Skip to main content
Log in

Population-based optimization of cytostatic/cytotoxic combination cancer chemotherapy

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

This article studies the suitability of modern population based algorithms for designing combination cancer chemotherapies. The problem of designing chemotherapy schedules is expressed as an optimization problem (an optimal control problem) where the objective is to minimize the tumor size without compromising the patient’s health. Given the complexity of the underlying mathematical model describing the tumor’s progression (considering two types of drugs, the cell cycle and the immune system response), analytical and classical optimization methods are not suitable, instead, stochastic heuristic optimization methods are the right tool to solve the optimal control problem. Considering several solution quality and performance metrics, we compared three powerful heuristic algorithms for real-parameter optimization, namely, CMA evolution strategy, differential evolution, and particle swarm pattern search method. The three algorithms were able to successfully solve the posed problem. However, differential evolution outperformed its counterparts both in quality of the obtained solutions and efficiency of search.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The ControlTest package is available at http://sci2s.ugr.es/sicidm/.

References

  • Acampora G, Cadenas J, Loia V, Ballester E (2011) Achieving memetic adaptability by means of agent-based machine learning. IEEE Trans Ind Inform 7(4):557–569

    Article  Google Scholar 

  • Acampora G, Cadenas J, Loia V, Ballester E (2011) A multi-agent memetic system for human-based knowledge selection. Syst Man Cybern Part A IEEE Trans Syst Hum 41(5):946–960

    Article  Google Scholar 

  • Acampora G, Loia V, Salerno S, Vitiello A (2012) A hybrid evolutionary approach for solving the ontology alignment problem. Int J Intell Syst 27(3):189–216

    Article  Google Scholar 

  • Arnaldo I, Contreras I, Millan-Ruiz D, Hidalgo J, Krasnogor N (2013) Matching island topologies to problem structure in parallel evolutionary algorithms. Soft Comput, pp 1–17. doi:10.1007/s00500-013-0995-9

  • Chuang L, Lotzova E, Cook K, Cristoforoni P, Morris M, Wharton T (1993) Effect of new investigational drug taxol on oncolytic activity and stimulation of human lymphocytes. Gynecol Oncol 49:291–298

    Article  Google Scholar 

  • Ciardiello F, Caputo R, Bianco R, Damiano V, Pomatico G, Placido SD, Bianco AR, Tortora G (2000) Antitumor effect and potentiation of cytotoxic drugs activity in human cancer cells by zd-1839 (Iressa), an epidermal growth factor receptor-selective tyrosine kinase inhibitor. Clin Cancer Res 6(5):2053–63

    Google Scholar 

  • de Pillis LAR (2003) The dynamics of an optimally controlled tumnor model: a case study. Math Comput Model 37(11):1221–1244

    Article  MATH  Google Scholar 

  • de Pillis L, Radunskaya A (2001) A mathematical tumor model with immune resistance and drug therapy: an optimal control approach. J Theor Med 3:79–100

    Article  MATH  Google Scholar 

  • Derrac J, Garcia S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18

    Article  Google Scholar 

  • Friedman M (1940) A comparison of alternative tests of significance for the problem of m rankings. Ann Math Stat 11:86–92

    Article  Google Scholar 

  • Hansen N (2006) The CMA evolution strategy: a comparing review, towards a new evolutionary computation. In: Advances on estimation of distribution algorithms, vol 192, chap 4. Springer, Berlin, pp 75–102

  • Hansen N (2008) The CMA evolution strategy. http://www.lri.fr/hansen/cmaesintro.html

  • Hansen N, Kern S (2004) Evaluating the CMA evolution strategy on multimodal test functions. In: Yao X et al (eds) Parallel Problem solving from nature PPSN VIII. LNCS, vol 3242. Springer, Berlin, pp 282–291

  • Hansen N, Ostermeier A (1996) Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation. In: Proceedings of the 1996 IEEE international conference on evolutionary computation. IEEE Service Center, Piscataway, NJ, USA, pp 312–317

  • Hansen N, Ostermeier A (2001) Completely derandomized self-adaptation in evolution strategies. Evol Comput 9(2):159–195

    Article  Google Scholar 

  • Hardman J, Linbird L (1996) Goodman and Gilman’s the pharmacological basis of therapeutics, 9th edn. Mc Graw Hill, Health Profesion Division, New York

  • Haupt S, Haupt R, Young G (2011) A mixed integer genetic algorithm used in biological and chemical defense applications. Soft Comput 15(1):51–59

    Article  Google Scholar 

  • Hodges J, Lehman E (1962) Ranks methods for combination of independent experiments in analysis of variance. Ann Math Stat 33:482–497

    Article  MATH  Google Scholar 

  • Houshmand M, Saleh R, Houshmand M (2011) Logic minimization of QCA circuits using genetic algorithms. In: Gaspar-Cunha A, Takahashi R, Schaefer G, Costa L (eds) Soft computing in industrial applications. Advances in intelligent and soft computing, vol 96. Springer, Berlin, pp 393–403

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, vol 4. IEEE Press, Piscataway, NJ, USA, pp 1942–1948

  • Kolda TG, Lewis RM, Torczon V (2003) Optimization by direct search: new perspectives on some classical and modern methods. SIAM Rev 45(3):385–482

    Article  MathSciNet  MATH  Google Scholar 

  • Li D, Hong G, Liyong Z (2013) A hybrid genetic algorithm-fuzzy c-means approach for incomplete data clustering based on nearest-neighbor intervals. Soft Comput, pp 1–10. doi:10.1007/s00500-013-0997-7

  • Liang Y, Leung KS, Mok TSK (2006) A novel evolutionary drug scheduling model in cancer chemotherapy. IEEE Trans Inf Technol Biomed 10(2):237–245

    Article  Google Scholar 

  • McCall J, Petrovski A, Shakya S (2008) Evolutionary algorithms for cancer chemotherapy optimization. In: Fogel GB, Corne DW, Pan Y (eds) Computational intelligence in bioinformatics. IEEE press series on computational intelligence, Chap. 12. Wiley Interscience, London, pp 265–296

  • Morrison R, Jong KD (2002) Measurement of population diversity. In: Artificial evolution: 5th international conference, evolution artificielle (EA 2001). LNCS, vol 2310. Springer, Berlin, pp 31–41

  • Nunez A, Merayo M, Hierons R, Nunez M (2013) Using genetic algorithms to generate test sequences for complex timed systems. Soft Comput 17(2):301–315

    Article  Google Scholar 

  • Ochoa G, Villasana M, Burke E (2007) An evolutionary approach to cancer chemotherapy. Genet Progr Evol Mach 8(4):301–318

    Article  Google Scholar 

  • Ong YS, Lim MH, Neri F, Ishibuchi H (2009) Special issue on emerging trends in soft computing: memetic algorithms. Soft Comput 13(8-9):739–740

    Article  Google Scholar 

  • Panetta J, Adam J (1995) A mathematical model of cycle-specific chemotherapy. Math Comput Model 22(2):67–82

    Article  MathSciNet  MATH  Google Scholar 

  • Park JK, Lee SH, Kang JH, Nishio K, Saijo N, Kuh HJ (2004) Synergistic interaction between gefitinib (Iressa, ZD1839) and paclitaxel against human gastric carcinoma cells. Anticancer Drugs 15(8):809–19

    Article  Google Scholar 

  • Payne J, Giacobini M, Moore J (2013) Complex and dynamic population structures: synthesis, open questions, and future directions. Soft Comput, pp 1–12. doi:10.1007/s00500-013-0994-x

  • Petrovski A, McCall J (2001) Multi-objective optimisation of cancer chemotherapy using evolutionary algorithms. In: Zitzler E, Deb K, Thiele L, Coello CAC, Corne D (eds) Proceedings of the first international conference on evolutionary multi-criterion optimization, EMO 2001. LNCS, vol 1993. Springer, Berlin, pp 531–545

  • Petrovski A, Shakya S, McCall J (2006) Optimising cancer chemotherapy using an estimation of distribution algorithm and genetic algorithms. In: Cattolico M (ed) Genetic and evolutionary computation conference, GECCO 2006, vol 1. ACM Press, New York, pp 413–418

  • Petrovski A, Sudha B, McCall J (2004) Optimising cancer chemotherapy using particle swarm optimisation and genetic algorithms. In: Yao X, Burke EK, Lozano J, Smith J, Guervós JJM, Bullinaria JA, Rowe JE, Tiño P, Kabán A, Schwefel HP (eds) Parallel problem solving from nature—PPSN VIII. LNCS, vol 3242. Springer, Berlin, pp 633–641

  • Piechocki MP, Yoo GH, Dibbley SK, Amjad EH, Lonardo F (2006) Iressa induces cytostasis and augments fas-mediated apoptosis in acinic cell adenocarcinoma overexpressing HER2/neu. Int J Cancer 119:441–454

    Article  Google Scholar 

  • Price KV, Storn RM, Lampinen JA (2005) Differential evolution, a practical approach to global optimization. Natural computing series. Springer, Berlin

  • Rechenberg I (1973) Evolution strategy: optimization of technical systems by means of biological evolution. Fromman-Holzboog, Stuttgart

  • Storn R, Price K (1995) Differential evolution—a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report TR-95-012, International Computer Science Institute, Berkeley, CA, USA

  • Storn R, Price K (1997) Differential evolution a simple and efficient heuristic for global optimisation over continuous spaces. J Glob Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  • Swierniak A, Polanski A, Kimmel M (1996) Optimal control problem arising in cell-cycle- specific cancer chemotherapy. Cell Prolif 29:117–139

    Article  Google Scholar 

  • Tse SM, Liang Y, Leung KS, Lee KH, Mok TSK (2007) A memetic algorithm for multiple drugs cancer chemotherapy schedule optimization. IEEE Trans Syst Man Cybern Part B Cybern 37(1):84–91

    Google Scholar 

  • Vaz AIF, Vicente LN (2007) A particle swarm pattern search method for bound constrained global optimization. J Glob Optim 39:197–219

    Article  MathSciNet  MATH  Google Scholar 

  • Vaz AIF, Vicente LN (2010) Pswarm solver homepage. http://www.norg.uminho.pt/aivaz/pswarm/

  • Villasana M, Ochoa G (2004) Heuristic design of cancer chemotherapy. IEEE Trans Evol Comput 8(6):513–521

    Article  Google Scholar 

  • Villasana M, Ochoa G, Aguilar S (2010) Modeling and optimization of combined cytostatic and cytotoxic cancer chemotherapy. Artif Intell Med 50:163–173

    Article  Google Scholar 

  • Villasana M, Radunskaya A (2003) A delay differential equation model for tumor growth. J Math Biol 47:270–294

    Article  MathSciNet  MATH  Google Scholar 

  • Wheldon T (1998) Mathematical models in cancer research. Adam Hilger, Bristol

  • Zoli W, Flamigni A, Frassineti G, Bajorko P, De Paola F, Milandri C, Amadori D, Gasperi-Campani A (1995) In vitro activitity of taxol and toxotere in comparison with doxorubicin and cisplatin on primary cell cultures of human breast cancers. Breast Cancer Res Treat 34:63–69

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Ochoa.

Additional information

Communicated by G. Acampora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ochoa, G., Villasana, M. Population-based optimization of cytostatic/cytotoxic combination cancer chemotherapy. Soft Comput 17, 913–924 (2013). https://doi.org/10.1007/s00500-013-1043-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-013-1043-5

Keywords

Navigation