Skip to main content
Log in

Generalised Gaussian radial basis function neural networks

  • Original Paper
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

The mixed use of different shapes of radial basis functions (RBFs) in radial basis functions neural networks (RBFNNs) is investigated in this paper. For this purpose, we propose the use of a generalised version of the standard RBFNN, based on the generalised Gaussian distribution. The generalised radial basis function (GRBF) proposed in this paper is able to reproduce other different radial basis functions (RBFs) by changing a real parameter τ. In the proposed methodology, a hybrid evolutionary algorithm (HEA) is employed to estimate the number of hidden neuron, the centres, type and width of each RBF associated with each radial unit. In order to test the performance of the proposed methodology, an experimental study is presented with 20 datasets from the UCI repository. The GRBF neural network (GRBFNN) was compared to RBFNNs with Gaussian, Cauchy and inverse multiquadratic RBFs in the hidden layer and to other classifiers, including different RBFNN design methods, support vector machines (SVMs), a sparse probabilistic classifier (sparse multinominal logistic regression, SMLR) and other non-sparse (but regularised) probabilistic classifiers (regularised multinominal logistic regression, RMLR). The GRBFNN models were found to be better than the alternative RBFNNs for almost all datasets, producing the highest mean accuracy rank.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. http://www.uco.es/grupos/ayrna/index.php?lang=en (“Datasets” section).

  2. http://www.cns.atr.jp/~oyamashi/SLR-WEB/.

References

  • Asuncion A, Newman D (2007) UCI machine learning repository. http://www.ics.uci.edu/~mlearn/MLRepository.html

  • Barbosa BHG, Bui LT, Abbass HA, Aguirre LA, Braga AP (2011) The use of coevolution and the artificial immune system for ensemble learning. Softw Comput 15(9):1735–1747

    Article  Google Scholar 

  • Bazi Y, Bruzzone L, Melgani F (2007) Image thresholding based on the em algorithm and the generalized gaussian distribution. Pattern Recognit 40(2):619–634

    Article  MATH  Google Scholar 

  • Bishop CM (1996) Neural networks for pattern recognition. Oxford University Press, Oxford

  • Bishop CM (2006) Pattern Recognition and Machine Learning. Springer, Berlin

  • Bohte SM, La Poutr H, Kok JN (2002) Unsupervised clustering with spiking neurons by sparse temporal coding and multi-layer rbf networks. IEEE Trans Neural Netw 13(2):426–435

    Article  Google Scholar 

  • Chang C, Lin C (2001) Libsvm: a library for support vector machines

  • Chen H, Tino P, Yao X (2009) Probabilistic classification vector machines. IEEE Trans Neural Netw 20(6):901–914

    Article  Google Scholar 

  • Cruz-Ramírez M, Hervás-Martínez C, Jurado-Expósito M, López-Granados F (2012) A multi-objective neural network based method for cover crop identification from remote sensed data. Expert Syst Appl 39(11):10,038–10,048

    Article  Google Scholar 

  • Demsar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30

    MathSciNet  MATH  Google Scholar 

  • Do MN, Vetterli M (2002) Wavelet-based texture retrieval using generalized Gaussian density and Kullback–Leibler distance. IEEE Trans Image Process 11(2):146–158

    Article  MathSciNet  Google Scholar 

  • Freund Y, Schapire RE (1996) Experiments with a new boosting algorithm. In: Proceedings of the Thirteenth International Conference on Machine Learning, Morgan Kaufmann, pp 148–156

  • Friedman M (1940) A comparison of alternative tests of significance for the problem of m rankings. Ann Math Stat 11(1):86–92

    Article  Google Scholar 

  • Fu S, Yang G, Hou Z (2010) Image category learning and classification via optimal linear combination of multiple partially matching kernels. Softw Comput 14(2):181–192

    Article  Google Scholar 

  • Fu X, Wang L (2003) Data dimensionality reduction with application to simplifying rbf network structure and improving classification performance. IEEE Trans Syst Man Cybern Part B Cybern 33(3):399–409

    Article  Google Scholar 

  • Gao S, Feng Z, Zhong Y, Shirinzadeh B (2008) Random weighting estimation of parameters in generalized Gaussian distribution. Inf Sci 178(9):2275–2281

    Article  MathSciNet  Google Scholar 

  • García S, Herrera F (2008) An extension on “statistical comparisons of classifiers over multiple data sets” for all pairwise comparisons. J Mach Learn Res 9:2677–2694

    MATH  Google Scholar 

  • García-Pedrajas N, Herváas-Martínez C, Muñoz Péerez J (2003) Covnet: A cooperative coevolutionary model for evolving artificial neural networks. IEEE Trans Neural Netw 14(3):575–596

    Article  Google Scholar 

  • Gutiérrez PA, Hervás C, Lozano M (2010) Designing multilayer perceptrons using a guided saw-tooth evolutionary programming algorithm. Softw Comput 14(6):599–613

    Article  Google Scholar 

  • Hartman EJ, Keeler JD, Kowalski JM (1990) Layered neural networks with Gaussian hidden units as universal approximations. Neural Comput 2(2):210–215

    Article  Google Scholar 

  • Hastie T, Tibshirani R, Friedman JH (2001) The elements of statistical learning. Springer, Berlin

  • Hervs-Martnez C, Martnez-Estudillo FJ, Carbonero-Ruz M (2008) Multilogistic regression by means of evolutionary product-unit neural networks. Neural Netw 21(7):951–961

    Article  Google Scholar 

  • Hochberg Y, Tamhane A (1987) Multiple comparison procedures. John Wiley & Sons, New York

  • Igel C, Hsken M (2003) Empirical evaluation of the improved rprop learning algorithms. Neurocomputing 50(6):105–123

    Article  MATH  Google Scholar 

  • Kokkinakis K, Nandi AK (2005) Exponent parameter estimation for generalized Gaussian probability density functions with application to speech modeling. Signal Process 85(9):1852–1858

    Article  MATH  Google Scholar 

  • Krishnapuram B, Carin L, Figueiredo MAT, Hartemink AJ (2005) Sparse multinomial logistic regression: Fast algorithms and generalization bounds. IEEE Trans Pattern Anal Mach Intell 27(6):957–968

    Article  Google Scholar 

  • Krupinski R, Purczynski J (2006) Approximated fast estimator for the shape parameter of generalized gaussian distribution. Signal Process 86(2):205–211

    Article  MATH  Google Scholar 

  • Luengo J, García S, Herrera F (2009) A study on the use of statistical tests for experimentation with neural networks: Analysis of parametric test conditions and non-parametric tests. Expert Syst Appl 36(4):7798–7808

    Article  Google Scholar 

  • Nabney IT (2004) Efficient training of rbf networks for classification. Int J Neural Syst 14(3):201–208

    Article  Google Scholar 

  • Ng WWY, Yeung DS, Wang D, Tsang ECC, Wang XZ (2007) Localized generalization error of gaussian-based classifiers and visualization of decision boundaries. Softw Comput 11(4):375–381

    Article  Google Scholar 

  • Panchapakesan C, Ralph D, Palaniswami M (1998) Effects of moving the centers in an RBF network. In: Proc. IEEE International Conference on Neural Networks, IEEE, vol 2. pp 1256–1260

  • Peng JX, Li K, Irwin G (2007) A novel continuous forward algorithm for RBF neural modelling. IEEE Trans Autom Control 52:117–122

    Article  MathSciNet  Google Scholar 

  • Pi M (2006) Improve maximum likelihood estimation for subband GGD parameters. Pattern Recognit Lett 27(14):1710–1713

    Article  Google Scholar 

  • Tsallis C, Mendes RS, Plastino AR (1998) The role of constraints within generalized nonextensive statistics. Phys A: Stat Mech Appl 261(3-4):534–554

    Article  Google Scholar 

  • Varanasi MK, Aazhang B (1989) Parametric generalized Gaussian density estimation. J Acoust Soc Am 86(4):1404–1415

    Article  Google Scholar 

  • Verleysen M, Franois D, Simon G, Wertz V (2003) On the effects of dimensionality on data analysis with neural networks. In: Mira JAe J (ed) Artificial neural nets problem solving methods. Lecture Notes in Computer Science, vol 2687. Springer, Berlin, pp II105–II112

  • Wang L, Fu X (2005) Data mining with computational intelligence (Advanced information and knowledge processing). Springer, New York

  • Wright S (1992) Statistical comparisons of classifiers over multiple data sets. Biometrics 48:1005–1013

    Article  Google Scholar 

  • Yamashita O, Sato M, Yoshioka T, Tong F, Kamitani Y (2008) Sparse estimation automatically selects voxels relevant for the decoding of fmri activity patterns. NeuroImage 42(4):1414–1429

    Article  Google Scholar 

  • Yao X, Liu Y (1997) A new evolutionary system for evolving artificial neural networks. IEEE Trans Neural Netw 8(3):694–713

    Article  MathSciNet  Google Scholar 

  • Yeh C, Su W, Lee S (2011) Employing multiple-kernel support vector machines for counterfeit banknote recognition. Appl Softw Comput J 11(1):1439–1447

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partially subsidised by the TIN2011-22794 project of the Spanish Inter-Ministerial Commission of Science and Technology (MICYT), FEDER funds and the P08-TIC-3745 project of the “Junta de Andalucia” (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Fernández-Navarro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández-Navarro, F., Hervás-Martínez, C. & Gutierrez, P.A. Generalised Gaussian radial basis function neural networks. Soft Comput 17, 519–533 (2013). https://doi.org/10.1007/s00500-012-0923-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-012-0923-4

Keywords

Navigation