Skip to main content
Log in

A Runge–Kutta method with reduced number of function evaluations to solve hybrid fuzzy differential equations

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this paper, we employ a numerical algorithm to solve first-order hybrid fuzzy differential equation (HFDE) based on the high order Runge–Kutta method. It is assumed that the user will evaluate both \(f\) and \(f'\) readily, instead of the evaluations of \(f\) only when solving the HFDE. We present a \(O(h^4)\) method that requires only three evaluations of \(f\). Moreover, we consider the characterization theorem of Bede to solve the HFDE numerically. The convergence of the method will be proven and numerical examples are shown with a comparison to the conventional solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbod MF, Von Keyserlingk DG, Linkens DA, Mahfouf M (2001) Survey of utilisation of fuzzy technology in medicine and healthcare. Fuzzy Set Syst 120:33117349

    Article  Google Scholar 

  • Ahmadian A, Suleiman M, Salahshour S, Baleanu D (2013) A Jacobi operational matrix for solving a fuzzy linear fractional differential equation. Adv Differ Equ 1:1–29

    MathSciNet  Google Scholar 

  • Allahviranloo T, Ahmady N, Ahmady E (2007) Numerical solution of fuzzy differential equations by predictor-corrector method. Inform Sci 177:1633–1647

    Article  MATH  MathSciNet  Google Scholar 

  • Allahviranloo T, Salahshour S (2011) Euler method for solving hybrid fuzzy differential equation. Soft Comput J 15:1247171253

    Article  Google Scholar 

  • Allahviranloo T, Abbasbandy S, Salahshour S, Hakimzadeh A (2011) A new method for solving fuzzy linear differential equations. Computing 92:181–197

    Article  MATH  MathSciNet  Google Scholar 

  • Barro S, Marn R (2002) Fuzzy logic in medicine. Physica-Verlag, Heidelberg

    Book  MATH  Google Scholar 

  • Bede B (2008) Numerical solutions of fuzzy differential equations by predictor corrector method. Inform Sci 178:1917–1922

  • Casasnovas J, Rossell F (2005) Averaging fuzzy biopolymers. Fuzzy Set Syst 152:13917158

    Article  Google Scholar 

  • Chang BC, Halgamuge SK (2002) Protein motif extraction with neuro-fuzzy optimization. Bioinformatics 18:10841790

    Article  Google Scholar 

  • Dubios D, Prade H (1982) Towards fuzzy differential calculus-part3. Fuzzy Sets Syst 8:225–234

    Article  Google Scholar 

  • Enright WH (1974) Second derivative multi-step methods for stiff ordinary differential equations. SIAM J Numer Anal 11:32117331

    Article  MathSciNet  Google Scholar 

  • Feng G, Chen G (2005) Adaptative control of discrete-time chaotic systems: a fuzzy control approach. Chaos, Solitons Fractals 23:4591767

    Article  MathSciNet  Google Scholar 

  • Goeken D, Johnson O (2000) Runge-Kutta with higher derivative approximations. Appl Numer Math 39:24917257

  • Guang-Quan Z (1991) Fuzzy continuous function and its properties. Fuzzy Sets Syst 43:159–171

    Article  Google Scholar 

  • Jackiewicz Z, Tracogna S (1995) A general class of two-step Runge-Kutta methods for ordinary differential equations. SIAM J Numer Anal 32(5):1390171427

  • Jiang W, Guo-Dong Q, Bin D (2005) \(H_{\infty }\) variable universe adaptative fuzzy control for chaotic systems. Chaos, Solitons Fractals 24:10751786

    Article  MathSciNet  Google Scholar 

  • Kima H, Sakthivel R (2012) Numerical solution of hybrid fuzzy differential equations using improved predictorcorrector method. Commun Nonlinear Sci Numer Simulat 17:3788173794

    Google Scholar 

  • Kaleva O (1987) Fuzzy differential equations. Fuzzy Sets Syst 24:301–317

    Article  MATH  MathSciNet  Google Scholar 

  • Kloeden P (1991) Remarks on Peano-like theorems for fuzzy differential equations. Fuzzy Set Syst 44:161174

    Article  MathSciNet  Google Scholar 

  • Ma M, Friedman M, Kandel A (1999) Numerical solution of fuzzy differential equations. Fuzzy Sets Syst 105:13317138

    Article  MathSciNet  Google Scholar 

  • Palligkinis SCh, Papageorgiou G, Famelis ITh (2009) Runge-Kutta methods for fuzzy differential equations. Appl Math Comput 209:9717105

    Article  MathSciNet  Google Scholar 

  • Pederson S, Sambandham M (2009) Numerical solution of hybrid fuzzy differential equation IVPs by a characterization theorem. Inform Sci 179:31917328

    Article  MathSciNet  Google Scholar 

  • Pederson S, Sambandham M (2008) The Runge-Kutta method for hybrid fuzzy differential equations. Nonlinear Anal Hybrid Syst 2:62617634

    Article  MathSciNet  Google Scholar 

  • Pederson S, Sambandham M (2007) Numerical solution to hybrid fuzzy systems. Math Comput Model 45:1133171144

    Article  MathSciNet  Google Scholar 

  • Prakash P, Kalaiselvi V (2009) Numerical solution of hybrid fuzzy differential equations by predictor-corrector method. Int J Comput Math 86:1211734

    Article  MathSciNet  Google Scholar 

  • Puri ML, Ralescu D (1983) Differential for fuzzy function. J Math Anal Appl 91:552–558

    Article  MATH  MathSciNet  Google Scholar 

  • Rosenbrock HH (1963) Some general implicit processes for the numerical solution of differential equations. Comput J 5:32917330

    Article  MathSciNet  Google Scholar 

  • Salahshour S, Allahviranloo T, Abbasbandy S (2012) Solving fuzzy fractional differential equations by fuzzy Laplace transforms. Commun Nonlinear Sci Numer Simulat 17:1372–1381

    Article  MATH  MathSciNet  Google Scholar 

  • Salahshour S, Allahviranloo T, Abbasbandy S, Baleanu D (2012) Existence and uniqueness results for fractional differential equations with uncertainty. Adv Differ Equ 2012:112

    Article  MathSciNet  Google Scholar 

  • Salahshour S, Allahviranloo T (2013) Applications of fuzzy Laplace transforms. Soft Comput 17:145–158

    Article  MATH  Google Scholar 

  • Salahshour S, Allahviranloo T (2013) Application of fuzzy differential transform method for solving fuzzy Volterra integral equations. Appl Math Model 37:1016–1027

    Article  MathSciNet  Google Scholar 

  • Seikkala S (1987) On the fuzzy initial value problem. Fuzzy Sets Syst 24:319–330

    Article  MATH  MathSciNet  Google Scholar 

  • Wu C, Song S, Stanley Lee E (1996) Approximate solution, existence and uniqueness of the Cauchy problem of fuzzy differential equations. J Math Anal Appl 202:629–644

    Article  MATH  MathSciNet  Google Scholar 

  • Xu J, Liao Z, Hu Z (2007) A class of linear differential dynamical systems with fuzzy initial condition. Fuzzy Sets Syst 158:2339–2358

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang H, Liao X, Yu J (2005) Fuzzy modeling and synchronization of hyperchaotic systems. Chaos, Solitons Fractals 26:8351743

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ahmadian.

Additional information

Communicated by V. Loia.

This research is supported by the Program Rakan Penyelidikan UM Grant CG065-2013, H-00000-61000-E13110 from the University of Malaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadian, A., Salahshour, S. & Chan, C.S. A Runge–Kutta method with reduced number of function evaluations to solve hybrid fuzzy differential equations. Soft Comput 19, 1051–1062 (2015). https://doi.org/10.1007/s00500-014-1314-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-014-1314-9

Keywords

Navigation