
ar
X

iv
:1

60
7.

04
32

4v
1 

 [
cs

.N
E

] 
 1

4 
A

pr
 2

01
6

Random-Key Cuckoo Search for the Travelling Salesman

Problem

Aziz Ouaarab, Beläıd Ahiod, Xin-She Yang

A. Ouaarab and B. Ahiod
LRIT, Associated Unit to the CNRST(URAC) no 29,

Mohammed V-Agdal University, B.P. 1014 Rabat, Morocco

Xin-She Yang
School of Science and Technology, Middlesex University,

The burroughs, London NW4 4BT, UK

Citation detail: A. Ouaarab, B. Ahiod, X. S. Yang, Random-key cuckoo search for
the travelling salesman problem, Soft Computing, 19(4), 1099-1106(2015).

Abstract

Combinatorial optimization problems are typically NP-hard, and thus very chal-
lenging to solve. In this paper, we present the random key cuckoo search (RKCS)
algorithm for solving the famous Travelling Salesman Problem (TSP). We used a sim-
plified random-key encoding scheme to pass from a continuous space (real numbers) to
a combinatorial space. We also consider the displacement of a solution in both spaces
using Lévy flights. The performance of the proposed RKCS is tested against a set of
benchmarks of symmetric TSP from the well-known TSPLIB library. The results of the
tests show that RKCS is superior to some other metaheuristic algorithms.

1 Introduction

Many combinatorial optimization problems are NP-hard, and thus very challenging to solve.
In fact, they cannot be solved efficiently by any known algorithm in a practically short time
scale when the size of the problem is moderately large [9]. The main difficulty arises with
the number of combinations which increases exponentially with the size of the problem.
Searching for every possible combination is extremely computationally expansive and un-
realistic. An example of these problems is the travelling salesman problem [10] in which
a salesperson has to visit a list of cities exactly once, and returning to the departure city,
with the aim of minimizing the total travelled distance or the overall cost of the trip.

Despite the challenges, TSP remains one of the most widely studied problems in combi-
natorial optimization. It is often used for testing optimization algorithms. Problems such
as TSP do not have an efficient algorithm to solve them. It is practically very difficult to get
a solution of optimal quality and in a reduced runtime simultaneously. This requires some
heuristic algorithms that can find good (not necessarily optimal) solutions in a good runtime
by trial and error. Approximate algorithms such as metaheuristics [2] are actually the best
choice to solve many combinatorial optimization problems. They are characterized by their

1

http://arxiv.org/abs/1607.04324v1


simplicity and flexibility while demonstrating remarkable effectiveness. Metaheuristics are
usually simple to implement; however, they are often capable to solve complex problems
and can thus be adapted to solve problems with diverse objective function properties, ei-
ther continuous, discrete or mixed, including many real-world optimization problems, from
engineering to artificial intelligence [22].

In essence, metaheuristics are optimization algorithms that adopt some strategies to
explore and exploit a given solution space with the aim to find the best solution. They
balance their search concentration between some promising regions and the all space regions.
They generally begin with a set of initial solutions, and then, examine step by step a
sequence of solutions to reach (hopefully) the optimal solution of the problem.

Some issues may arise when solving a combinatorial optimization problem with a meta-
heuristic, and a key issue is how to define neighbourhood solutions for such problems.
Several metaheuristics are designed in principle for continuous optimization problems. So,
the question is how to treat combinatorial problems properly without losing the good per-
formance of these metaheuristics. In this paper, we propose the random-key cuckoo search
(RKCS) algorithm using the random-key encoding scheme to represent a position, found
by the cuckoo search algorithm, in a combinatorial space.

TSP is solved with random keys by various metaheuristics [19, 4]. This work presents a
novel approach using Cuckoo Search algorithm (CS)[25], based on random keys [1], with a
simple local search procedure to solve TSP. CS is a nature-inspired metaheuristic algorithm
which was developed by Yang and Deb in 2009 to solve continuous optimization problems.
With this approach, we aim to formulate the transition between a continuous search space
and a combinatorial search space without passing through traditional adaptation operators
that may affect the performance of the algorithm, and to ensure a direct interpretation of
various operators used by metaheuristics in continuous search space.

The rest of this paper is organized as follows: Sect. 2, first, introduces the standard
cuckoo search. Section 3 introduces briefly the TSP. Section 4 presents the random-key
encoding scheme, while Sect. 5 describes the discrete CS to solve symmetric TSP using
Random key. Then, Sect. 6 presents results of numerical experiments on a set of benchmarks
of symmetric TSP from the TSPLIB library [18]. Finally, Sect. 7 concludes with some
discussions and future directions.

2 Cuckoo Search Algorithm

Some cuckoo species can have the so-called brood parasitism as an aggressive reproduction
strategy. This most studied and discussed feature is that cuckoos lay eggs in a previously
observed nest of another species to let host birds hatch and brood their young cuckoo chicks.
From the evolutionary point of view, cuckoos aim to increase the probability of survival and
reduce the probability of abandoning eggs by the host birds[16]. The behaviour of cuckoos
is mimicked successfully in the cuckoo search algorithm, in combination with Lévy flights
to effectively search better and optimal survival strategy. Lévy flights [3], named by the
French mathematician Paul Lévy, represent a model of random walks characterized by their
step lengths which obey a power-law distribution. Several scientific studies have shown that
the search for preys by hunters follows typically the same characteristics of Lévy flights.
This model is commonly presented by small random steps followed occasionally by large
jumps [3, 20].

Inspired by these behaviours and strategies, the Cuckoo Search (CS) algorithm was

2



developed by Xin-She Yang and Suash Deb in 2009, which was initially designed for solving
multimodal functions. It has been shown that CS can be very efficient in dealing with
highly nonlinear optimization problems [24, 27, 26, 13, 12].

CS is summarized as the following ideal rules: (1) each cuckoo lays one egg at a time
and selects a nest randomly; (2) the best nest with the highest quality of egg can pass onto
the new generations; (3) the number of host nests is fixed, and the egg laid by a cuckoo can
be discovered by the host bird with a probability pa ∈ [0, 1].

CS uses a balanced combination of a local random walk and the global explorative
random walk, controlled by a switching parameter pa. The local random walk can be
written as

xt+1
i = xti + αs⊗H(pa − ǫ)⊗ (xtj − xtk), (1)

where xtj and xtk are two different solutions selected randomly by random permutation,
H(u) is a Heaviside function, ǫ is a random number drawn from a uniform distribution, and
s is the step size. On the other hand, the global random walk is carried out using Lévy
flights

xt+1
i = xti + αL(s, λ), (2)

where

L(s, λ) =
λΓ(λ) sin(πλ/2)

π

1

s1+λ
, (s≫ s0 > 0). (3)

Here α > 0 is the step size scaling factor, which should be related to the scales of the
problem of interest. Lévy flights have an infinite variance with an infinite mean [25].

In this approach we have taken as a basis an improved version of CS [14]. This im-
provement considers a new category of cuckoos that can engage a kind of surveillance on
nests likely to be a host. These cuckoos use mechanisms before and after brooding such as
the observation of the host nest to decide if the chosen nest is the best choice or not. So,
from the current solution, this portion pc of cuckoos searches in the same area a new better
solution via Lévy flights.

The goal of the improvement is to strengthen intensive search around the current so-
lutions, using the new fraction pc. The process of this fraction can be introduced in the
standard algorithm of CS as shown in Algorithm 1.

3 Travelling Salesman Problem

To simplify the statement of the travelling salesman problem, we can assume that we have
a list of m cities that must be visited by a salesperson and returning to the departure city.
To calculate the best tour in term of distance, some rules or assumptions can be used before
starting the trip. Each city on the list must be visited exactly once, and for each pair of
cities, given that the distance between any two cities is known. This problem is commonly
called as the “The travelling salesman problem”.

The TSP can be stated formally [7] as: Let C = {c1, . . . , cm} be a set of m distinct
cities, E = (ci, cj) : i, j ∈ {1, . . . ,m} be the edge set, and dcicj be a cost measure associated
with the edge (ci, cj) ∈ E. The objective of the TSP is to find the minimal length of a
closed tour that visits each city once. Cities ci ∈ C are represented by their coordinates

(cix , ciy) and dcicj =
√

(cix − cjx)
2 + (ciy − cjy)

2 is the Euclidean distance between ci and
cj .

3



Algorithm 1 Improved CS Algorithm

1: Objective function f(x), x = (x1, . . . , xm)T

2: Generate initial population of n host nests xi(i = 1, . . . , n)
3: while (t <MaxGen) or (stop criterion) do
4: Start searching with a fraction (pc) of smart cuckoos
5: Get a cuckoo randomly by Lévy flights
6: Evaluate its quality/fitness Fi

7: Choose a nest among n (say, j) randomly
8: if (Fi > Fj) then
9: replace j by the new solution;

10: end if
11: A fraction (pa) of worse nests are abandoned and new ones are built;
12: Keep the best solutions (or nests with quality solutions);
13: Rank the solutions and find the current best
14: end while
15: Postprocess results and visualization

A tour can be represented as a cyclic permutation [8] π = (π(1), π(2), . . . , π(m)) of cities
from 1 to m if π(i) is interpreted to be the city visited in step i, i = 1, . . . ,m. The cost of
a permutation (tour) is defined as:

f(π) =
m−1
∑

i=1

dπ(i)π(i+1) + dπ(m)π(1) (4)

If dcicj 6= dcjci for at least one (ci, cj), we say that it is an Asymmetric Euclidean TSP, while
if dcicj = dcjci then the TSP becomes a Symmetric Euclidean TSP, which is adopted in this
paper. Given m as the number of cities to visit in the list, the total number of possible
tours covering all cities can be seen as a set of feasible solutions of the TSP and is given as
m!.

The challenges of solving a TSP have motivated many researchers to design various
algorithms. An effective search should be able to detect the best solution for the majority
of its instances in a reasonable runtime. The good thing about TSP is that the statement
is simple and requires no mathematical background to understand, though it is difficult
to produce a good solution. However, TSP is crucially important in both academia and
applications. Lenstra et. al. and Reinelt [11, 17] gave some reviews of direct and indirect
applications of TSP in several industrial and technological fields, such as drilling problem
of printed circuit boards (PCBs), overhauling gas turbine engines, X-ray crystallography,
computer wiring, order-picking problem in warehouses, vehicle routing, and mask plotting
in PCB production.

4 Random-Key Encoding Scheme

Random-key encoding scheme [1] is a technique that can be used to transform a position
in a continuous space and convert it into a combinatorial one. It uses a vector of real
numbers by associating each number with a weight. These weights are used to generate one
combination as a solution.

4



The random real numbers drawn uniformly from [0, 1) compose a vector showed in Fig. 4.
On the other hand, the combinatorial vector is composed of integers ordered according to
the weights of real numbers in the first vector, illustrated as follows (Fig. 4):

Random keys: 0.8 0.5 0.7 0.1 0.4 0.2

Decoded as: 6 4 5 1 3 2

Figure 1: Random key encoding scheme.

5 Random Key CS for TSP

Random keys are an encoding scheme which was used early with genetic algorithms for
sequencing and optimization problems by Bean [1]. It is based on random real numbers
in a continuous space to encode solutions in a combinatorial space. These random num-
bers, presented as tags, are generated from [0.1)m space, where m is the size of the TSP
instance to be solved (or the dimension of this space). Our approach here extends this idea
by performing Lévy flights distribution to generate the random numbers. This allows an
improved way to balance the search for solutions in local areas as well as global areas. In
this work, we will thus use both random walks and Lévy flights [23] whose step lengths are
chosen from a probability distribution with a power-law tail.

5.1 Solution Representation

Figure 2 and Algorithm 2 present the steps of generating a TSP solution using random keys.
First, agents are randomly positioned according to their real values in [0, 1). Each agent
has an integer index regardless of his ascending order among other agents in the linked list
(see Fig. 2). All agents are ordered according to their weights (real numbers) and their
indices form together an initial solution of the TSP instance. So, this essentially means
that the integers/agent indices, here, correspond to the city index and the order of agents
is the visiting order of the cities.

Algorithm 2 Initial Solution Algorithm

1: Set of m agents ai (i = 1, . . . ,m);
2: for i = 1 to m do
3: Assign a random real number in [0.1) for agent ai;
4: end for
5: for i = 1 to m do
6: Get the order of agent ai according to his weight;
7: end for
8: for i = 1 to m do
9: The agent index is the city index;

10: The agent order is the city visiting order;
11: end for
12: Return a solution of cities’ visiting order and weights;

5



Figure 2: Procedure of random-keys to generate a TSP solution.

5.2 Displacement

The procedure of generating new solutions by a perturbation in the real space can lead to
some issues when these agents start to move in [0, 1). Such moves can affect the order of
agents in the linked list and therefore a new TSP solution can be generated as shown in
Fig. 3. The displacement of each agent is guided directly by Lévy flights. The order of each
city is changed by small perturbations or big jumps according to the values generated in
their weights via Lévy flights.

Our approach here is mainly based on two types of search moves: 1) global search carried
out on solution areas guided by the movements (following Lévy flights) of agents; 2) local
search which detects the best solutions in the areas found by the agents. The combination
of both local and global search moves can improve the performance. Briefly, RKCS begins
with a search for new promising areas. It combines intensification and diversification via
small steps and large jumps to distant areas. When pointing on an area found by Lévy
flights, the best solution in this area is detected and another search is triggered to generate
a new one via Lévy flights. So, we can summarize these steps by the following Algorithm 3:

Algorithm 3 Generating New Solution

1: Solution S of m cities/agents ai (i = 1, . . . ,m);
2: Select randomly l agents (1 ≤ l ≤ m).
3: for i = 1 to l do
4: Assign new position via Lévy flights (Equation 2) for agent ai;
5: Reposition ai in the linked list (see Figure 3);
6: Update S;
7: end for
8: Return the new generated solution S;

6



Figure 3: Procedure of random keys move to generate new TSP solution

Figure 4: 2-opt move, (A) Initial tour. (B) The tour created by 2-opt move [the edges (a,
b) and (c, d) are removed, while the edges (a, c) and (b, d) are added.

5.3 Local Search

After finding a new area by Lévy flights, a local search is performed to detect the best
solution in this area. For this local search, 2-opt move [6] is used where it removes two
edges in the TSP solution and reconnects the new two created paths, in a different possible
way as showed in Fig. 4. In the minimization case, it is done only if the new tour is shorter
than the current one. Obviously, this process is repeated until no further improvement is
possible or when a given number of steps is reached.

Steepest Descent (Algorithm 4) is a simple local search method that can be easily
trapped in a local minimum, and generally, it can not find a good quality solutions. We
choose this simplified local search “Steepest Descent” method to show the performance of CS
combined with RK. It allowed us to generate solutions of good quality, without introducing
an advanced local search method.

7



Algorithm 4 Steepest Descent Algorithm

1: Objective function f(x), x = (x1, . . . , xm)T ;
2: Initial TSP solution S0 of m ordered cities;
3: Current solution S, S ←− S0;
4: Choose stop boolean value, stop←− FALSE;
5: while stop = FALSE do
6: Choose the best neighbour Sv of S via 2-Opt moves;
7: if f(Sv) < f(S) then
8: Replace S by Sv;
9: else

10: stop←− TRUE
11: end if
12: end while
13: Return S;

5.4 RKCS Algorithm

Using the same steps of Improved CS [14] and as summarized in Algorithm 1, before starting
the search process, RKCS generates the random initial solution or population as explained
in Fig. 2 and Algorithm 2. Generating a random initial population is to show how RKCS
can find good solutions in the search space without using an enhancement pre-processes.

The second phase is triggering the pc portion of smart cuckoos. These cuckoos begin by
exploring new areas from the current solutions. As shown in Fig. 3, they use Lévy flights to
move in the real space and interpreting this move to have a new TSP solution in the new
area. The second step is to find a good solution in this area following Algorithm 4.

After pc portion phase, RKCS employs one cuckoo to search for a new good solution,
starting from the best solution of the population. It proceeds, like the second phase (pc
portion phase), in two steps. Firstly, it locates a new area, from the best solution, via Lévy
flights and then finds a good solution in this area. The found solution is compared with a
random selected solution in the population. The best one of the both solutions earns its
place in the population.

The last phase is for the worst and abandoned solutions that will be replaced by new
ones. They start searching, for a new good solution, far from the best solution in the
population by a big jump. In this case a big jump is perturbing more agents via Lévy
flights. All these phases are illustrated in the flowchart of RKCS (Fig. 5).

6 Experimental results

We have implemented the proposed random key cuckoo search and tested it using the well-
known TSPLIB library [18]. For each instance, 30 independent runs have been carried out.
The properly selected parameter values used for the experiments of RKCS algorithm are
shown in Table 1.

Table 2 shows the test results of running RKCS algorithm to solve some benchmark
instances of the symmetric TSP from the TSPLIB library [18]. The first column corresponds
to the name of instances with their optimum in parentheses. The column ‘Best’ shows the
length of the best solution found by RKCS, the column ‘Average’ gives the average solution
found by RKCS, the column ‘Worst’ shows the length of the worst solution length among

8



Start

Initial population

pc fraction of
smart cuckoos

Get a Cuckoo
i randomly

Choose an
individual j
randomly in

the population

Fi < Fj
Replace
j by i

pa fraction of
worse solutions

stop
criterion

Stop

yes

no

no

yes

Figure 5: The flowchart of the RKCS algorithm.

9



Table 1: Parameter settings for RKCS algorithm.

Parameter Value Meaning

n 30 Population size
pc 0.6 Portion of smart cuckoos
pa 0.2 Portion of bad solutions
MaxGen 500 Maximum number of iterations
α 0.01 Step size
λ 1 Index

the 30 independent runs of the RKCS algorithm.
These results confirm that the proposed approach is able to find good or the optimum

solution for the tested instances (‘bold’ in the Table 2 shows that RKCS reaches the optimal
solution of the tested instance). Therefor, we can say that the random-key encoding scheme
can be a very useful tool for switching from continuous to combinatorial spaces. It allows
operators of the continuous space to behave freely, then projecting the changes made by
these operators in the combinatorial space. It also facilitates a better control in balancing
intensification and diversification through Lévy flights, which make intensified small steps
in a limited region followed by a big explorative jump to a distant region. Using the real
numbers, Lévy flights can easily act with the notion of distance and can define clearly small
or big steps. Then RK projects these changes in the space of TSP solutions.

Table 2: Results of random-key cuckoo search for the travelling salesman problem

Instance(opt) Best Average Worst

eil51(426) 426 426.9 430
berlin52(7542) 7542 7542 7542
st70(675) 675 677.3 684
pr76(108159) 108159 108202 109085
eil76(538) 538 539.1 541
kroA100(21282) 21282 21289.65 21343
eil101(629) 629 631.1 636
bier127(118282) 118282 118798.1 120773
pr136(96772) 97046 97708.9 98936
pr144(58537) 58537 58554.45 58607
ch130(6110) 6126 6163.3 6210

The RKCS experimental results are then compared with all other algorithms tested
in ‘Hybrid Gravitational Search Algorithm with Random-key Encoding Scheme Combined
with Simulated Annealing’ [4]. Table 3 and Fig. 6 show that RKCS outperforms all these
algorithms in the tested instances. A good balance between exploration and exploitation of
space areas and a simple local search technique are significant components to reach good
results. This confirms that the proposed random-key encoding scheme can provide a good
performance by combining global and local search strength in one entity within RKCS via
Lévy flights.

10



Table 3: Comparison of experimental results of RKCS with all algorithms cited in [4]

Instances eil51 st70 rd100 pr124 rat195

Best 426 675 7910 59030 2323 Average

GA 2.58% 2.35% 5.27% 2.74% 6.68% 3.92%
ACO 1.08% 1.98% 3.14% 1.23% 2.59% 2.00%
PSO 1.12% 2.32% 2.65% 1.98% 3.45% 2.30%
AIS 1.22% 1.79% 2.03% 1.45% 2.77% 1.85%
IWDA 4.08% 5.20% 4.97% 6.12% 5.34% 5.14%
BCO 2.19% 3.01% 2.44% 2.78% 3.43% 2.77%
EM 2.67% 3.05% 2.78% 3.45% 5.45% 3.48%
Hr-GSA 0.54% 0.34% 1.12% 1.05% 2.56% 1.12%
RKCS 0.0% 0.0% 0.0% 0.0% 0.38 0.07

In Table 3, the ‘Best’ denotes the best known-so-far optimal solution quality, and the
other results recorded were the ratio of the solutions found by each algorithm to the optimal
solution over 30 independent runs.

G
A
A
C
O
PS
O
A
IS

IW
D
A
BC

O
EM

H
r-
G
SA

R
K
C
S

1%

2%

3%

4%

5%

6%

A
v
er
a
g
e
ra

ti
o

Figure 6: Average ratio of the solutions found to the optimal solution, for instances eil51,
st70, rd100, pr124 and rat195

7 Conclusion

In this proposed approach, we used the random-key encoding scheme combined with the
cuckoo search to develop the random-key cuckoo search (RKCS) algorithm for solving TSP.
By testing the standard TSP instances’ library, we can confirm that the proposed approach
is very efficient and can obtain good results.

Random keys have been used to switch between the continuous and the combinatorial
search space, which enable cuckoo search to provide a good search mechanism with a fine
balance between intensification and diversification.

However, RKCS can be altered or improved by many ways. For example, it can be useful
to adapt the agent moves with some existing or new move operators in the combinatorial
space. In addition, the tuning of algorithm-dependent parameters can be also fruitful [28],
which may provide further research topics to see if the proposed approach can be further

11



improved.
It can be expected that our approach can be used to solve other combinatorial optimiza-

tion problems such as routing, scheduling and even mixed-integer programming problems.
We can also generalize this work to solve some kinds of TSP problems such as Asymmet-
ric [5] , Spherical [15] and generalized [21] TSP.

References

[1] Bean, J.: Genetic algorithms and random keys for sequencing and optimization. ORSA
journal on computing 6, 154–154 (1994)

[2] Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and con-
ceptual comparison. ACM Computing Surveys (CSUR) 35(3), 268–308 (2003)

[3] Brown, C.T., Liebovitch, L.S., Glendon, R.: Lévy flights in dobe ju/?hoansi foraging
patterns. Human Ecology 35(1), 129–138 (2007)

[4] Chen, H., Li, S., Tang, Z.: Hybrid gravitational search algorithm with random-key
encoding scheme combined with simulated annealing. Int J Comput Sci Netw Security
11, 208–217 (2011)

[5] Cirasella, J., Johnson, D.S., McGeoch, L.A., Zhang, W.: The asymmetric traveling
salesman problem: Algorithms, instance generators, and tests. In: Algorithm Engi-
neering and Experimentation, pp. 32–59. Springer (2001)

[6] Croes, G.: A method for solving traveling-salesman problems. Operations Research
6(6), 791–812 (1958)

[7] Davendra, D.: Traveling Salesman Problem, Theory and Applications. InTech (2010)

[8] Gutin, G., Punnen, A.P.: The traveling salesman problem and its variations, vol. 12.
Springer (2002)

[9] Hochbaum, D.S.: Approximation algorithms for NP-hard problems. PWS Publishing
Co. (1996)

[10] Lawler, E.L., Lenstra, J.K., Kan, A.R., Shmoys, D.B.: The traveling salesman problem:
a guided tour of combinatorial optimization, vol. 3. Wiley Chichester (1985)

[11] Lenstra, J.K., Kan, A.R.: Some simple applications of the travelling salesman problem.
Operational Research Quarterly pp. 717–733 (1975)

[12] Mohamad, A., Zain, A.M., Bazin, N.E.N., Udin, A.: Cuckoo search algorithm for
optimization problems-a literature review. Applied Mechanics and Materials 421, 502–
506 (2013)

[13] Mohamad, A., Zain, A.M., Bazin, N.E.N., Udin, A.: A process prediction model based
on cuckoo algorithm for abrasive waterjet machining. Journal of Intelligent Manufac-
turing pp. 1–6 (2013)

[14] Ouaarab, A., Ahiod, B., Yang, X.S.: Improved and discrete cuckoo search for solving
the travelling salesman problem. In: Cuckoo Search and Firefly Algorithm, pp. 63–84.
Springer (2014)

12



[15] Ouyang, X., Zhou, Y., Luo, Q., Chen, H.: A novel discrete cuckoo search algorithm
for spherical traveling salesman problem. Applied mathematics & information sciences
7(2) (2013)

[16] Payne, R.B.: The cuckoos, vol. 15. Oxford University Press (2005)

[17] Reinelt, G.: The Traveling Salesman: Computational Solutions for TSP Applications.
Springer-Verlag (1994)

[18] Reinelt, G.: Tsplib, 1995. Universitat Heidelberg (1995)

[19] Samanlioglu, F., Kurz, M.B., Ferrell, W.G., Tangudu, S.: A hybrid random-key ge-
netic algorithm for a symmetric travelling salesman problem. International Journal of
Operational Research 2(1), 47–63 (2007)

[20] Shlesinger, M.F., Zaslavsky, G.M., Frisch, U.: Lévy flights and related topics in physics.
In: Levy flights and related topics in Physics, vol. 450 (1995)

[21] Snyder, L.V., Daskin, M.S.: A random-key genetic algorithm for the generalized trav-
eling salesman problem. European Journal of Operational Research 174(1), 38–53
(2006)

[22] Yang, X.S.: Engineering Optimization: An Introduction with Metaheuristic Applica-
tions. Wiley, USA. (2010)

[23] Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press (2010)

[24] Yang, X.S.: Cuckoo Searcha and Firefly Algorithm: Theory and Applications. Springer,
Berlin (2013)

[25] Yang, X.S., Deb, S.: Cuckoo search via lévy flights. In: Nature & Biologically Inspired
Computing, 2009. NaBIC 2009. World Congress on, pp. 210–214. IEEE (2009)

[26] Yang, X.S., Deb, S.: Engineering optimisation by cuckoo search. International Journal
of Mathematical Modelling and Numerical Optimisation 1(4), 330–343 (2010)

[27] Yang, X.S., Deb, S.: Multiobjective cuckoo search for design optimization. Computers
& Operations Research 40, 1616–1624 (2013)

[28] Yang, X.S., Deb, S., Loomes, M., Karamanoglu, M.: A framework for self-tuning
optimization algorithms. Neural Computing & Applications 23, 2051–2057 (2013)

13




	1 Introduction
	2 Cuckoo Search Algorithm
	3 Travelling Salesman Problem
	4 Random-Key Encoding Scheme
	5 Random Key CS for TSP
	5.1 Solution Representation
	5.2 Displacement
	5.3 Local Search
	5.4 RKCS Algorithm

	6 Experimental results
	7 Conclusion

