Skip to main content
Log in

Enhancing the food locations in an artificial bee colony algorithm

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Artificial bee colony or ABC is one of the newest additions to the class of population based Nature Inspired Algorithms. In the present study we suggest some modifications in the structure of basic ABC to further improve its performance. The corresponding algorithms proposed in the present study are named Intermediate ABC (I-ABC) and I-ABC greedy. In I-ABC, the potential food sources are generated by using the intermediate positions between the uniformly generated random numbers and random numbers generated by opposition based learning (OBL). I-ABC greedy is a variation of I-ABC, where the search is always forced to move towards the solution vector having the best fitness value in the population. While the use of OBL provides a priori information about the search space, the component of greediness improves the convergence rate. The performance of proposed I-ABC and I-ABC greedy are investigated on a comprehensive set of 13 classical benchmark functions, 25 composite functions included in the special session of CEC 2005 and eleven shifted functions proposed in the special session of CEC 2008, ISDA 2009, CEC 2010 and SOCO 2010. Also, the efficiency of the proposed algorithms is validated on two real life problems; frequency modulation sound parameter estimation and to estimate the software cost model parameters. Numerical results and statistical analysis demonstrates that the proposed algorithms are quite competent in dealing with different types of problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Akay B, Karaboga D (2012a) Artificial bee colony algorithm for large-scale problems and engineering design optimization. J Intell Manuf 23(4):1001–1014

    Article  Google Scholar 

  • Akay B, Karaboga D (2012b) A modified artificial bee colony algorithm for real-parameter optimization. Inf Sci 192:120–142

    Google Scholar 

  • Ali MM, Gabere MN, Wenxing Zhu (2012) A derivative-free variant called DFSA of Dekkers and Aarts continuous simulated annealing algorithm. Appl Math Comput 219:605–616

    Article  MathSciNet  Google Scholar 

  • Auger A, Hansen N (2005) A restart CMA evolution strategy with increasing population size. In: The 2005 IEEE Congress on Evolutionary Computation, vol 2. pp 1769–1776

  • Bailey JW, Basili VR (1981) A meta model for software development resource expenditure. In: Proceedings of the International Conference on Software Engineering, pp 107–115

  • Ballester PJ, Stephenson J, Carter JN, Gallagher K (2005) Real-parameter optimization performance study on the CEC-2005 benchmark with spc-pnx. In: The 2005 IEEE Congress on Evolutionary Computation, vol 1. pp 498–505

  • Banharnsakun A, Achalakul T, Sirinaovakul B (2011) The best-so-far selection in artificial bee colony algorithm. Appl Soft Computing 11(2):2888–2901

    Article  Google Scholar 

  • Bao L, Zeng JC (2009) Comparison and Analysis of the Selection Mechanism in the Artificial Bee Colony Algorithm. In: 9th International Conference on Hybrid Intelligent Systems, IEEE, pp 411–416

  • Basturk B, Karaboga D (2006) An artificial bee colony (ABC) algorithm for numeric function optimization. In: IEEE Swarm Intelligence Symposium 2006, Indianapolis, Indiana, USA

  • Baykasoglu A, Ozbakir L, Tapkan P (2007) Swarm intelligence focus on ant and particle swarm optimization, artificial bee colony algorithm and its application to generalized assignment problem. I-Tech Education and Publishing, Vienna, pp 113–144

    Google Scholar 

  • Bilal A (2010) Chaotic bee colony algorithms for global numerical optimization. Expert Syst Appl 37:5682–5687

    Article  Google Scholar 

  • Boehm B (1981) Software engineering economics, Englewood cliffs. Prentice-Hall, NJ

    Google Scholar 

  • Boehm B (1995) Cost models for future software life cycle process: COCOMO2 Annals of Software Engineering

  • Carrizosa E, Drazic M, Drazic Z, Mladenovic N (2012) Gaussian variable neighborhood search for continuous optimization. Comput Oper Res 39:2206–2213

    Article  MathSciNet  MATH  Google Scholar 

  • Chen J, Pan Q-K, Li J-Q (2012) Harmony search algorithm with dynamic control parameters. Appl Math Comput 219:592–604

    Article  MathSciNet  Google Scholar 

  • Das S, Abraham A, Chakraborty UK, Konar A (2009) Differential evolution using a neighborhood based mutation operator. IEEE Trans Evol Comput 13(2):526–553

    Article  Google Scholar 

  • Dasgupta S, Das S, Abraham A, Biswas A (2009) Adaptive computational chemotaxis in bacterial foraging optimization: an analysis. IEEE Trans Evol Comput 13(4):919–941

    Article  Google Scholar 

  • Davidović T, Ramljak D, Šelmić M, Teodorovic D (2011) Bee colony optimization for the p-center problem. Appl Soft Comput 38:1367–1376

    MATH  Google Scholar 

  • de Oca Montes MA, Stutzle MA, Birattari T, Dorigo M, Frankenstein’s M (2009) PSO: a composite particle swarm optimization algorithm. IEEE Trans Evol Comput 13(5):1120–1132

    Article  Google Scholar 

  • de Oliveira IMS, Schirru R (2011) Swarm intelligence of artificial bees applied to in-core fuel management optimization. Appl Soft Comput 38(2011):1039–1045

    Google Scholar 

  • Deb K, Anand A, Joshi D (2002) A computationally efficient evolutionary algorithm for real-parameter evolution. Evol Comput J 10(4):371–395

    Article  Google Scholar 

  • Dereli T, Das GS (2011) A hybrid ‘bee(s) algorithm’ for solving container loading problems. Appl Soft Comput 11:2854–2862

    Article  Google Scholar 

  • Dolado CJ, Leey M (2001) Can genetic programming improve software effort estimation? A comparative evaluation. Inf Softw Technol 43:863–873

    Article  Google Scholar 

  • Duan H, Xing Z, Xu C (2009) An improved quantum evolutionary algorithm based on artificial bee colony optimization. In: Advances in Computational Intelligence, AISC, vol 116. pp 269–278

  • Duarte A, Martí R, Glover F, Gortazar F (2011a) Hybrid scatter tabu search for unconstrained global optimization. Ann Oper Res 183:95–123

    Article  MathSciNet  MATH  Google Scholar 

  • Duarte A, Martí R, Gortazar F (2011b) Path relinking for large-scale global optimization. Soft Comput 15:2257–2273

    Article  Google Scholar 

  • Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings Sixth Symposium on Micro Machine and Human Science, Piscataway, NJ, IEEE Service Center, pp 39–43

  • Eshelman LJ (1991) The CHC adaptive search algorithm: how to have safe search when engaging in nontraditional genetic recombination. In: Rawlins G, Kaufmann M (eds) Foundations of genetic algorithms conference, vol 1. pp 265–283

  • Gao W, Liu S (2011) Improved artificial bee colony algorithm for global optimization. Inf Process Lett 111(17):871–882

    Article  MathSciNet  MATH  Google Scholar 

  • Gao WF, Liu SY (2012) A modified artificial bee colony algorithm. Comput Oper Res 39(3):687–697

    Article  MATH  Google Scholar 

  • Garcia S, Molina D, Lozano M, Herrera F (2009) A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization. J Heuristics 15:617–644

    Article  MATH  Google Scholar 

  • García-Nieto J, Alba E (2011) Restart particle swarm optimization with velocity modulation: a scalability test. Soft Comput 15(11):2221–2232

    Article  Google Scholar 

  • Glover F (1989) Tabu search—part I. ORSA J Comput 1:190–206

    Article  MathSciNet  MATH  Google Scholar 

  • Glover F (1990) Tabu search—Part II. ORSA Journal on Computing 2:4–32

    Article  MATH  Google Scholar 

  • Haijun D, Qingxian F (2009) Artificial bee colony algorithm based on Boltzmann selection strategy. Comput Eng Appl 45(32):53–55

    Google Scholar 

  • Hedar A-R, Ali AF (2012) Tabu search with multi-level neighborhood structures for high dimensional problems. Appl Intell 37:189–206

    Article  Google Scholar 

  • Herrera F, Lozano M (2009) ISDA’09 Workshop on Evolutionary Algorithms and other Metaheuristics for Continuous Optimization Problems—a scalability test. Technical report, University of Granada, Pisa, Italy

  • Herrera F, Lozano M, Verdegay JL (1998) Tackling real-coded genetic algorithms: operators and tools for the behavioral analysis. Artif Intell Rev 12(4):265–319

    Article  MATH  Google Scholar 

  • Hirsch MJ, Pardalos PM, Resende MGC (2010) Speeding up continuous GRASP. Eur J Oper Res 205:507–521

    Article  MATH  Google Scholar 

  • Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor, MI

  • Huang YM, Lin JC (2011) A new bee colony optimization algorithm with idle-timebased filtering scheme for open shop-scheduling problems. Expert Syst Appl 38:5438–5447

    Article  Google Scholar 

  • Jian MC (2006) Introducing recombination with dynamic linkage discovery to particle swarm optimization, Technical Report NCL-TR-2006006, Natural Computing Laboratory (NCLab), Department of Computer Science, National Chiao Tung University

  • Kang F, Li J, Xu Q (2009) Structural inverse analysis by hybrid simplex artificial bee colony algorithms. Comput Struct 87(13):861–870

    Article  Google Scholar 

  • Kang F, Li J, Ma Z (2011) Rosenbrock artificial bee colony algorithm for accurate global optimization of numerical functions. Inf Sci 181:3508–3531

    Article  MathSciNet  MATH  Google Scholar 

  • Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department

  • Karaboga N (2009) A new design method based on artificial bee colony algorithm for digital IIR filters. J Franklin Inst 346:328–348

    Article  MathSciNet  MATH  Google Scholar 

  • Karaboga D, Akay B (2009) A comparative study of artificial bee colony algorithm. Appl Math Comput 214:108–132

    Article  MathSciNet  MATH  Google Scholar 

  • Karaboga D, Basturk B (2007a) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 39:459–471

    Article  MathSciNet  MATH  Google Scholar 

  • Karaboga D, Basturk B (2007b) Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. In: LNCS: advances in soft computing-foundations of fuzzy logic and soft computing, vol 4529. Springer, pp 789–798

  • Karaboga D, Basturk B (2008) On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput 8:687–697

    Article  Google Scholar 

  • Karaboga D, Akay B, Ozturk C (2007) Artificial bee colony (ABC) optimization algorithm for training feed-forward neural networks. In: LNCS Modeling Decisions for Artificial Intelligence, vol 4617. Springer, pp 318–329

  • Karaboga D, Gorkemli B, Ozturk C, Karaboga N (2012a) A comprehensive survey: artificial bee colony (ABC) algorithm and applications, Artif Intell Rev. doi:10.1007/s10462-012-9328-0

  • Karaboga D, Ozturk C, Karaboga N, Gorkemli B (2012b) Artificial bee colony programming for symbolic regression. Inf Sci 209:1–15

    Article  Google Scholar 

  • Kashan MH, Nahavandi N, Kashan AH (2012) DisABC: a new artificial bee colony algorithm for binary optimization. Appl Soft Comput 12:342–352

    Article  Google Scholar 

  • Kemere CF (1987) An empirical validation of software cost estimation models. Commun ACM 30:416–429

    Article  Google Scholar 

  • Kirkpatrick S, Gelett CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:621–630

    Article  Google Scholar 

  • Lei X, Huang X, Zhang A (2010) Improved artificial bee colony algorithm and its application in data clustering. In: IEEE fifth international conference on bio-inspired computing: theories and applications (BIC-TA), pp 514–521

  • Li G, Niu P, Xiao X (2012) Development and investigation of efficient artificial bee colony algorithm for numerical function optimization. Appl Soft Comput 12:320–332

    Article  Google Scholar 

  • Liang F (2011) Annealing evolutionary stochastic approximation Monte Carlo for global optimization. Stat Comput 21:375–393

    Article  MathSciNet  Google Scholar 

  • Liang JJ, Suganthan PN (2005) Dynamic multi-swarm particle swarm optimizer with local search. In: The 2005 IEEE Congress on Evolutionary Computation, vol 1. pp 522–528

  • Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295

    Article  Google Scholar 

  • Lozano M, Herrera F (2010) Call for papers: Special issue of soft computing: a fusion of foundations, methodologies and applications on scalability of evolutionary algorithms and other

  • Ma M, Liang J, Guo M, Fan Y, Yin Y (2011) SAR image segmentation based on artificial bee colony algorithm. Appl Soft Comput 11(8):5205–5214

    Article  Google Scholar 

  • Masegosa AD, Pelta DA, Verdegay JL (2013) A centralised cooperative strategy for continuous optimisation: the influence of cooperation in performance and behaviour. Inf Sci 219:73–92

    Article  MathSciNet  Google Scholar 

  • Mininno E, Neri F, Cupertino F, Naso D (2011) Compact differential evolution. IEEE Trans Evol Comput 15(1):32–54

    Article  Google Scholar 

  • Molina D, Lozano M, García-Martínez C, Herrera F (2010) Memetic algorithms for continuous optimization based on local search chains. Evol Comput 18(1):27–63

    Article  Google Scholar 

  • Neri F, Tirronen V (2009) Scale factor local search in differential evolution. Memetic Comput 1:153–171

    Article  Google Scholar 

  • Nguyen QH, Ong Y-S, Lim MH (2009) A probabilistic memetic framework. IEEE Trans Evol Comput 13(3):604–623

    Article  Google Scholar 

  • Noman N, Iba H (2008) Accelerating differential evolution using an adaptive local search. IEEE Trans Evol Comput 12(1):107–125

    Article  Google Scholar 

  • Pan QK, Tasgetiren MF, Suganthan PN, Chua TJ (2011) A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem. Inf Sci 181(12):2455–2468

    Article  MathSciNet  Google Scholar 

  • Passino KM (2003) Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst Mag 22(3):52–67

    Article  MathSciNet  Google Scholar 

  • Qin AK, Suganthan PN (2005) Self-adaptive differential evolution algorithm for numerical optimization. In: The 2005 IEEE Congress on Evolutionary Computation, vol 2, pp 1785–1791

  • Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evol Comput 13(2):298–417

    Article  Google Scholar 

  • Quan H, X. Shi (2008) On the analysis of performance of the improved artificial-bee-colony algorithm. In: 4th IEEE International Conference on Natural Computation, ICNC, Jinan, China, pp 654–658

  • Rahnamayan S, Tizhoosh HR, Salama MMA (2007) A novel population initialization method for accelerating evolutionary algorithms. Comput Appl Math Appl 53:1605–1614

    Article  MathSciNet  MATH  Google Scholar 

  • Rahnamayan S, Tizhoosh HR, Salama MMA (2008) Opposition-based differential evolution. IEEE Trans Evol Comput 12(1):64–79

    Article  Google Scholar 

  • Rao RS, Narasimham S, Ramalingaraju M (2008) Optimization of distribution network configure ration for loss reduction using artificial bee colony algorithm. Int J Electr Power Energy Syst Eng 1:116–122

    Google Scholar 

  • Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232–2248

    Article  MATH  Google Scholar 

  • Ronkkonen J, Kukkonen S, Price KV (2005) Real-parameter optimization with differential evolution. In: The 2005 IEEE Congress on Evolutionary Computation, vol 1, pp 506–513

  • Seeley TD (1995) The wisdom of the hive. Harvard University Press, Cambridge

    Google Scholar 

  • Sharma, TK, Pant M (2011) Enhancing the food locations in an artificial bee colony algorithm. In: IEEE Swarm Intelligence Symposium (SIS), pp 119–123

  • Sheta AF (2006) Estimation of the COCOMO model parameters using genetic algorithms for NASA software projects. J Comput Sci 2(2):118–123

    Article  Google Scholar 

  • Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713

    Article  Google Scholar 

  • Singh A (2009) An artificial bee colony algorithm for the leaf-constrained minimum spanning tree problem. Appl Soft Comput 9:625–631

    Article  Google Scholar 

  • Sonmez M (2011) Artificial bee colony algorithm for optimization of truss structures. Appl Soft Comput 11:2406–2418

    Article  Google Scholar 

  • Storn R, Price K (1995) DE: a simple and efficient adaptive scheme for global optimization over continuous space. Technical Report TR-95-012, ICSI, March 1995. http://icsi.berkeley.edu/pub/techreports/1995/tr-95-012.ps.Z,1995

  • Storn R, Price K (1997) Differential evolution—a simple and efficient Heuristic for global optimization over continuous spaces. J Global Optim 11:341–359

    Article  MathSciNet  MATH  Google Scholar 

  • Suganthan PN, Hansen N, Liang JJ, Deb K, A ChenYP, Auger, Tiwari S (2005) Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization, Technical Report, Nanyang Technological University, Singapore. http://www.ntu.edu.sg/home/EPNSugan

  • Tang K, Yao X, Suganthan PN, MacNish C, Chen YP, Chen CM, Yang Z (2007) Benchmark functions for the CEC’2008 special session and competition on large scale global optimization, Technical Report, Nature Inspired Computation and Applications Laboratory, USTC, China. http://nical.ustc.edu.cn/cec08ss.php

  • Tang K, Li X, Suganthan PN, Yang Z, Weise T (2010) Benchmark functions for the CEC’2010 special session and competition on large scale global optimization. Technical Report Nature Inspired Computation and Applications Laboratory, USTC, Nanyang Technological University, China

  • Tsai P-W, Pan J-S et al (2009) Enhanced artificial bee colony optimization. Int J Innov Comput Inf Control 5(12):5081–5092

    Google Scholar 

  • Tuba M, Bacanin N, Stanarevic N (2011) Guided artificial bee colony algorithm. Eur Comput Conf, In, pp 398–403

    Google Scholar 

  • Vrugt JA, Robinson BA, Hyman JM (2009) Self-adaptive multimethod search for global optimization in real-parameter spaces. IEEE Trans Evol Comput 13(2):243–259

    Article  Google Scholar 

  • Xinchao Z (2011) Simulated annealing algorithm with adaptive neighborhood. Appl Soft Comput 11:1827–1836

    Article  Google Scholar 

  • Zhang J, Sanderson AC (2009) JADE: adaptive differential evolution with optional external archive. IEEE Trans Evol Comput 13(5):945–958

    Article  Google Scholar 

  • Zhu G, Kwong S (2010) Gbest-guided artificial bee colony algorithm for numerical function optimization. Appl Math Comput 217:3166–3173

    Article  MathSciNet  MATH  Google Scholar 

  • Ziarati K, Akbari R, Zeighami V (2010) On the performance of bee algorithms for resource-constrained project scheduling problem. Appl Soft Comput 11:3720–3733

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge with thanks the unknown referees whose comments helped in improving the quality of paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarun Kumar Sharma.

Additional information

Communicated by G. Acampora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, T.K., Pant, M. Enhancing the food locations in an artificial bee colony algorithm. Soft Comput 17, 1939–1965 (2013). https://doi.org/10.1007/s00500-013-1029-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-013-1029-3

Keywords

Navigation