Skip to main content
Log in

Convergence analysis of some multiobjective evolutionary algorithms when discovering motifs

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

An important issue in multiobjective optimization is the study of the convergence speed of algorithms. An optimization problem must be defined as simple as possible to minimize the computational cost required to solve it. In this work, we study the convergence speed of seven multiobjective evolutionary algorithms: DEPT, MO-VNS, MOABC, MO-GSA, MO-FA, NSGA-II, and SPEA2; when solving an important biological problem: the motif discovery problem. We have used twelve instances of four different organisms as benchmark, analyzing the number of fitness function evaluations required by each algorithm to achieve reasonable quality solutions. We have used the hypervolume indicator to evaluate the solutions discovered by each algorithm, measuring its quality every 100 evaluations. This methodology also allows us to study the hit rates of the algorithms over 30 independent runs. Moreover, we have made a deeper study in the more complex instance of each organism. In this study, we observe the increase of the archive (number of non-dominated solutions) and the spread of the Pareto fronts obtained by the algorithm in the median execution. As we will see, our study reveals that DEPT, MOABC, and MO-FA provide the best convergence speeds and the highest hit rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ao W, Gaudet J, Kent WJ, Muttumu S, Mango SE (2004) Environmentally induced foregut remodeling by PHA-4/FoxA and DAF-12/NHR. Science 305(5691):1743–1746

    Google Scholar 

  • Bailey TL, Elkan C (1995) Unsupervised learning of multiple motifs in biopolymers using expectation maximization. Mach Learn 21(1–2):51–80

    Google Scholar 

  • Bechikh S, Ben Said L, Ghédira K (2010) Estimating nadir point in multi-objective optimization using mobile reference points. IEEE congress on, evolutionary computation (CEC’10), pp 1–9

  • Ben Said L, Bechikh S, Ghédira K (2010) The r-dominance: a new dominance relation for interactive evolutionary multicriteria decision making. IEEE Trans Evol Comput 14(5):801–818

    Article  Google Scholar 

  • Boskovic B, Zumer V (2010) An improved self-adaptive differential evolution algorithm in single objective constrained real-parameter optimization. IEEE congress on, evolutionary computation (CEC’10), pp 1–8

  • Burset M, Guig R (1996) Evaluation of gene structure prediction programs. Genomics 34(3):353–367

    Article  Google Scholar 

  • Che D, Song Y, Rashedd K (2005) MDGA: motif discovery using a genetic algorithm. Proceedings of the 2005 conference on genetic and, evolutionary computation (GECCO’05), pp 447–452

  • Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190

    Google Scholar 

  • Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, New York

    MATH  Google Scholar 

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6:182–197

    Article  Google Scholar 

  • D’haeseleer P (2006) What are DNA sequence motifs? Nature Biotechnol 24(4):423–425

    Article  Google Scholar 

  • Eskin E, Pevzner PA (2002) Finding composite regulatory patterns in DNA sequences. Bioinformatics 18(Suppl 1):S354–S363

    Article  Google Scholar 

  • Favorov AV, Gelfand MS, Gerasimova AV, Ravcheev DA, Mironov AA, Makeev VJ (2005) A Gibbs sampler for identification of symmetrically structured, spaced DNA motifs with improved estimation of the signal length. Bioinformatics 21(10):2240–2245

    Article  Google Scholar 

  • Fogel GB, Porto VW, Varga G, Dow ER, Crave AM, Powers DM, Harlow HB, Su EW, Onyia JE, Su C (2008) Evolutionary computation for discovery of composite transcription factor binding sites. Nucl Acids Res 36(21):e142, 1–14

    Google Scholar 

  • Fogel GB, Weekes DG, Varga G, Dow ER, Harlow HB, Onyia JE, Su C (2004) Discovery of sequence motifs related to coexpression of genes using evolutionary computation. Nucl Acids Res 32(13):3826–3835

    Article  Google Scholar 

  • Frith MC, Hansen U, Spouge JL, Weng Z (2004) Finding functional sequence elements by multiple local alignment. Nucl Acids Res 32(1):189–200

    Article  Google Scholar 

  • González-Álvarez DL, Vega-Rodríguez MA, Gómez-Pulido JA, Sánchez-Pérez JM (2010) A multiobjective variable neighborhood search for solving the motif discovery problem. International Workshop on Soft Computing Models in Industrial Applications (SOCO’10) vol 73, pp 39–46

  • González-Álvarez DL, Vega-Rodríguez MA, Gómez-Pulido JA, Sánchez-Pérez JM (2010) Solving the motif discovery problem by using differential evolution with pareto tournaments. Proceedings of the 2010 IEEE congress on, evolutionary computation (CEC’10), pp 4140–4147

  • González-Álvarez DL, Vega-Rodríguez MA, Gómez-Pulido JA, Sánchez-Pérez JM (2011) Applying a multiobjective gravitational search algorithm (MO-GSA) to discover motifs. International work conference on artificial neural networks (IWANN’11), LNCS 6692/2011:372–379

  • González-Álvarez DL, Vega-Rodríguez MA, Gómez-Pulido JA, Sánchez-Pérez JM (2011) Finding motifs in DNA sequences applying a multiobjective artificial bee colony (MOABC) algorithm. Evolutionary computation, machine learning and data mining in bioinformatics. Lect Notes Comput Sci 6623(2011):89–100

    Article  Google Scholar 

  • González-Álvarez DL, Vega-Rodríguez MA, Gómez-Pulido JA, Sánchez-Pérez JM (2011) Predicting DNA motifs by using evolutionary multiobjective optimization. IEEE Trans Syst Man Cybern Part C Appl Rev 42(6):913–925

    Article  Google Scholar 

  • González-Álvarez DL, Vega-Rodríguez MA, Gómez-Pulido JA, Sánchez-Pérez JM (2012) Comparing multiobjective artificial bee colony adaptations for discovering DNA motifs. Evolutionary computation, machine learning and data mining in bioinformatics. Lect Notes Comput Sci 7246:110–121

    Article  Google Scholar 

  • González-Álvarez DL, Vega-Rodríguez MA, Gómez-Pulido JA, Sánchez-Pérez JM (2012) Comparing multiobjective swarm intelligence metaheuristics for DNA motif discovery. Eng Appl Artif Intell 26(1):314–326

    Article  Google Scholar 

  • Hertz GZ, Stormo GD (1999) Identifying DNA and protein patterns with statistically significant alignments of multiple sequences. Bioinformatics 15(7–8):563–577

    Article  Google Scholar 

  • Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical report-tr06, Erciyes University, Turkey.

  • Kaya M (2009) MOGAMOD: Multi-objective genetic algorithm for motif discovery. Expert Syst Appl 36(2):1039–1047

    Article  Google Scholar 

  • Li L (2009) GADEM: A genetic algorithm guided formation of spaced dyads coupled with an EM algorithm for motif discovery. J Computat Biol 16(2):317–329

    Article  Google Scholar 

  • Liu FFM, Tsai JJP, Chen RM, Chen SN, Shih SH (2004) FMGA: finding motifs by genetic algorithm. Fourth IEEE symposium on bioinformatics and, bioengineering (BIBE’04), pp 459–466

  • Lones MA, Tyrrell AM (2007) Regulatory motif discovery using a population clustering evolutionary algorithm. IEEE/ACM Trans Computat Biol Bioinf 4(3):403–414

    Article  Google Scholar 

  • Mladenovic N, Hansen P (1997) Variable neighborhood search. Comput Oper Res 24:1097–1100

    Article  MATH  MathSciNet  Google Scholar 

  • Pavesi G, Mauri G, Pesole G (2001) An algorithm for finding signals of unknown length in DNA sequences. Bioinformatics 17(Suppl 1):S207–S214

    Article  Google Scholar 

  • Pevzner P, Sze SH (2000) Combinatorial approaches to finding subtle signals in dna sequences. Proceedings of the eighth international conference on intelligent systems for, molecular biology, pp 269–278

  • Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    Article  MATH  Google Scholar 

  • Regnier M, Denise A (2004) Rare events and conditional events on random strings. Discr Math Theoret Comput Sci 6:191–214

    MATH  MathSciNet  Google Scholar 

  • Roth FP, Hughes JD, Estep PW, Church GM (1998) Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nature Biotechnol 16(10):939–945

    Article  Google Scholar 

  • Shao L, Chen Y (2009) Bacterial foraging optimization algorithm integrating tabu search for motif discovery. IEEE international conference on bioinformatics and, biomedicine (BIBM’09), pp 415- 418

  • Shao L, Chen Y, Abraham A (2009) Motif discovery using evolutionary algorithms. International conference of soft computing and, pattern recognition (SOCPAR’09) pp 420–425

  • Sheskin DJ (2007) Handbook of parametric and nonparametric statistical procedures, 4th edn. Chapman & Hall/CRC Press, New York

  • Sinha S, Tompa M (2003) YMF: a program for discovery of novel transcription factor binding sites by statistical overrepresentation. Nucl Acids Res 31(13):3586–3588

    Article  Google Scholar 

  • Stine M, Dasgupta D, Mukatira S (2003) Motif discovery in upstream sequences of coordinately expressed genes. The 2003 congress on, evolutionary computation (CEC’03) vol 3, pp 1596–1603

  • Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359

    Article  MATH  MathSciNet  Google Scholar 

  • Talbi EG (2009) Metaheuristics: from design to implementation. Wiley, New York

    Book  Google Scholar 

  • Thijs G, Lescot M, Marchal K, Rombauts S, De Moor B, Rouzé P, Moreau Y (2001) A higher-order background model improves the detection of promoter regulatory elements by Gibbs sampling. Bioinformatics 17(12):1113–1122

    Article  Google Scholar 

  • Tompa M, Li N, Bailey TL, Church GM, De Moor B, Eskin E, Favorov AV, Frith MC, Fu Y, Kent WJ, Makeev VJ, Mironov AA, Noble WS, Pavesi G, Pesole G, Rgnier M, Simonis N, Van Helden J, Vandenbogaert M, Weng Z, Workman C, Ye C, Zhu Z (2005) Assessing computational tools for the discovery of transcription factor binding sites. Nature Biotechnology 23(1):137–144

    Article  Google Scholar 

  • van Helden J, Andre B, Collado-Vides J (1998) Extracting regulatory sites from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies. J Mol Biol 281(5):827–842

    Article  Google Scholar 

  • van Helden J, Rios AF, Collado-Vides J (2000) Discovering regulatory elements in non-coding sequences by analysis of spaced dyads. Nucl Acids Res 28(8):1808–1818

    Google Scholar 

  • Wagner T, Beume N, Naujoks B (2007) Pareto-, aggregation-, and indicator-based methods in manyobjective optimization. Evolutionary multi-criterion optimization. Lect Notes Comput Sci 4403:742–756

    Google Scholar 

  • Wingender E, Dietze P, Karas H, Knuppel R (1996) TRANSFAC: a database on transcription factors and their DNA binding sites. Nucl Acids Res 24(1):238–241

    Article  Google Scholar 

  • Workman CT, Stormo GD (2000) ANN-Spec: a method for discovering transcription factor binding sites with improved specificity. Pacific symposium on biocomputing, pp 467–478

  • Yang XS (2009) Firefly algorithms for multimodal optimization. 5th international symposium of stochastic algorithms: foundations and applications (SAGA’09). LNCS 5792:169–178

    Google Scholar 

  • Zhang Q, Li H (2007) MOEA/D: a multi-objective evolutionary algorithm based on decomposition. IEEE Trans Evol Computat 11(6):712–731

    Article  Google Scholar 

  • Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans Evol Comput 3(4):257–271

    Article  Google Scholar 

  • Zitzler E, Kunzli S (2004) Indicator-based selection in multiobjective search. Proceedings 8th international conference on parallel problem solving from nature (PPSN VIII), pp 832–842

  • Zitzler E, Laumanns M, Thiele L (2002) SPEA2: improving the strength pareto evolutionary algorithm. International conference on evolutionary and deterministic methods for design, optimization and control with applications in industrial problems (EUROGEN), pp 95–100

Download references

Acknowledgments

This work was partially funded by the Spanish Ministry of Economy and Competitiveness and the ERDF (European Regional Development Fund), under the contract TIN2012-30685 (BIO project). Thanks also to the Fundación Valhondo for the economic support offered to David L. González-Álvarez. Álvaro Rubio-Largo is supported by the research Grant PRE09010 from Gobierno de Extremadura (Spain) and the European Social Fund (ESF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. González-Álvarez.

Additional information

Communicated by G. Acampora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Álvarez, D.L., Vega-Rodríguez, M.A. & Rubio-Largo, Á. Convergence analysis of some multiobjective evolutionary algorithms when discovering motifs. Soft Comput 18, 853–869 (2014). https://doi.org/10.1007/s00500-013-1103-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-013-1103-x

Keywords

Navigation