Skip to main content
Log in

Improved RM-MEDA with local learning

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this paper, local learning is proposed to improve the speed and the accuracy of convergence performance of regularity model-based multiobjective estimation of distribution algorithm (RM-MEDA), a typical multi-objective optimization algorithm via estimation of distribution. RM-MEDA employs a model-based method to generate new solutions, however, this method is easy to generate poor solutions when the population has no obvious regularity. To overcome this drawback, our proposed method add a new solution generation strategy, local learning, to the original RM-MEDA. Local learning produces solutions by sampling some solutions from the neighborhood of elitist solutions in the parent population. As it is easy to search some promising solutions in the neighborhood of an elitist solution, local learning can get some useful solutions which help the population attain a fast and accurate convergence. The experimental results on a set of test instances with variable linkages show that the implement of local learning can accelerate convergence speed and add a more accurate convergence to the Pareto optimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Baluja S (1994) Population-based incremental learning: a method for integrating genetic search based function optimization and competitive learning. Carnegie Mellon Univ, Pittsburgh, Tech Rep CMU-CS-94-163

  • Baluja S, Davies S (1998) Fast probabilistic modeling for combinatorial optimization. In Proceedings of the national conference on artificial, pp 469–476

  • BenSaid L, Bechikh S, Ghedira K (2010) The r-dominance: a new dominance relation for interactive evolutionary multicriteria decision making. IEEE Trans Evol Comput 14(5):801–818

    Article  Google Scholar 

  • Bosman PAN, Thierens D (2005) The naive MIDEA: a base line multi-objective EA. The 3rd international conference on evolutionary multi-criterion optimization (EMO 2005), LNCS, vol 3410. Springer, Berlin, pp 428–442

  • Coello CAC, Pulido GT (2001) Multiobjective optimization using a micro-genetic algorithm. In: Proceedings of genetic and evolutionary computation conference (GECCO 2001), pp 274–282

  • Coello CAC, Van Veldhuizen DA, Lamont GB (2002) Evolutionary algorithms for solving multi-objective problems. Kluwer, Dordrecht

    Book  MATH  Google Scholar 

  • Corne DW, Knowles J, Oates M (2000a) The Pareto-envelope based selection algorithm for multiobjective optimization. In: Parallel problem solving from nature (PPSN-VI). Lecture notes in computer science, vol 1917. Springer, Berlin, pp 869–878

  • Corne DW, Jerram NR, Knowles JD, Oates MJ (2001b) PESA-II: region-based selection in evolutionary multiobjective optimization. In: Proceedings of the genetic and evolutionary computation conference (GECCO 2001), pp 283–290

  • Dai G, Wang J, Zhu J (2009) A hybrid multiobjective algorithm using genetic and estimation of distribution based on design of experiments. In: IEEE international conference on intelligent computing and intelligent systems (ICIS 2009), vol 1, pp 284–288

  • De Bonet JS, Isbell CL, Viola P (1997) MIMIC: finding optima by estimating probability densities. Adv Neural Inf Process Syst 9:424–424

    Google Scholar 

  • Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, Chichester

  • Deb K, Pratap A, Agarwa S, Meyarivan T (2002) A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6:182–197

    Article  Google Scholar 

  • Deb K, Thiele L, Laumanns M, Zitzler E (2005) Scalable test problems for evolutionary multiobjective optimization. In: Evolutionary multiobjective optimization, theoretical advances and applications, pp 105–145

  • Deb K, Sinha A, Kukkonen S (2006) Multi-objective test problems, linkages, and evolutionary methodologies. In: Proceedings of the genetic and evolutionary computation conference (GECCO 2006), pp 1141–1148

  • Ghoseiria K, Nadjari B (2010) An ant colony optimization algorithm for the biobjective shortest path problem. Appl Soft Comput 10(4):1237–1246

    Article  Google Scholar 

  • Hernández-Díaz AG, Santana-Quintero LV, Coello CAC, Molina J (2007) Pareto-adaptive epsilon-dominance. Evol Comput 15(4):493–517

    Article  Google Scholar 

  • Horn J, Nafpliotis N, Goldberg DE (1994) A niched Pareto genetic algorithm for multiobjective optimization. In: Proceeding of the First IEEE conference on evolutionary computation, vol 1, pp 82–87

  • Ishibuchi H, Murata T (1998) A multi-objective genetic local search algorithm and its application to flowshop scheduling. IEEE Trans Syst Man Cybern Part C Appl Rev 28(3):392–403

    Article  Google Scholar 

  • Jamuna K, Swarup KS (2012) Multi-objective biogeography based optimization for optimal PMU placement. Appl Soft Comput 12(5):1457–1620

    Article  Google Scholar 

  • Jaszkiewicz A (2002) Genetic local search for multiple objective combinatorial optimization. Eur J Oper Res 137(1):50–71

    Article  MATH  MathSciNet  Google Scholar 

  • Jaszkiewicz A (2003) Do multiple-objective metaheuristics deliver on their promises? A computational experiment on the set-covering problem. IEEE Trans Evol Comput 7(2):133–143

    Article  MathSciNet  Google Scholar 

  • Kambhatla N, Leen TK (1997) Dimension reduction by local principal component analysis. Neural Comput 9:1493–1516

    Article  Google Scholar 

  • Khan N (2003) Bayesian optimization algorithm for multi-objective and hierarchically difficult problem. University of Illinois at Urbana-champainge

  • Knowles JD, Corne DW (2000) Approximating the non-dominated front using the Pareto archived evolution strategy. Evol Comput 8: 149–172

    Google Scholar 

  • Knowles JD, Corne DW (2002) M-PAES: a memetic algorithm for multiobjective optimization. In: Proceedings of the congress on evolutionary computation (CEC 2002), pp 325–332

  • Kukkonen S, Lampinen J (2005) GDE3: the third evolution step of generalized differential evolution. In: Proceedings of the congress on evolutionary computation (CEC 2005), vol 1, pp 443–450

  • Larrañaga P, Lozano JA (2001) Estimation of distribution algorithms a new tool for evolutionary computation. Kluwer, Dordrecht

    Google Scholar 

  • Laumanns M, Ocenasek J (2002) Bayesian optimization algorithm for multi-objective optimization. In: Parallel problem solving from nature (PPSN-VII). Lecture notes in computer science, vol 2439, pp 298–307. Springer, Berlin

  • Laumanns M, Thiele L, Deb K, Zitzler E (2002) Combining convergence and diversity in evolutionary multi-objective optimization. Evol Comput 10(3):263–282

    Article  Google Scholar 

  • Li H, Zhang Q (2009) Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans Evol Comput 12(2):284–302

    Article  Google Scholar 

  • Li M, Dai G, Zhu (2010) The RM-MEDA based on elitist strategy. In: The 5th international conference on advances in computation and intelligence (ISICA 2010), vol 6382, pp 229–239

  • Liu D, Tan KC, Goh CK, Ho WK (2007) A multiobjective memetic algorithm based on particle swarm optimization. IEEE Trans Syst Man Cybern Part B Cybern 37(1):42–50

    Article  Google Scholar 

  • Miettinen K (1999) Nonlinear multiobjective optimization. Kluwer, Dordrecht

    MATH  Google Scholar 

  • Miller BL, Goldberg DE (1995) Genetic algorithms, tournament selection, and the effects of noise. Complex Syst 9(3):193–212

    MathSciNet  Google Scholar 

  • Mühlenbein H, Paass G (1996) From recombination of genes to the estimation of distributions I. Binary parameters. In: Parallel problem solving from nature (PPSN-IV). Lecture notes in computer science, vol 1141, pp 178–187. Springer, Berlin

  • Okabe T, Jin Y, Sendhoff B, Olhofer M (2004) Voronoi-based estimation of distribution algorithm for multi-objecbive optimization. In: Proceedings of the congress on evolutionary computation (CEC 2004), vol 2, pp 1594–1601

  • Pelikan M, Goldberg D, Lobo F (2000a) A survey of optimization by building and using probabilistic model. Proc Am Control Conf 5:3289–3293

    Google Scholar 

  • Pelikan M, Goldberg DE, Cantu-Paz E (2000b) Linkage problem, distribution estimation, and Bayesian networks. Evol Comput 8:311–340

    Article  Google Scholar 

  • Pelikan M, Sastry K, Goldberg D (2005) Multiobjective HBOA, clustering, and scalability. In: Proceedings of the genetic and evolutionary computation conference (GECCO 2005), pp 663–670

  • Schütze O, Mostaghim S, Dellnitz M, Teich J (2003) Covering paretosets by multilevel evolutionary subdivision techniques. The 2nd international conference on evolutionary multi-criterion optimization (EMO 2003), LNCS, vol 2632. Springer, Berlin, pp 118–132

  • Smith J (2007) Co-evolving memetic algorithms: a review and progress report. IEEE Trans Syst Man Cybern Part B Cybern 37(1):6–17

    Article  Google Scholar 

  • Srinivas N, Deb K (1994) Multiobjective optimization using non-dominated sorting in genetic algorithms. Evol Comput 2:221–248

    Google Scholar 

  • Van Veldhuizen DA, Lamont GB (1998) Evolutionary computation and convergence to a Pareto front. In: Late breaking papers at the genetic programming 1998 conference, pp 221–228

  • Wang Y, Xiang J, Cai ZX (2012) A regularity model-based multiobjective estimation of distribution algorithm with reducing redundant cluster operator. Appl Soft Comput 12(11):3526–3538

    Article  Google Scholar 

  • Zhang Q, Sun J, Tsang E (2005) An Evolutionary algorithm with guided mutation for the maximum clique problem. IEEE Trans Evol Comput 9(2):192–200

    Google Scholar 

  • Zhang Q, Sun J, Xiao G, Tsang E (2007a) Evolutionary algorithms refining a heuristic: a hybrid method for shared-path protections in WDM networks under SRLG constraints. IEEE Trans Syst Man Cybern Part B Cybern 37:51–61

    Google Scholar 

  • Zhang Q, Zhou A, Jin Y (2007b) Global multiobjective optimization via estimation of distribution algorithm with biased initialization and crossover. In Proceedings of the genetic and evolutionary computation conference (GECCO 2007), pp 617–622

  • Zhang Q, Zhou A, Jin Y (2008) RM-MEDA: a regularity model-based multiobjective estimation of distribution algorithm. IEEE Trans Evol Comput 12:41–63

    Article  Google Scholar 

  • Zhou A, Zhang Q, Jin Y, Tsang E, Okabe T (2005) A model-based evolutionary algorithm for bi-objective optimization. In: Proceedings of the congress on evolutionary computation (CEC 2005), pp 2568–2575

  • Zhou A, Jin Y, Zhang Q, Sendhoff B, Tsang E (2006) Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion. In: Proceedings of the congress on evolutionary computation (CEC 2006), pp 3234–3241

  • Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evol Comput 3:257–271

    Article  Google Scholar 

  • Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolution algorithms: empirical results. IEEE Trans Evol Comput 8:173–195

    Google Scholar 

  • Zitzler E, Laumanns M, Thiele L (2002) SPEA2: improving the strength pareto evolutionary algorithm for multi-objective optimization. In Proceedings of the evolutionary methods for design, optimization and control with applications to industrial problems, pp 19–26

Download references

Acknowledgments

This work was supported by the Program for New Century Excellent Talents in University (No. NCET-12-0920), the National Natural Science Foundation of China (Nos. 61272279, 61001202 and 61203303), the Fundamental Research Funds for the Central Universities (Nos. K5051302049, K5051302023, K5051302002 and K5051302028), the Provincial Natural Science Foundation of Shaanxi of China (No. 2011JQ8020) and the Fund for Foreign Scholars in University Research and Teaching Programs (the 111 Project) (No. B07048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangyang Li.

Additional information

Communicated by Y.-S. Ong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Xu, X., Li, P. et al. Improved RM-MEDA with local learning. Soft Comput 18, 1383–1397 (2014). https://doi.org/10.1007/s00500-013-1151-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-013-1151-2

Keywords

Navigation