Skip to main content
Log in

A simple design method for interval type-2 fuzzy pid controllers

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this study, a design method for single Input interval type-2 fuzzy PID controller has been developed. The most important feature of the proposed type-2 fuzzy controller is its simple structure consisting of a single input variable. The presented simple structure gives an opportunity to the designer to form the type-2 fuzzy controller output in closed form formulation for the first time in literature. This formulation cannot be achieved with present type-2 fuzzy PID controller structures which have employed the Karnik-Mendel type reduction. The closed form solution is derived in terms of the tuning parameters which are chosen as the heights of lower membership functions of the antecedent interval type-2 fuzzy sets. Elaborations are done on the derived closed form output and a simple strategy is presented for a single input type-2 fuzzy PID controller design. The presented interval type-2 fuzzy controller structure still keeps the most preferred features of the PID controller such as simplicity and easy design. We will illustrate how the extra degrees of freedom provided by the antecedent interval type-2 fuzzy sets can be used to enhance the control performance on linear and nonlinear benchmark systems by simulations. Moreover, the type-2 fuzzy controller structure has been implemented on experimental pH neutralization. The simulation and experimental results will illustrate that the proposed type-2 fuzzy controller produces superior control performance and can handle nonlinear dynamics, parameter uncertainties, noise and disturbances better in comparison with the standard PID controllers. Hence, the results and analyses of this study will give the control engineers an opportunity to draw a bridge and connect the type-2 fuzzy logic and control theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ahn KK, Truong DQ (2009) Online tuning fuzzy PID controller using robust extended Kalman filter. J Process Contr 19:1011–1023

    Article  Google Scholar 

  • Aliasghary M, Eksin I, Guzelkaya M, Kumbasar T (2013) A Design Methodology and Analysis for Interval Type-2 Fuzzy PI/PD Controllers. Int J Innov Comput Info Contr 9(10):4215–4230

    Google Scholar 

  • Astrom KJ, Hagglund T (2005) Advanced PID Control. ISA-The Instrumentation, Systems, and Automation Society, Research Triangle Park

  • Bhatttacharya S, Chatterjee A, Munshi S (2004) A new self-tuned PID-type fuzzy controller as a combination of two-term controllers. ISA Trans 43:413–426

    Article  Google Scholar 

  • Biglarbegian, MB, Melek, WW, Mendel, JM (2009) A practical approach for design of PD and PI like Interval Type-2 TSK fuzzy controllers. Proc Int Conf SMC pp 255–261

  • Castillo O, Huesca G, Valdez F (2005) Evolutionary computing for optimizing type-2 fuzzy systems in intelligent control of non-Linear dynamic plants. In: Proceeding of North American fuzzy information processing cociety, pp 247–251

  • Castillo O, Melin P (2012) A review on the design and optimization of interval type-2 fuzzy controllers. Appl Soft Comput 12:1267–1278

    Article  Google Scholar 

  • Cohen GH, Coon GA (1953) Theoretical consideration of retarded control. Trans Am Soc Mech Eng 75:827–834

    Google Scholar 

  • Duan X-G, Li H-X, Deng H (2008) Effective tuning method for fuzzy PID with internal model control. Ind Eng Chem Res 47:8317–8323

    Article  Google Scholar 

  • Erol OK, Eksin I (2006) A new optimization method: big bang big crunch. Adv Eng Softw 37:106–111

    Article  Google Scholar 

  • Feng G (2006) A survey on analysis and design of model-based fuzzy control systems. IEEE Trans Fuzzy Sys 14(5):676–697

    Article  Google Scholar 

  • Fuente MJ, Robles C, Casado O, Syafıie S, Tadeo F (2006) Fuzzy control of a neutralization process. Eng Appl Artif Intel 19:905–914

    Article  Google Scholar 

  • Galichet S, Foulloy L (1995) Fuzzy controllers: synthesis and equivalences. IEEE Trans Fuzzy Sys 3:140–148

    Article  Google Scholar 

  • Galluzzo M, Cosenza B, Matharu A (2008) Control of a nonlinear continuous bioreactor with bifurcation by a type-2 fuzzy logic controller. Comput Chem Eng 32(12):2986–2993

    Article  Google Scholar 

  • GUNT User Manual, RT 552 pH-Value Control Trainer, http://www.gunt.de/networks/gunt/sites/s1/mmcontent/produktbilder/08055200/Datenblatt/08055200%202.pdf

  • Guzelkaya M, Eksin I, Yesil E (2003) Self-tuning of PID-type fuzzy logic controller coefficients via relative rate observer. Eng Appl Artif Intel 16:227–236

    Article  Google Scholar 

  • Hagras H (2004) A Hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots. IEEE Trans Fuzzy Sys 12(4):524–539

    Article  Google Scholar 

  • Hu B, Mann GKI, Gasine RG (1999) New methodology for analytical and optimal design of fuzzy PID controllers. IEEE Trans Fuzzy Sys 7(5):521–539

    Article  Google Scholar 

  • Jiang F, Gao Z (2001) An application of nonlinear PID control to a class of truck ABS problems. Proc 40th IEEE Conf Decis Contr 1:516–521

    Article  Google Scholar 

  • Juang YT, Chang YT, Huang CP (2008) Design of fuzzy PID controllers using modified triangular membership functions. Info Sci 178:1325–1333

    Article  MATH  Google Scholar 

  • Karasakal O, Guzelkaya M, Eksin I, Yesil E, Kumbasar T (2012) Online tuning of fuzzy PID controllers via rule weighing based on normalized acceleration. Eng Appl Artif Intel 26(1):184–197

    Article  Google Scholar 

  • Karnik NN, Mendel JM, Liang Q (1999) Type-2 fuzzy logic systems. IEEE Trans Fuzzy Sys 7:643–658

    Article  Google Scholar 

  • Kumbasar T, Eksin I, Guzelkaya M, Yesil E (2011) Interval type-2 fuzzy inverse controller design in nonlinear IMC structure. Eng Appl Artif Intel 24(6):996–1005

    Article  Google Scholar 

  • Kumbasar T, Eksin I, Guzelkaya M, Yesil E (2012) Type-2 fuzzy model based controller design for neutralization processes. ISA Trans 51(2):277–287

    Article  Google Scholar 

  • Liang Q, Mendel JM (2000) Interval type-2 fuzzy logic systems: theory and design. IEEE Trans Fuzzy Sys 8(5):535–550

    Article  Google Scholar 

  • Maldonado Y, Castillo O, Melin P (2013) Particle swarm optimization of interval type-2 fuzzy systems for FPGA applications. Appl Soft Comput 13(1):496–508

    Article  Google Scholar 

  • Martinez R, Castillo O, Aguilar LT (2009) Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms. Info Sci 179(13):2158–2174

    Article  MATH  Google Scholar 

  • Morari M, Zafiriou E (1989) Robust process control. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Mudi RK, Pal NR (1999) A robust self-tuning scheme for PI- and PD-type fuzzy controllers. IEEE Trans Fuzzy Sys 7(1):2–16

    Article  Google Scholar 

  • Oh SK, Jang HJ, Pedrycz W (2009) The design of a fuzzy cascade controller for ball and beam system: a study in optimization with the use of parallel genetic algorithms. Eng Appl Artif Intel 22:261–271

    Article  Google Scholar 

  • Oh SK, Pedrycz W, Rho SB, Ahn TC (2004) Parameter estimation of fuzzy controller and its application to inverted pendulum. Eng Appl Artif Intel 17:37–60

    Google Scholar 

  • Oh SK, Jang HJ, Pedrycz W (2011) A comparative experimental study of type-1/type-2 fuzzy cascade controller based on genetic algorithms and particle swarm optimization”. Expert Sys Appl 38(9):11217–11229

    Article  Google Scholar 

  • Qiao WZ, Mizumoto M (1996) PID type fuzzy controller and parameters adaptive method. Fuzzy Sets Sys 78:23–35

    Article  MATH  MathSciNet  Google Scholar 

  • Skogestad S (2003) Simple analytic rules for model reduction and PID controller tuning. J Process Contr 13(4):291–309

    Article  MathSciNet  Google Scholar 

  • Su YX, Sun D, Duan BY (2005) Design of an enhanced nonlinear PID controller. Mechatronics 15(8):1005–1024

    Article  Google Scholar 

  • Wang QG, Zhang Z, Astrom KJ, Chek L (2009) Guaranteed dominant pole placement with PID controllers. J Process Contr 19:349–352

    Article  Google Scholar 

  • Woo ZW, Chung HY, Lin JJ (2000) A PID-type fuzzy controller with self-tuning scaling factors. Fuzzy Sets Sys 115:321–326

    Article  MATH  Google Scholar 

  • Wu, D (2012a) On the Fundamental Differences between Type-1 and Interval Type-2 Fuzzy Logic Controllers. Trans Fuzzy Sys (in press)

  • Wu D (2012b) Twelve Considerations in Choosing between Gaussian and Trapezoidal Membership Functions in Interval Type-2 Fuzzy Logic Controllers. IEEE World Congress on Computational Intelligence, Brisbane, June 2012

  • Wu D, Tan WW (2006) Genetic learning and performance evaluation of internal type-2 fuzzy logic controllers. Eng Appl Artif Intel 19:829–841

    Article  Google Scholar 

  • Wu D, Tan WW (2010) Interval type-2 fuzzy PI controllers: Why they are more robust. IEEE International Conference on Granular Computing, Silicon Valley, August 2010

  • Yesil E, Guzelkaya M, Eksin I (2004) Self-tuning fuzzy PID-type load and frequency controller. Energy Convers Manag 45(3):377–390

    Article  Google Scholar 

  • Yesil E, Guzelkaya M, Eksin I, Tekin OA (2008) Online tuning of set-point regulator with a blending mechanism using PI controller. Turkish J Elec Eng Comput Sci 16(2):143–154

    Google Scholar 

  • Yesil E, Ozturk C, Cosardemir B, Urbas L (2012) MATLAB Case-Based Reasoning GUI Application for Control Engineering Education. In: 11th Information Technology Based Higher Education and Training (ITHET 2012). Istanbul

  • Zhuang M, Atherton DP (1993) Automatic tuning of optimum PID controllers. IEE Proc D 140(3):216–224

    Article  MATH  Google Scholar 

  • Ziegler JG, Nichols NB (1942) Optimum settings for automatic controllers. Trans Am Soc Mech Eng 64:759–768

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tufan Kumbasar.

Additional information

Communicated by F. Marcelloni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumbasar, T. A simple design method for interval type-2 fuzzy pid controllers. Soft Comput 18, 1293–1304 (2014). https://doi.org/10.1007/s00500-013-1144-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-013-1144-1

Keywords

Navigation