles is evolved using the ABC algorithm so that 

the best candidate can fit into an actual circle. A novel contribution is related to the exhausted-source 

memory that has been designed to hold “stuck” solutions which, in turn, represent feasible solutions for 

the multi-circle detection problem. A post-analysis on the exhausted-source memory should indeed detect 

other local minima, i.e., other potential circular shapes. The overall approach generates a fast sub-pixel 

detector, which can effectively identify multiple circles in real images despite circular objects exhibiting a 

significant occluded portion. 

 

Classical Hough Transform methods for circle detection use three edge points to cast a vote for the 

potential circular shape in the parameter space. However, they would require a huge amount of memory 

and longer computational times to obtain a sub-pixel resolution. Moreover, HT-based methods rarely find 

a precise parameter set for a circle in the image [47]. In our approach, the detected circles hold a sub-pixel 

accuracy inherited directly from the circle equation and the MCA method. 

 

In order to test the circle detection performance, both speed and accuracy have been compared. Score 

functions are defined by (9)-(10) in order to measure accuracy and effectively evaluate the mismatch 

between  manually-detected and machine-detected circles. We have demonstrated that the ABC method 

outperforms both the GA (as described in [15]) and the BFOA (as described in [16]) within a statistically 

significant framework (Wilcoxon test). In contrast to the ABC method, the RHT algorithm [12] shows a 

decrease in performance under noisy conditions. Yet the ABC algorithm holds its performance under the 

same circumstances. 

 

Finally, Table 2 indicates that the ABC method can yield better results on complicated and noisy images 

compared with the GA and the BFOA methods. However, the aim of this study is not to beat all the circle 

detector methods proposed earlier, but to show that the ABC algorithm can effectively serve as an 

attractive method to successfully extract multiple circular shapes. 
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