Hybrid PSO6 for Hard Continuous Optimization

José Garcia-Nieto, and Enrique Alba

Abstract—In our previous works, we empirically showed
that a number of 612 informants may endow particle swarm
optimization (PSO) with an optimized learning procedure in
comparison with other combinations of informants. In this way,
the new version PSO6, that evolves new particles from six
informants (neighbors), performs more accurately that other
existing versions of PSO and is able to generate good particles for
a longer time. Despite this advantage, PSO6 may show certain
attraction to local basins derived from its moderate performance
on non-separable complex problems (typically observed in PSO
versions). In this paper, we incorporate a local search procedure
to the PSO6 with the aim of correcting this disadvantage. We
compare the performance of our proposal (PSO6-Mtsls) on a set
of 40 benchmark functions against that of other PSO versions,
as well as against the best recent proposals in the current
state of the art (with and without local search). The results
support our conjecture that the (quasi)-optimally informed PSO,
hybridized with local search mechanisms, reaches a high rate of
success on a large number of complex (non-separable) continuous
optimization functions.

Index Terms—Particle Swarm Optimization, Fully Informed
PSO, Multiple Trajectory Search, Benchmarking Functions.

I. INTRODUCTION

N a previous work [6], we have empirically shown that

a number of 615 informants enhances the particle swarm
optimization (PSO) with new essential information about the
search landscape, leading this algorithm to perform more ac-
curately than other existing versions of it. More recently, using
fitness-distance correlation and fitness-fitness cloud analyses,
we tested in [7] that this number of 6o informants put into
PSO a better learning procedure than other combinations of
informants, which makes it able to generate good particles for
a longer time. In spite of this advantage, as typically observed
in particle swarm versions, the new PSO6 (PSO with six
informants) may still show a certain local basin attraction and
moderate performance on non-separable complex problems.
Therefore, additional mechanisms have to be used to correct
this drawback.

In this paper, we add to our PSOG6 a local search method,
with the aim of improving its performance on complex prob-
lems with different landscape features: multimodal, multi-
funnel, non-separable, shifted, and rotated. First, as proven
in [24], PSO tends to converge quickly to the local basin
that contains the majority of particles at initialization. A
consequence of this observation is that PSO may exhibit higher
tendency to stagnate on multimodal functions than other algo-
rithms. In this case, we use our PSOk with six informants that
performs an optimized learning procedure to move particles
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to more interesting regions, and hence avoid the attraction to
non promising local basins. Second, as most of PSO versions
work dimension by dimension, it is actually hard to find the
problem optima when it is located far from the origin (or when
it is on an axis or a diagonal) of coordinates in non-separable
problems. To alleviate this last issue, we incorporate a local
search method to our PSO6 by means of which, particles
move individually, exploring their problem neighborhoods in
the context of variations of dependent variables.

Our proposal, called PSO6-Mtsls (PSO6 with Multiple
Trajectory Search), is then evaluated on a set of 40 benchmark
functions in order to validate whether it is competitive with
the current state of the art in continuous optimization, or not.
The sequence of tasks that we have performed in this study
to validate this hypothesis is as follows:

1) We first experiment with PSO6 to determine which
swarm size is better adapted to different problem di-
mensions. In our previous works [6], and [7], a fixed
swarm size (30) was set on a different experimental
framework. In this work, we are mainly focused on the
experimental procedure proposed in the special issue on
Large Scale Continuous Optimization of Soft Computing
journal (SOCO’10) [9]. Therefore, we have performed
an a-priori analysis concerning the best swarm size
tailored to different problem scales.

2) We compare our proposal with related PSO versions
concentrating on Standard PSO 2011 [21], Full Informed
PSO [14], Full and Informed PSO with Square Neigh-
borhood [14]. We also measure the effects of the local
search mechanism (PSO6-Mtsls) with regards to our
initial PSO6.

3) We assess the performance of our PSO6-Mtsls with re-
gards to other 15 recent algorithms featured in SOCO’10
(with and without local search methods) from the point
of view of the problem scalability, considering dimen-
sions 50, 100, 200, and 500 (#problem variables).

4) We perform a further comparison of PSO6-Mtsls with
against similar modern swarm intelligent approaches
also hybridized with local search methods: IPSO-
Powell [16], IPSO-Mtsls [17], and TACOr-Mtsls [13].
For this experimentation, we use an extended benchmark
including functions from the special session of Contin-
uous Optimization of CEC’05 [23] to SOCO’10 func-
tions. In this way, rotated functions are also considered.
In all these comparisons, we pay special attention on
non-separable problems.

After such a thorough analysis, we show that a slightly
improved PSO6 is able of performing equal or better to other
techniques, removing the old PSO problems, and providing it
with high chance of success on hard continuous optimization.



The remainder of this paper is organized as follows. We
start in Section II by giving some background concepts. In
Section III we describe our PSO6 and we detail the main
motivations that prompted us to use it in this work. Then, our
proposed approach PSO6-Mtsls is introduced in Section IV.
The core of the paper with experiments and analyses are given
in Section V. Finally, Section VII includes the most interesting
concluding remarks and future work.

II. BACKGROUND

In this section, preliminary concepts concerning the Multi-
ple Trajectory Search algorithms and the Fully Informed PSO
are given.

A. Multiple Trajectory Search

The Multiple Trajectory Search (MTS) algorithm was ini-
tially designed for multi-objective optimization showing ac-
curate results in this domain [29]. However, it is currently
becoming also popular for large scale continuous optimiza-
tion [28], since it showed the best performance in the special
session on Large Scale Global Optimization of CEC’08 [25].

In MTS, after an initialization phase using simulated or-
thogonal array (SOA), a number of three different local search
procedures are applied to each individual, selecting the best
from the three new solutions for the new iteration. In our
case, we are only interested in the first local search procedure
LS1 (out of the three ones used in MTS) since, in most of
cases, it achieved larger improvements than the other two
(LS2, and LS3) [28], for the seven functions in CEC’08 (note
that CEC’08 C SOCQ’10). Taking into account that, our aim
here is to test a new proposal on standard benchmarks using
a predefined number of evaluations, thus we have decided to
concentrate only on LS1 procedure and provide the PSO6 with
more evaluations.

LS1 searches along one dimension, from the first dimension
to the last one. As shown in Algorithm 1, LS1 uses three initial
parameters: a solution to be optimized X, generally initialized
to the best solution found in the calling procedure (in our case,
the best particle b* in PSO6), a boolean value I'mprove, and a
search range SR. The last two values are initialized in lines 1
to 7. For each dimension concerning the search, the solution’s
coordinate of this dimension is first subtracted by SR to see
if the objective function value is improved (lines 9, and 10).
If it is, the best solution is updated and the search proceeds
to consider the next dimension. If it is not, the X}, solution is
restored to its original value and then the solution’s coordinate
of this dimension is added by 0.5 - SR, again to see if the
objective function value is improved (lines 13 to 19). If it is,
the search proceeds to consider the next dimension. If it is not,
the solution is restored and the search proceeds to consider the
next dimension (lines 19 to 31). As a result, the global best in
the calling process (b*) is updated just when an improvement
is obtained.

B. From Standard PSO to FIPS

The canonical particle swarm optimization (PSO) [10], as
well as recent standard versions of this algorithm (Standards

Algorithm 1 Pseudocode of MTS: LS1(Xy, Improvey, SRy)

1. if Improvey, = False then
2: SRy < SRy/2

3:  if SR, < le — 14 then

4: SRy, < (Upper_Bound — Lower_Bound) - 0.4
5. end if

6: end if

7. Improvey, + False

8: for ¢+ = 1 to # Dimensions do
9: Xk%Xk[i]—SR

10: if f(Xi) < f(bt) then

11: bt — X,

12:  end if

13 if f(Xg) = f(b') then

14: Restore(Xy)

15:  else

16: if f(X}) > f(b') then

17: Restore(Xy)

18: Xk<—Xk[i]+0.5-SR
19: if f(X%) < f(b') then
20: bt +— X,

21: end if

22: if f(Xy) > f(b') then
23: Restore(Xy)

24: else

25: Improvey, < True
26: end if

27: else

28: Improvey, < True

29: end if

30:  end if

31: end for

32: Output: SRy, Improvey,  //The best solution found

2006, 2007, and 2011) [21], work by iteratively generating new
particles’ positions located in a given problem search space.
Each one of these new particles’ positions are calculated using
the particle’s current position (solution), the particle’s previous
velocity, and two main informant terms: the particle’s best
previous location, and the best previous location of any of its
neighbors. We could call ir PSO2 for this reason.
Formally, in canonical PSO each particle’s position vector
x; is updated each time step ¢ by means of the Equation 1.
X =g vt (1

+

where vﬁ ! is the velocity vector of the particle given by

Vi = v+ U0, 1) () = x0) + U0, 2] (b —x0) (@)

In this formula, p} is the personal best position the particle
i has ever stored, b! is the position found by the member
of its neighborhood that has had the best performance so
far. Acceleration coefficients 1 and @9 control the relative
effect of the personal and social best particles, and U* is
a diagonal matrix with elements distributed in the interval
[0, ;], uniformly at random. Finally, w € (0,1) is called the
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Fig. 1.  Topologies used by Mendes et al. [14]. Each particle has a
number of fixed neighbors in the swarm (All=N-1; Ring=2; Four-Clusters=4,5;
Pyramid=3,5,6; Square=4)

inertia weight and influences the tradeoff between exploitation
and exploration.

An equivalent version of the velocity equation was reported
in [3], where Clerc’s constriction coefficient x is used instead
of inertia weight as shown in Equation 3.

Vit =X (vi 4+ U'0,¢1] - (P} — x}) + U0, @3] - (bl — %))

) 3)
X = , with ¢ = Vi, and @ >4
12— —/¢? = 4y zz:
“)

Constriction coefficient x is calculated, by means of Equa-
tion 4, from the two acceleration coefficients ¢ and @9, being
the sum of these two coefficients what determines the x to
use. Usually, @1 = @2 = 2.05, giving as results ¢ = 4.1, and
x = 0.7298 [4], [27]. As stated by Mendes et all. [14], [15],
this fact implies that the particle’s velocity can be adjusted
by any number of informant terms, as long as acceleration
coefficients sum to an appropriate value, since important
information given by other neighbors about the search space
may be neglected through overemphasis on the single best
neighbor. With this assumption, Mendes et all. [14] proposed
the Fully Informed Particle Swarm (FIPS), in which a particle
uses information from all its topological neighbors. In FIPS,
the value ¢, that is, the sum of the acceleration coefficients,
is equally distributed among all the neighbors of a particle.
Therefore, for a given particle ¢ with position x;, ¢ is broken
up into several smaller coefficients ¢; = ¢/|N;|,Vj € N.
Then, the velocity is updated as follows:

vitl=x [vi+ Y U091 - (i —x)|, 3
JEN;

where N is the set of neighbors of the particle i, and
following the neighborhood a given topology. Fig. 1 illus-
trates the topologies used by Mendes et al. [14] as the ones
with most successful performances in a previous work [11].
These topologies are: All, Ring, Square, Four-Clusters, and
Pyramid. Their results show that the Square topology (with 4
informants) outperforms the other ones.

Indeed, the fact of defining these neighborhoods in the
swarm makes the particles to be influenced only by a certain
number of neighbors, and connected with static links in the
graph. Once again, important information may be disregarded
through overemphasis, in this case, of structured sets of
neighbors. The number of informants seems to play also an
important role, but with no clue on how many of them is the
best choice, or if even the good issue is the neighborhood
topology itself or the fact that only a few informants are used,
forgetting the intermediate sources of information existing
between Canonical/Standard PSO and FIPS versions.

III. PSO6: QUASI-OPTIMAL NUMBER OF INFORMANTS IN
PSO

As previously commented, the possibility of adjusting the
particle’s velocity by an arbitrary number of terms enables
us to generalize the number (k) of neighbors, from 1 to Ss
(being S's the swarm size). Therefore, a number S's of different
versions of PSO can be generated (selecting k particles of
the swarm without replacement), each one of them with
neighborhoods containing k particles. Obviously, if £k = S's
the resultant version is the FIPS algorithm with neighborhood
“ALL”, as illustrated in Fig. 1.

Nevertheless, since providing each k& neighborhood with
structured topologies is impracticable due to the huge number
of graph combinations, we have opted in this work to simply
selecting k random (uniform) informants of the swarm (S).
This way, for each particle 7, and at each time step ¢, a different
neighborhood (J\/f) with k elements is generated, and hence,
the number of informants can be analyzed with independence
of any structured topology. Formally, we can represent a given
neighborhood as follows:

NE={n1,...,ne} | N} € S Vnj,np € Nf oy #nj #i
(6)
Following this scheme, we designed in our previous
work [6] a new PSO called PSOk, which proceeds as formu-
lated in Equation 5, and using sets of k£ random (uniform)
informant particles as neighborhoods. The pseudocode of
PSOk is reproduced in Algorithm 2. After swarm initialization
and (; value calculation (lines 1 to 3), the optimization
process is repeated until reaching the stop condition. In this,
at each iteration and for each particle, a new neighborhood
is randomly (uniformly) generated by fulfilling conditions of
Equation 6 (line 6). Then, particle’s velocity, current position,
and local best position are updated (lines 7 to 9). Finally, the
best so far particle position is returned as output (line 13).
Then, we evaluated all the PSOL versions (with k
1...8s) [6] in order to discover whether an optimal value,
or range of values, exists that allowed to improve over the
Standard PSO and avoids the overhead of using topologies
or computing contributions from all particles in the swarm.
In this evaluation, we tested a number of 30 PSOk versions
(Ss = 30) on the benchmark of 25 functions provided in the
special session of continuous optimization of CEC’05 [23]. As
a summary of results, Fig. 2 shows the frequency histogram



Algorithm 2 Pseudocode of PSOk
1: t<0
2 g < ofk
3: initialize(S*) /¥ Swarm S° with N particles */
4: while t < MAXIMUM(t)) do

5. for each particle i* of S* do

6 N}« generate_neighborhood(k,i,S*) //Eq. 6
7: vitl < update_velocity(vt, xt, p;, N¥)  /[Eq. 5
8 x§+1 — update_position(xﬁ,vf"‘l) /[Eq. 1
9 p. ™! < update_local_best(pt,x:t)

10:  end for
1:  t+t+1
12: end while
13: Output: b /*The best solution found*/

of the best median performance (number of Hits) reached by
each different PSOk version, for all CEC’05 functions.

The most interesting observation in Fig. 2 is that a number
of 6 informants in the neighborhood makes the PSOk to
perform with success in practically all evaluated functions
(CEC’05). In addition, the range of 6+2 informants concen-
trated most of the successful runs. This led us to suspect that,
on the one hand, less than 4 informants is a deficient value
of k, since hard landscapes make regular PSO to stuck in
local optima with no enough guide coming from the two best
particles in the swarm to scape from them. On the other hand,
more than 8 informants is redundant, since lots of particles are
just representing the same movements as others, that is, there
are classes of equivalence in the swarm (basins of attraction)
that are providing redundant samples to interfere with the
numerical velocity computation for £ > 8 (including FIPS).
We also made in [6] comparisons of PSO6 with Standard PSO
2007, Standard PSO 2011, FIPS-ALL and FIPS-USquare (the
best on in [14]). In addition, we performed a series of analyses
focused of the swarm size, the problem dimension (using
CEC’08), and the algorithm complexity. All this supported
our initial assumptions concerning PSO6, in the scope of the
used experimental framework (CE’05).

More recently, continuing with this research line, we carried
out a further analysis from the point of view of the evolvabil-
ity [7]. Our motivation in that work was to find evidences
of why such number of 642 informants perform better than
other neighborhood formulations in PSO. Then, we performed
a comprehensive analysis focused on three main metrics: the
fitness distance correlation (fdc), the fitness cloud (fc), and
the escape probability (ep).

In this study [7], we first observed that using few informants
(< 4) leads the PSOE to show a positive fitness-distance cor-
relation, although it evolves solutions with poor fitness values
and far from the global optima. With more than 8 informants,
solutions are again correlated, although concentrating on small
non interesting regions of the landscape. Using 6 informants is
the best trade-off between fitness-distance and fitness quality.
A illustrative example graphic can be found in Fig. 3, where
the median fdc coefficients (out of 25 independent runs) of
the different PSOkL versions (for the 30 possible values of
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Fig. 2. Frequency histogram of best median performance (number of Hits)
reached by each different PSOk version, for all CEC’05 functions. The
complete experimentation can be found in [6]
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Fig. 3. Median fdc coefficients (out of 25 independent runs) of the different
PSOFk versions (for the 30 possible values of k), for function 25 (CEC’05).
The dotted line represents the fdc coefficients computed from 10,000 uniform
random samples for this function. The complete experimentation can be found
in [7]

k) are plotted, for function 25 (Rotated Hybrid Composed
in CEC’05). In this figure, for (almost) all combinations of
PSOE, solutions are correlated, although with poor fitness and
far from the optimum. In this case, PSO6 shows anticorrelated
solutions with accurate fitness, although far from the optimum
(deceiving function).

Secondly, we realized that solutions evolved by PSO6
generally show a moderate but maintained escape probability
progress, finally reaching deeper basins, e.g., better fitness
values than with other number of informants . In general the
behavior of all PSOk versions is stable for different problem
dimensions (10, 30, and 50). In concrete, PSO6 shows quite
similar evolvability indicators for the three studied dimensions.

In sort, after a thorough experimentation, we came to
consider PSO6 as a prominent optimizer in continuous op-
timization, as well as to use it as base algorithm to compose
new hybrid approaches.

IV. ALGORITHM PROPOSAL: PSO6-MTSLS

Our proposal, PSO6 with Multiple Trajectory Search
(PSO6-Mtsls), consists in running PSO6 as a baseline method



in which we have incorporated a local search mechanism to
improve solutions obtained by the particle swarm algorithm.
In concrete, we have employed the well-known LS1 [28] of
MTS because of three main reasons: (1) LS1 is the responsible
of most of the MTS performance, (2) it has been proven to
be an efficient optimizer on large scale and non-separable
complex problems [28], and (3) it has been successfully
used to hybridize other swarm intelligence approaches like
IPSO [17], ACO [13], and DE [18]. In the context of the
collective learning procedure induced by informant particles
in PSOk, the LS1 procedure can be interpreted as a particle’s
individual learning ability that allows it to explore-explode
its immediate area neighborhood in the absence of any social
influence. In this sense, the movement of an individual particle
depends on the improvement obtained from variations in
its adjacent variables (solution dimensions) and hence, the
interdependency of variables in non-separable problems can
be tackled more effectively than simply using vector operators
inducing linear combinations (as in PSO verions).
PSO6-Mtsls invokes a local search routine after a certain
number of iterations, performing successive improvements on
the global best particle (b?) obtained by PSO6 at moment ()
of invocation. We have to notice that, despite PSO6 does not
work directly with the global best particle (but indirectly if
it happen to take part in the current set of six informants),
it is kept updated through the iteration procedure, to be used
by LSI as a target particle. If PSO6-Mtsls detects that an
application of LS1 does not improve the solution, the local
search is stopped. In this way, the additional cost in terms of
extra function evaluations performed by LS1 can be lighten.
The pseudocode of PSO6-Mtsls can be observed in Algo-
rithm 3 and is organized as follows: the first phase, from line 1
to 7, corresponds to parameter setting and swarm initialization.
For the initialization of particles (line 3), we have partially
used the method proposed in [19] to generate good diverse
solutions. This method starts with the partition of the range of
each dimension to sr subranges of equal size. Then, for each
particle, a subrange for each dimension is selected based on
the inverse probability of the frequency count associated with
the subrange. Finally, a value is uniformly generated within
the selected interval and the frequency count associated to
the subrange is incremented. In a second phase, the PSO6-
Mtsls is then iterated until the stop condition is met: a given
number of function evaluations is reached. Finally, the PSO6
performs one iteration (lines 10 to 15), the global best is
updated in line 16, and the local search L1 is invoked with a
certain frequency according to ls_freq (line 18 to 27). In this
case, the local search procedure is repeated a given number
of iterations max_ls_iters while the solution is successively
improved. In other case, the local search is aborted and the
PSO6 follows with a new iteration. Once the stop condition is
reached, the algorithm returns the best particle found so far.

V. EXPERIMENTS

In this section, we present the experimental methodology
and the statistical procedure applied to evaluate our PSO6-
Mtsls and to compare it with other algorithms in the state of

Algorithm 3 Pseudocode of PSO6-Mtsls

1:
gy < p/k

. initialize(S*) /* Swarm S° with Ss particles */
. for k =1 to size(S?) do

28:
29:
30:

t+ 0

Improvey < True
SRy, <+ (Upper_Bound — Lower_Bound) - 0.5
end for

- while t < MAXIMUM(t) do

for each particle it of S* do
N}« generate_neighborhood(k,i,S*) //Eq. 6
Vit < update_velocity(vt, xt, p;, Nt)  /[Eq. 5
x!t < update_positon(xt, vi™) //Eq. 1
p! T < update_local_best(pt,x.t)
end for
b!*t! « update_global_best(bt)
if t%ls_freq = 0 then
Xk — bt+1
for j =1 to #max_ls_iters do
Improvey, SRy, + LS1(Xy, Improvey, SRy,)
if Improve, = False then
break
end if
end for
update(t)
end if
t—t+1
end while
Output: b’ /* The best solution found */

the art. The parameter setting is also described, paying special
attention to the swarm size and to local search parameters.

A. Experimental Setup

We have implemented our PSO6-Mtsls in C++ following

the skeleton architecture of the MALLBA library [1], a frame-
work of metaheuristics. The problem functions were tackled
including the C-code provided by each benchmark framework
to our implementation of PSO6-Mtsls. A complete package
of this software is publicity available in the new version
release of MALLBA', to allow the reproduction by other
researchers. The experiments were performed in computers at
the laboratories of the Department of Computer Science of the
University of Malaga (Spain). Most of them are equipped with
modern dual core processors, IGB RAM, and Linux Debian
0O.S. They operate under a Condor [26] middleware platform
that acts as a distributed task scheduler (each task dealing with
one independent run).

Our experimental study is structured in three different

phases. First, we evaluate our PSO6-Mtsls and other related
PSO versions concentrating on the original PSO6 without any
local search procedure, the Standard PSO 2011 (S2011), the

IMALLBA Library, Directory Mallba/rep/PSO/s0c02010
http://neo.lcc.uma.es/mallba/easy-mallba/html/mallba.html.



TABLE I
SOCO’10 AND CEC’05 BENCHMARK TEST SUITES WITH FUNCTIONS’ FEATURES: UNIMODAL (U), MULTIMODAL (M), SEPARABLE AND
NON-SEPARABLE, ROTATED AND NON-ROTATED. THE PROBLEM SEARCH RANGES AND THE BIASES TO OPTIMA VALUES f* ARE ALSO SPECIFIED

f Name Unimodal/Multimodal =~ Separable  Rotated  Search Range fr
socol Shifted Sphere U Y N [-100, 100] -450
s0c02 Shifted Schwefel 2.21 8] N N [-100, 100] -450
soco3 Shifted Rosenbrock M N N [-100, 100] 390
soco4 Shifted Rastrigin M Y N [-5, 5] -330
$0c05 Shifted Griewank M N N [-600, 600] -180
soco6 Shifted Ackley M Y N [-32, 32] -140
soco7 Shifted Schwefel 2.22 U Y N [-10, 10] 0
soco8 Shifted Schwefel 1.2 U N N [-65.536, 65.536] 0
$0c09 Shifted Extended f10 U N N [-100, 100] 0
socol0 Shifted Bohachevsky U N N [-15, 15] 0
socoll Shifted Schaffer U N N [-100, 100] 0
socol2 Hybr. Comp. soco9 @0_25 socol M N N [-100, 100] 0
socol3  Hybr. Comp. soco9 € ,5 s0co3 M N N [-100, 100] 0
socol4  Hybr. Comp. soco9 € 5 socod M N N [-5, 5] 0
socol5  Hybr. Comp. socol0 @ ,5 soco7 M N N [-10, 10] 0
socol6 Hybr. Comp. soco9 @0‘50 socol M N N [-100, 100] 0
socol7 Hybr. Comp. soco9 @0_75 soco3 M N N [-100, 100] 0
socol8  Hybr. Comp. soco9 € 5 socod M N N [-5, 5] 0
socol9  Hybr. Comp. socol0 @, .5 soco7 M N N [-10, 10] 0
cec3 Shifted Rotated High Conditioned Elliptic U S R [-100, 100] -450
cecd Shifted Schwefel’s Problem 1.2 with Noise U S N [-100, 100] -450
cecS Schwefel’s Problem 2.6 U S N [-100, 100] -310
cec7 Shifted Rotated Griewank’s. Global Optimum Outside of Bounds M S R [0, 600] -180
cec8 Shifted Rotated Ackley’s with Optimum on Bounds M S R [-32, 32] -140
cecl0 Shifted Rotated Rastrigin’s M S R [-5, 5] -330
cecll Shifted Rotated Weierstrass M N R [-0.5, 0.5] 90
cecl2 Schwefel’s Problem 2.13 M N N [-7, =] -460
cecl3 Shifted Expanded Griewank’s plus Rosenbrock’s M N N [-3, 1] -130
cecld Shifted Rotated Expanded Scaffer’s F6 M S R [-100, 100] -300
cecl5 Hybrid Composition (f1-£2,f3-f4,f5-f6,7-£8,{9-f10) M N N [-5, 5] 120
cecl6 Rotated Version of Hybrid Composition 15 M N R [-5, 5] 120
cecl?7 F16 with Noise in Fitness M N R [-5, 5] 120
cecl8 Rot. Hybr. Comp. (f1-£2,£3-f4,£5-16,£7-£8,£9-f10) M N R [-5, 5] 10
cecl9 Rot. Hybr. Comp. Narrow Basin Global Optimum M N R [-5, 5] 10
cec20 Rot. Hybr. Comp. Global Optimum on Bounds M N R [-5, 5] 10
cec21 Rot. Hybr. Comp. (f1-2,f3-f4,f5-f6,f7-£8,f9-f10) M N R [-5, 5] 360
cec22 Rot. Hybr. Comp. High Condition Number Matrix M N R [-5, 5] 360
cec23 Non-Continuous Rotated Hybrid Composition M N R [-5, 5] 360
cec24 Rot. Hybr. Comp. (f1,2,£3,f4,5,{6,7,8,f9,f10) M N R [-5, 5] 260
cec25 Rot. Hybr. Comp. Global Optimum Outside of Bounds M N R [2, 5] 260

Fully Informed PSO (FIPS-ALL), and the Fully Informed
Square Neighborhood (FIPS4, the best one in [14]), by com-
paring their performances. Second, our proposal is compared
against other 15 algorithms featured in SOCO’ 10, on different
problem scales with dimensions 50, 100, 200, and 500 contin-
uous variables. The third experimental phase corresponds to
the evaluation of PSO6-Mtsls with regards to other similar
modern swarm intelligent approaches also hybridized with
local search methods: IPSO-Powell [16], IPSO-Mtsls [17], and
TACOr-Mtsls [13].

For the two first phases, we used the 19 functions (labeled
socox) provided in SOCO’10. In this benchmark, functions
socol to socob were originally used in CEC’08 [25]. Functions
soco7 to socoll were added to the first ones in the special
session of ISDA’09 [8], and functions socol2 to socol9 consist
on hybridized functions that combine two others (being one
of them non-separable). For the third phase, we extended
the working set by including 21 more functions of CEC’05
(labeled as cecx) to the previous 19 of SOCO’10, then
constituting a set of 40 functions. We have to notice that,
as done in [13], from the original 25 functions of CEC’05
we omitted cecl, cec2, cec6, and cec9, since they are the
same as socol, soco3, soco4, and soco8. Table I shows the
set of functions used in this study with their most interest-

ing features: unimodal, multimodal, separable, non-separable,
shifted to biased optimum, rotated, and hybrid composed. The
respective bounds of search ranges and biases to optima are
also indicated. The detailed descriptions of all these functions
can be found in [9] and [23].

Following the specifications of the two benchmarks used,
we have applied as stop conditions a maximum number
of 5,000-D fitness evaluations for SOCO’10, and 10,000-D
fitness evaluations for CEC’05 functions. We performed 25
independent runs for each investigated algorithm and problem
dimension. We report the error values of the best solutions ()
found defined as: f(x) — f*, where f* is the optimum fitness
of the function f. Error values lower than 10~ (0-threshold)
are approximated to zero.

To analyze the results, we have used non-parametric sta-
tistical tests, since some times the numerical distributions
of results did not follow the conditions of normality and
homoskedasticity [5]. Therefore, our analyses and comparisons
are mainly focused on the whole distribution errors, although
paying special attention on the Median errors (and not the
Mean error), out of 25 independent runs. In particular, we have
considered the application of the Friedman’s ranking test, and
use the Holm’s multicompare test as post-hoc procedure [22]
to know which algorithms are statistically worse than the
reference algorithm (the one with the best ranking).



TABLE 11

PARAMETER SETTINGS

Parameter Value

Algorithms

Swarm size Ss = D - 0.7
Acceleration coefficient ¢ = 4.1

Acceleration coefficient ¢ = 0.5 + In(2)
Inertia weight w = 1/(2 - In(2))

Constriction coefficient x = 0.7298

Number of Informants k& = 6
Number of Informants k = 4

All

PSO6, PSO6-Mtsls,
FIPS-ALL, FIPS4
S2011

S2011

PSO6, PSO6-Mtsls,
FIPS-ALL, FIPS4
PSO6, PSO6-Mtsls
FIPS4

Number of Informants k = Ss FIPS-ALL
Number of Informed by a give one Kk =3  S2011

Topology T' = U — Random PSO6, PSO6-Mtsls
Topology T' = Square FIPS4

Topology T' = Complete FIPS-ALL
Topology T' = U — Random S2011

Local search frequency ls_freq =5 PSO6-Mtsls

Max. Is. Iterations max_ls_iters = 70 PSO6-Mtsls

B. Parameter Settings

The parameter setting applied to PSO6, as well as to the
other evaluated PSO versions, are shown in Table II and
follow the specification of their original works were they
where proposed [6], [14], and [21]. Nevertheless, concerning
the swarm size, we have decided to perform an additional
parameter tuning with PSO6, since in this work we are
using a large set of functions with different dimension scales.
Therefore, we have carried out a preliminary experimentation
with PSOG6 by setting it with different combinations of swarm
sizes and problem dimensions, in the context of SOCO’10.

Table III contains the number of functions for which PSO6
obtains the best median results for each combination of swarm
size and problem dimension. In this table, we can easily
observe that the swarm size seems to be proportional to the
problem dimension, since a higher swarm is more accurate
for large scales, and opposite. The last row specifies that
statistical differences were found in distributions (+). For this
reason, and after additional runs, we have opted to use a linear
proportion to set the swarm size by using the 70% of the
problem dimension as the number of particles in the swarm.
In this way, we use Ss = D-0.7 in Table II for PSO6, as well
as for all other PSO versions.

In the case of our PSO6-Mtsls, specific parameters to the
particle swarm use the same setting as in PSO6, including
the proportional swarm size. For specific parameters to LS1,
a series of tuning experiments have been also carried out
to find an accurate combination of local search frequency
and maximum number of iterations in the local search pro-
cedure. Table IV shows the experimented values for LSI,
where the best parameter combination is in boldface. As
expected, the higher frequency and the maximum number
of LS1 iterations shows the better performance for almost
all problem dimensions. Only in the case of D = 50, a
different combination performed better with Is_freq = 30 and
maz_ls_iters = 50. We suspect that more frequent and large
LS1 procedures in PSO6-Mtsls could be costly when D = 50,
that is, the shorter scale in SOCO’10, for which a lower
number of function evaluations are allowed. Nevertheless, for
the sake of a homogeneous parameter setting, we have decided

TABLE 11
SWARM SIZE PARAMETER TUNING: SUCCESSFUL RUNS WITH BEST
PERFORMANCES RESULTED BY PSO6, WITH DIFFERENT SWARM SIZES ON
DIFFERENT PROBLEM DIMENSIONS

Swarm Size

" Dimension | 20 30 60 100 200
50 0 19 0 0 0
100 0 0 19 0 0
200 0 0 0 19 0
500 0 0 0 0 19
Diff. + + + +

TABLE IV

LS1 PARAMETER TUNING: BEST PERFORMED VALUES ARE IN BOLD

Values for problem dimension

" LS1 parameter 50 100 200 500
ls_freq 5,10,30,50 5,10,30,50 5,10,30,50 5,10,30,50
max_ls_iters | 10,30,50,70  10,30,50,70  10,30,50,70  10,30,50,70

to use always the best combination for almost all problem
dimensions: Is_freq = 5 and max_Ils_iters = 70. In fact,
this combination is close to the ones used in related works in
the literature [17], [13], [29]. Parameters of all other compared
algorithms can be found in their reference works.

VI. PERFORMANCE COMPARISONS

This section is devoted to show all the performance results
of our PSO6-Mtsls. A series of comparisons with other PSO
versions, as well as with other modern proposals in the current
state of the art are carried out from different points of view.
Our goal is to solve different problems as well as highlighting
its advantages.

A. Comparison of PSO versions

Figures 4 and 5 show the boxplots representing que distribu-
tions of error fitness obtained by Standard PSO 2011 (S2011),
Fully Informed PSO with complete neighborhood (FIPS-
ALL), FIPS with Squared Neighborhood (FIPS4), PSO6,
and our proposal here PSO6-Mtsls, for the 19 functions of
SOCO’10 benchmark. Table V shows the average ranking of
compared algorithms resulted from the Friedman’s statistical
test and applying a post-hoc Holm’s correction for multiple
comparisons (o = 0.05), for problem dimensions 50 and 100.
In this table, the algorithm with the best ranking is used as
control method (marked in boldface). Thus, those algorithms
with adjusted Holms’s p-values < 0.05 are statistically out-
performed by the control method.

In general, we can observe in Figs. 4 and 5 that PSO6-Mtsls
shows the best performance in (almost) all functions, and for
the two analyzed problem dimensions. As shown in Table V,
our proposal is the best ranked algorithm and therefore, it
is set as control method for the post-hoc Holm’s test. For
dimension 50, all compared PSO versions excepting PSO6 are
statistically outperformed by PSO6-Mtsls. We have to notice
that LS1 parameters were set using a homogeneous tuning for
all dimensions, although being slightly disadvantageous in the
particular case of dimension 50 (Section V-B). We suspect
that using specific parameter setting for this dimension could
lead our PSO6-Mtsls to be statistically better than PSO6. In
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Fig. 4. SOCO’10 function’s fitness distributions of S2011, FIPS-ALL, FIPS4, PSO6, and PSO6-Mtsls, for dimension 50
TABLE V

fact, in the case of dimension 100, we can effectively observe
that our proposal outperforms all other compared algorithms,
including PSO6, with statistical confidence.

If we examine non composed functions (socol to socoll) in
Figs. 4 and 5, we can clearly observe that PSO6-Mtsls always
shows the best results, followed by PSO6, FIPS4, S2011, and
FIPS-ALL. Nevertheless, there are several functions: socol,
soco6, and soco7, for which PSO6-Mtsls obtained similar
distributions to the ones of PSO6, and FIPS4. Not surprisingly,
these functions are characterized as separable in SOCO’10,
and hence, PSO6 and FIPS4 are also able to show accurate
performances with regards to our proposal. Therefore, the
possible benefits induced by the local search method could
be said to pay in non-separable functions.

AVERAGE FRIEDMAN’S RANKINGS WITH HOLM’S CORRECTION
(av = 0.05) FOR SOCO’ 10 FUNCTIONS WITH DIMENSIONS 50 AND 100

50 100

" Algorithm Rank  Holm's,_yaiue | Rank  Holm/sp_yaiue
PSOG-Mtsls || 1.367 1152 -
PSO6 2.149 0.16E-01 | 2.331 4.36E-02
FIPS4 2915 0.44E-02 | 2.952 2.05E-02
$2011 3.684 234E-04 | 3.763 6.55E-05
FIPS-ALL 5.000 2.90E-10 | 5.000 7.26E-11

Concerning composed functions (socol2 to socol9), the
error distributions obtained by PSO6-Mtsls are in general
better than the ones of compared PSO versions. Therefore,
we can claim that the use of local search (LS1) in PSO6



f1 of SOCO'10, D=100 2 of SOCO'10, D=100

3 of SOCO'10, D=100 f4 of SOCO'10, D=100

1e+010 1e+010 1e+010 1e+010
1e+006 . 1e+006 1e+006 . 1e+006
1e+001 14001 | T T 1e+001 5 T 1e+001 |t .
1e-004 1le-004 1e-004 j - 1e-004
1e-009 1e-009 = 1e-009 4 1e-009 e
le-014 == L i s le-014 le-014 1e-014
B % By Xy % D e B N X K e B % XN B % B X X
2SN S S S R 2, R Ry, Yo, Yo 2, R R, Yo, o 2, R R, Yo, Yo
A P 2 A 7 A 7 A M 7 A
< %% < (oA < % ¢ %,
5 of SOCO'10, D=100 16 of SOCO'10, D=100 f7 of SOCO'10, D=100 18 of SOCO'10, D=100
1e+010 B == 1e+010
1e-004 |- 1e+006 1e+006 o e
1e+001 o 1e-004 1e+001 e e
1e-009 |- 1e-004 1e-004
1e-009
- 1e-009 1e-009
le-014 1e-014 e le-014 le-014
B, R, %R, % % B, %, %R, % % D, B, B, N N B, %, %R, % %
e . R, Yo %o e, s Ry, Yo % 2w R %o %o e, 8 R, Yo %
A T A v, Ty, A 7 A T A
< B < (A % % % %,
f9 of SOCO'10, D=100 110 of SOCO'10, D=100 f11 of SOCO'10, D=100 f12 of SOCO'10, D=100
1e+010 1e+010 il N 1e+010
1e+006 1e+006 1e+001 = T 1e+006 sk
14001 it 1e+001 7T R 1e+001 - e e
= o + ]
1e-004 1e-004 1e-004
16-009 = 16-009 1 1e-004 1€-009 ‘T |
1e-014 1e-014 el 1e-014
L % %R X X B B B B X K B B % X B % B N X
2, R R, Yo, o 2, R Ry, Yo, Yo 2, R Ry, Yo, o 2, R R, Yo, Yo
4 :7( t4 © 6!¢, “4 :7( t 4 ©c 6:47 7 :q( t4 G 6147 4 ,7( t 4 (3 6, ',
¢ o, < %4 % % ¢ %
f13 of SOCO'10, D=100 114 of SOCO'10, D=100 f15 of SOCO'10, D=100 116 of SOCO'10, D=100
— p—— 1e+010
1e+010 —
1e+001 o 1e+006 S
—_ g 1e+001 - .
1e+006 — . 1e-004 ]
-+ = —_ 1e-004
1e-009 |
- = = = 1e+001 1e-009 SR
1e+001 1e-014 1e-014
D, % R % XN B % B N N L B, B Xy X N W
2, W TR, S0 Sg 2, S %, % Yo 2 S S o o S S SR SN oX
M 7 , % T ", % T , < % T ",
< %4 < % < % < %
f17 of SOCO'10, D=100 118 of SOCO'10, D=100 f19 of SOCO'10, D=100
164010 1e+010
o 1e+006
o = _ [T L E R S A —
1e+006 o =
- 1e-004
- —_ 1e+001 1e-009
1e+001 = Lr‘ 1e-014
B B % B X B W B B X RS N S S
% % % % % 8, % % % % 8, S % Y
% t, v t, < v T 1,
< % < % < S
Fig. 5.  SOCO’10 function’s fitness distributions of S2011, FIPS-ALL, FIPS4, PSO6, and PSO6-Mtsls, for dimension 100

is advantageous in the context of SOCO’10 benchmark of
functions. However, a single exception can be observed for
function socol8 with dimension 100, where the high propor-
tion of soco4 (separable) variables in the composition with
soco9 is the probable reason for PSO6 to show a better error
distribution, even without any local search procedure. In this
sense, a secondary observation is that PSO6 generally shows a
better performance than FIPS4 (the best algorithm in [14]), and
is statistically better than FIPS-ALL and S2011. This result
was also founded in our previous work [6], although in the
context of CEC’05 benchmark of functions, with dimension
30. Therefore, in the context of large scale SOCO’ 10 functions
with more than 50 dimensions, we can also claim that PSO6
is able to perform an optimized learning procedure.

B. Comparisons with other algorithms in the state of the art

Fig. 6 shows the boxplots representing the median error
distributions of the 19 SOCO functions obtained with PSO6,
PSO6-Mitsls, and the algorithms ? featured in the special issue
of SOCO’10, for dimensions 50, 100, 200, and 500. From
these last algorithms, the results of DE, CHC, and G-CMA-ES
were provided as base-reference techniques to compare with,
previous to the global comparisons. In relation with this figure,
Table VI contains the results of applying the Friedman’s test
and Holm’s corrections to the aforementioned distributions of
median errors, for all compared algorithms and dimensions.

In general, our PSO6-Mtsls is statistically better than
PSO6, and shows more accurate distributions than RPSO-

>The complete information about featured algorithms in SOCO’10 is
available in http://sci2s.ugr.es/EAMHCO/
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Fig. 6. SOCO’10 function’s fitness distributions of all featured algorithms and PSO6 with and without Mtsls, for dimensions 50, 100, 200, and 500
TABLE VI
AVERAGE FRIEDMAN’S RANKINGS WITH HOLM’S CORRECTION (a = 0.05) FOR SOCO’ 10 FUNCTIONS AND FEATURED ALGORITHMS
‘ 50 100 200 500
Algorithm Rank  Holm/'s,, Rank  Holm/s, Rank  Holm'sp Rank  Holm/'s,
PSO6-Mtsls 5.894  0.16E+01 7.929 1.24E-01 6.952 2.40E-1 7.236 2.14E-01
PSO6 10.263 0.13E-02 | 11.763 7.12E-05 | 12.315 4.61E-06 | 12.947 8.40E-08
SOUPDE 7.578  0.62E+00 6.763 5.40E-01 7.553 1.44E-01 7.631 1.41E-01
DE-D40-Mm 9.342 5.53E-01 8.710 5.85E-02 8.578 3.90E-02 8.657 3.45E-02
GODE 8.657  0.15E+00 7.894 1.44E-01 7.973 1.02E-01 7.921 1.02E-01
GaDE 6.868  0.11E+01 5.631 1.26E+00 5.631 6.23E-01 5.552 6.38E-01
jDElscop 5.868  0.16E+01 5.315 1.26E+00 5.315 6.23E-01 5.052 6.38E-01
Sade-MMTS 6.263  0.16E+01 5.631 1.26E+00 6.157 5.47E-01 6.368 5.40E-01
MOS-DE 4.921 - 4.315 - 3.973 - 3.921 -
MA-SSV 11.736 4.45E-04 | 10.421 2.33E-03 9.131 1.64E-02 | 11.578 3.54E-05
RPSO-vm 9.552 0.52E-02 9.631 1.17E-02 9.210 1.29E-01 8.236 6.74E-02
IPSO-Powell 6.078 0.16E+01 8.210 1.22E-01 7.736 1.53E-02 6.173 6.30E-01
EvoPROpt 10.184 1.43E-01 | 12.421 1.05E-05 | 13.026 4.60E-07 | 12.526 1.95E-05
VXQRI1 10.447 0.96E-03 9.868 7.71E-03 | 10.815 3.55E-04 | 10.000 2.27E-03
DE 10.026 0.18E-02 9.210 2.53E-02 9.131 1.64E-02 8.815 2.81E-02
CHC 16.157 1.11E-11 15.736 5.03E-11 16.052 2.67E-12 16.105 1.64E-12
G-CMA-ES 13.157 7.45E-06 | 13.368 4.93E-07 | 13.342 1.61E-07 | 13.473 7.73E-08

vm and IPSO-Powell, the two other PSO versions evaluated
in SOCO’10. An exception can be found for dimension
500 where IPSO-Powell also shows an accurate distribution,
although with worse median value than our proposal. Con-
cerning the remaining algorithms, PSO6-Mtsls significantly
outperforms G-CMA-ES, CHC, DE, VXQR1, EvoPROpt, and
MA-SSW. In 200 and 500 dimensions, our proposal also
outperforms GODE and DE-D40-Mm. Nevertheless, the best
ranked distributions correspond to the ones of MOS-DE, which
is established as control method in Table VI. In spite of this,

we can effectively check that adjusted p-values of PSO6-Mtsls
are always higher than 0.05 (confidence level), which leads us
to ensure that no statistical differences can be found between
our proposal and MOS-DE. The remaining techniques featured
in SOCO’10: IPSO-Powell, Sade-MMTS, jDElscop, GaDE,
and SOUPDE are also in the group of similar algorithms (with-
out statistical differences in their performance) with regards to
our proposal and the control algorithm (MOS-DE).

From the point of view of the problem scalability, we can
observe in Fig. 6 that the performance of PSO6-Mtsls keeps



competitive results even in dimension 500 with regards to
the group of best compared algorithms. In fact, we have to
notice that the median errors of PSO6-Mtsls are below the
O-threshold at least for 12 functions out of 19 (SOCQO’10).
Therefore, as shown in boxplots (Fig. 6), our proposal resulted
with a global median of 1.00E-14 for all dimensions. In this
way, we can claim that our approach is also competitive as
the problem dimensionality increases.

An interesting observation in this comparison concerns the
performance of G-CMA-ES, which is relatively limited on
SOCO’10 functions. Although this algorithm shows accurate
results on non-separable functions soco3, socob, and soco8,
it has a moderate performance on separable unimodal and
multimodal ones, such as soco4, soco6, soco7, as well as
on non-separable hybrid composed (from socol2 to socol9).
Taking into account that G-CMA-ES obtained the best results
in the special session of CEC’05, we suspect that the existence
(or not) of rotated functions, on which this algorithm shows
highly accurate results, could influence its global performance
with regards to other compared algorithms. We have to notice
that a number of rotated functions (21 out of 25) are included
in CEC’05, whereas practically none of them can be found in
SOCO’10. A similar observation was made in [13], where
the authors argued that the global performance of a given
algorithm can be biased to certain function feature more
expressed in the tackled benchmark. This motivated us to use
an extended benchmark composed of 40 problem functions
from CEC’05 and SOCO’10 (previously described in Table I)
to compare our proposal with G-CMA-ES, as well as with
other related swarm intelligent approaches with local search
methods. The results of this comparison are analyzed in the
following section.

C. Comparisons on an extended benchmark

Table VII contains the median of distribution errors ob-
tained by G-CMA-ES [2], IPSO-Powell [16], IPSO-Mtsls [17],
TACOr-Mtsls [13], and PSO6-Mtsls, out of 30 independent
runs on the extended benchmark of 40 functions taken from
SOCO’10 and CEC’05, for dimension 50. IPSO-Powell and
IPSO-Mtsls are PSO versions that perform an incremental
social learning mechanism for swarm size adaptation on
continuous optimization functions. These two IPSO algorithms
are hybridized with Powell’s direction set [20] and Mtsls
(LS1) [28] local search procedures, respectively. IACOr-Mtsls
consists of an Ant Colony Optimization algorithm also per-
forming an incremental social learning mechanism as in the
previous PSO versions, and also hybridized with Mtsls (LS1).
In this way, we can compare our proposal with modern swarm
intelligent approaches hybridized with the same and different
local search methods. G-CMA-ES is a covariance matrix
adaptation evolution strategy that performs frequent restarts
with increasing population size. As commented before, we also
compare our PSO6-Mtsls with G-CMA-ES on CEC’05 non-
separable/rotated functions, where this last algorithm shows an
impressive performance. In this table, the best median values
for each function are represented in boldface, and the last row
contains the global count of the number of best medians for
each compared algorithm.

TABLE VII
MEDIAN ERRORS OBTAINED BY G-CMA-ES, IPSO-POWELL,
IPSO-MTsLS, IACOR-MTSLS, AND PSO6-MTSLS, FOR DIMENSION 50

F/A G-CMA-ES IPSO-Powell IPSO-Mtsls IACOr-Mtsls PSO6-Mitsls
fsocol 0.00E+00  0.00E+00 0.00E+00  0.00E+00  0.00E+00
fsoco2 2.64E-11 1.42E-14  4.12E-13  441E-13  2.96E-12
fsoco3 0.00E+00  0.00E+00 6.38E+00 4.83E+01  8.47E-11
fsoco4 1.08E+02  0.00E+00  0.00E+00  0.00E+00  0.00E+00
fsoco5 0.00E+00  0.00E+00  0.00E+00  0.00E+00  0.00E+00
fsoco6 2.11E+01  0.00E+00  0.00E+00  0.00E+00  0.00E+00
fsoco7 7.67E-11  0.00E+00  0.00E+00  0.00E+00  0.00E+00
fsoco8 0.00E+00 1.75E-09  2.80E-10  2.66E-05  0.00E+00
fsoco9 1.61IE+01  0.00E+00  0.00E+00  0.00E+00  0.00E+00
fsocol0 6.71E+00  0.00E+00  0.00E+00  0.00E+00  0.00E+00
fsocoll 2.83E+01  0.00E+00  0.00E+00  0.00E+00  0.00E+00
fsoco12 1.87E+02  1.02E-12  0.00E+00  0.00E+00  0.00E+00
fsocol3 1.97E+02  2.00E-10  539E-01  6.79E-01  3.09E+00
fsocol4 1.0SE+02  1.77E-12  0.00E+00  0.00E+00  5.37E+01
fsocol5 8.12E-04 1.07E-11  0.00E+00  0.00E+00  0.00E+00
fsocol6 422E+02  3.08E-12  0.00E+00 0.00E+00  0.00E+00
fsocol7 6.71E+02  4.35E-08 1.47E+01  6.50E+00  6.68E+00
fsocol8 1.27E+02  8.06E-12  0.00E+00 0.00E+00  6.21E+00
fsoco19 4.03E+00  1.83E-12  0.00E+00  0.00E+00  0.00E+00
feec3 0.00E+00 8.72E+03  1.59E+04  8.40E+05  1.73E+02
feecd 427E+05 2.45E+02 3.88E+03 5.93E+01  2.08E+02
fcecs 5.770E-01  4.87E-07  7.28E-11  9.44E+00  2.98E+03
feec7 3.85E-14  0.00E+00 0.00E+00  0.00E+00  0.00E+00
fcec8 2.00E+01 2.00E+01 2.00E+01 2.00E+01 2.00E+01
fcecl0 9.97E-01 8.96E+02 8.92E+02  2.69E+02 1.84E+02
feecll 1.21E+00  6.90E+01  6.64E+01  5.97E+01  3.38E+01
feecl2 2.36E+03  5.19E+04 3.68E+04  1.37E+04  6.97E+02
feecl3 471E+00  3.02E+00  3.24E+00 2.14E+00  6.70E+00
feecl4 2.30E+01  2.35E+01  2.36E+01  2.33E+01  2.27E+01
feecl5 2.00E+02  2.00E+02  2.00E+02  0.00E+00  3.06E+02
fececl6 2.15E+01 4.97E+02 4.10E+02  3.00E+02  1.95E+02
feecl7 1.61E+02  4.54E+02 4.11E+02 4.37E+02  2.20E+02
feec18 9.13E+02  1.22E+03  1.21E+03 9.84E+02  8.25E+02
fcecl9 9.12E+02 1.23E+03 1.19E+03  9.93E+02  8.25E+02
fcec20 9.12E+02 1.22E+03 1.19E+03  9.93E+02  8.25E+02
feec21 1.00E+03  1.19E+03  1.03E+03  5.00E+02  7.18E+02
feec22 8.03E+02  1.43E+03 1.45E+03  1.13E+03  5.00E+02
feec23 1.01E+03  5.39E+02 5.39E+02 5.39E+02  7.24E+02
fcec24 9.86E+02 1.31E+03 1.30E+03 1.11IE+03  2.17E+02
fcec25 2.15E+02  1.50E+03  1.59E+03  9.38E+02  2.15E+02
#bests 11/40 14/40 18/40 21/40 23/40
TABLE VIII

AVERAGE FRIEDMAN’S RANKINGS WITH HOLM’S CORRECTION
(ae = 0.05) FOR SOCO’10 AND CEC’05 FUNCTIONS

Algorithm Rank  Holm'sp
PSO6-Mtsls 248 -
TACOr-Mtsls 2.68 5.71E-01
IPSO-Mtsls 3.08 1.79E-01
IPSO-Powell 3.35 4.41E-02
G-CMA-ES 3.38 4.36E-02

A first observation in Table VII is that PSO6-Mtsls obtains
the highest number of best median errors (23 out of 40), fol-
lowed by IACOr-Mtsls, IPSO-Mtsls, IPSO-Powell, and finally
G-CMA-ES. The statistical tests associated to these results
are presented in Table VIII, where we can effectively validate
that our proposal is the best ranked algorithm, then working in
this case as control method for the post-hoc Holm’s correction.
According to this, we can even ensure that IPSO-Powell and
G-CMA-ES are statistically outperformed by our PSO6-Mtsls.

In this sense, a second observation is that our approach
does not show statistical differences with regards to the other
two swarm intelligent methods hybridized with Mitsls, that
is, JACOr-Mtsls and IPSO-Mtsls. This led us to suspect that
Mitsls is largely responsible of the accurate performance of
these three approaches, in comparison with IPSO-Powell and
G-CMA-ES. However, the difference in their ranking values



TABLE IX
NUMBER OF BEST MEDIAN ERRORS WITH REGARDS TO DIFFERENT
FUNCTIONS FEATURES WHEN COMPARING PSO6-MTSLS VERSUS
G-CMA-ES, IPSO-POWELL, IPSO-MTSLS, AND IACOR-MTSLS. THE
RESULTS ARE PRESENTED IN FORM OF (WIN, DRAW, LOSE)

Function’s PSO6-Mtsls versus
" features G-CMA-ES | IPSO-Powell | IPSO-Mtsls | ACOr-Mtsls

Separable ©, 1, 0) , 4, 0) 0, 3,0) 0, 4, 0)
Non sep. (12, 4, 6) (13,9, 2) 9, 12, 3) 9, 12, 5)
Unimodal 1,2, 1) (1,5, 1) (1,5, 1) (1,5, 1)
Multimodal (17, 3, 5) (12, 8, 1) (8, 10, 2) @8, 11, 4)
Rotated 7,2,5) (7, 3,0) (7, 3, 0) (7, 4, 0)
Non rot. (10, 3, 1) (6, 10, 2) 2, 12, 3) 2, 12, 5)
SOCO’10 (10, 3, 1) (5, 10, 2) 1, 12, 3) 1, 12, 2)
CEC’05 ®8,2,5) 8, 3,0) 8,3, 1) 8,4, 3)
Total (18, 5, 6) (13, 13, 2) 9, 15, 3) 9, 16, 5)

seems to be mostly due to the contribution of their base
methods: PSO6, IPSO, and IACO.

A final interesting observation concerns the different func-
tion features that our proposal can successfully tackle with
regards to the four compared techniques. Table IX shows a
detailed comparison presented in form of (win, draw, lose)
according to different features of the extended benchmark of
40 functions. In comparison with G-CMA-ES, our approach
obtained a higher number of “wins” (better medians) on non-
separable, multimodal, and rotated functions (as well as in
non-separable and non-rotated). We have to notice that rotated
functions correspond to CEC’05 benchmark on which G-
CMA-ES was the best algorithm. In fact, our PSO6-Mtsls
obtained 8 “wins” in CEC’05 and 10 in SOCO’10, in contrast
with 5 and 1 “loses” in these two benchmarks with regards to
G-CMA-ES. If we have a look on non-separable functions,
our proposal obtains a higher number of “wins” than G-
CMA-ES and IPSO-Powell, although the number of “draws”
is higher in comparison with IACOr-Mtsls and IPSO-Mtsls.
Once again, the effect that Mtsls induces on non-separable
functions leads hybridized algorithms with this local search
method to outperform other compared techniques. A similar
behavior can be observed concerning multimodal functions
with a high number of “draws” when comparing hybridized
algorithms with Mtsls. Nevertheless, it is on rotated functions
where PSO6-Mtsls shows a higher number of “wins” in
comparison with all other algorithms. In this case, the base
method PSOG6 is responsible of the accurate performance, since
it never obtained “loses” on rotated functions, excepting 5 in
comparison with G-CMA-ES.

In summary, the local search method Mtsls (LS1) seems
to be responsible of the successful performance of our pro-
posal on non-separable and multimodal functions, whereas
the learning procedure of PSO6 takes mostly part in rotated
ones. PSO6-Mtsls shows more “wins” than “loses” in all
comparisons, although the number of “draws” is higher when
it is compared with IACOr-Mtsls and IPSO-Mtsls, e. g., the
other swarm intelligent approaches hybridized with Mtsls.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we incorporate a local search procedure (Mt-
sls) to our PSO6 with the aim of improving the performance of
this algorithm mainly in non-separable and rotated continuous

optimization functions. Our proposal, called PSO6-Mtsls, is
then empirically tested and compared on a set of 40 benchmark
functions with that of other PSO versions, as well as with that
of other recent proposals in the current state of the art (with
and without local search methods). From this experimentation,
the following conclusions can be extracted:

1) Comparisons of our proposal against other PSO base
methods: S2011, FIPS-ALL, FIPS4, and PSO6, lead
us to claim that the use of the local search method
Mtsls (LS1) in combination with the learning procedure
performed by PSO6 is advantageous in the context
of SOCO’10 benchmark. In addition, PSO6 generally
shows better performance than FIPS4 (the best algorithm
in [14]), and is statistically better than S2011 and FIPS-
ALL for this benchmark of functions and for different
problem dimensions.

2) With regards to the current state of the art, PSO6-
Mitsls statistically outperforms G-CMA-ES, CHC, DE,
VXQRI1, EvoPROpt, and MA-SSW. In 200 and 500
dimensions, our proposal also outperforms GODE and
DE-D40-Mm. In comparison with MOS-DE, the best
ranked algorithm in SOCO’ 10, PSO6-Mtsls always show
similar distributions to this approach for all studied
dimensions.

3) The median error of PSO6-Mtsls is below the O-
threshold at least for 12 functions out of 19 (SOCO’10).
Therefore, as shown in boxplots (Fig. 6), our proposal
resulted with a global median of 1.00E-14 for all di-
mensions. In this way, we can claim that our approach
is also scalable.

4) In the scope of the extended benchmark with 40 func-
tions used here, we can ensure that PSO6-Mtsls statis-
tically outperforms IPSO-Powell and G-CMA-ES, and
is better ranked than IACOr-Mtsls and IPSO-Mtsls. The
local search method Mtsls (LS1) seems to be responsible
of the successful performance on non-separable and
multimodal functions, whereas the learning procedure
of PSOG6 takes mostly part in rotated ones.

We here state that PSO is a first class optimizer able of the
best performance in present benchmarking for the continuous
optimization.

As future work, we are interested in investigating other
elemental features and learning procedures [12] of the PSO
algorithm, as well as to study other complementary methods
to construct satisfactory hybrid approaches, capable of solving
highly complex functions. Besides, we plan to perform analyt-
ical investigations on new benchmarks (BBOB, CEC’11, etc.)
with different function characteristics and dimensions.

ACKNOWLEDGMENTS

Authors acknowledge funds from the CICE of the Junta
de Andalucia, under contract PO07-TIC-03044 (DIRICOM
http://diricom.lcc.uma.es) and Spanish Ministry of
Sciences and Innovation (MEC) and FEDER under contracts
TIN2011-28194 (RoadMe http://roadme.lcc.uma.es). José
Garcia-Nieto is supported by grant BES-2009-018767 from MEC.



[1]

[2]

[3]

[4]

[6]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

REFERENCES

E. Alba, G. Luque, J. Garcia-Nieto, G Ordofiez, and G Leguizamén.
MALLBA: A software library to design efficient optimisation algo-
rithms. Int. Journal of Innovative Computing and Applications (IJICA),
1(1):74-85, 2007.

A. Auger and N. Hansen. A restart CMA evolution strategy with in-
creasing population size. IEEE Congress on Evolutionary Computation,
2:1769-1776, 2005.

M. Clerc and J. Kennedy. The particle swarm - explosion, stability, and
convergence in a multidimensional complex space. [EEE Transactions
on Evolutionary Computation, 6(1):58 — 73, Feb 2002.

R. Eberhart and Y. Shi. Comparing Inertia Weights and Constriction
Factors in Particle Swarm Optimization. In Proceedings of the IEEE
Congress on Evolutionary Computation CEC’00, volume 1, pages 84—
88, La Jolla, CA, USA, 2000.

S. Garcia, D. Molina, M. Lozano, and F. Herrera. A study on the
use of non-parametric tests for analyzing the evolutionary algorithms’
behaviour: a case study on the CEC’2005. Journal of Heuristics,
15(6):617-644, 2009.

J. Garcia-Nieto and E. Alba. Empirical computation of the quasi-optimal
number of informants in particle swarm optimization. In Proceedings of
the 13th annual conference on Genetic and evolutionary computation,
GECCO ’11, pages 147-154, New York, NY, USA, 2011. ACM.

J. Garcia-Nieto and E. Alba. Why six informants is optimal in pso. In
Proceedings of the fourteenth international conference on Genetic and
evolutionary computation conference, GECCO ’12, pages 25-32, New
York, NY, USA, 2012. ACM.

F. Herrera and M. Lozano. Workshop for evolutionary algorithms and
other metaheuristics for continuous optimization problems - a scalability
test. Technical report, SCI2S, University of Granada, Pisa, Italy,
December 2019.

F. Herrera, M. Lozano, and D. Molina. Test suite for the special
issue of soft computing on scalability of evolutionary algorithms and
other metaheuristics for large scale continuous optimization problems.
Technical report, SCI2S, University of Granada, Spain, May 2010.

J. Kennedy and R. C. Eberhart. Swarm Intelligence. Morgan Kaufmann
Publishers, San Francisco, California, 2001.

J. Kennedy and R. Mendes. Population structure and particle swarm
performance. In Proceedings of the Congress of Evolutionary Compu-
tation CEC’02, volume 2, pages 1671-1676, Washington, DC, USA,
2002. IEEE Computer Society.

C. Li, S. Yang, and T. T. Nguyen. A self-learning particle swarm opti-
mizer for global optimization problems. Systems, Man, and Cybernetics,
Part B: Cybernetics, IEEE Transactions on, 42(3):627 —646, june 2012.
T. Liao, M. A. Montes de Oca, D. Aydin, T. Stiitzle, and M. Dorigo.
An incremental ant colony algorithm with local search for continuous
optimization. In Proceedings of the 13th annual conference on Genetic
and evolutionary computation, GECCO ’11, pages 125-132, New York,
NY, USA, 2011. ACM.

R. Mendes, J. Kennedy, and J. Neves. The Fully Informed Particle
Swarm: Simpler, Maybe Better. IEEE Transactions on Evolutionary
Computation, 8(3):204 — 210, June 2004.

A. S. Mohais, R. Mendes, C. Ward, and C. Posthoff. Neighborhood re-
structuring in particle swarm optimization. In LNCS 3809. Proceedings
of the 18th Australian Joint Conference on Artificial Intelligence, pages
776-785. Springer, 2005.

M. A. Montes de Oca, D. Aydin, and T. Stiitzle. An incremental
particle swarm for large-scale continuous optimization problems: an
example of tuning-in-the-loop (re)design of optimization algorithms.
Soft Computing, 15:2233-2255, 2011.

M. A. Montes de Oca, T. Stiitzle, K. Van den Enden, and M. Dorigo.
Incremental social learning in particle swarms. Trans. Sys. Man Cyber:
Part B, 41(2):368-384, April 2011.

S. Muelas, A. La Torre, and J. Pefia. A memetic differential evolution
algorithm for continuous optimization. In Proceedings of the 2009 Ninth
International Conference on Intelligent Systems Design and Applica-
tions, ISDA 09, pages 1080-1084, Washington, DC, USA, 2009. IEEE
Computer Society.

S. Muelas, J. Pefia, A. La Torre, and V. Robles. A new initialization
procedure for the distributed estimation of distribution algorithms. Soft
Computing, 15(4):713-720, April 2010.

M. J. D. Powell. An efficient method for finding the minimum of
a function of several variables without calculating derivatives. The
Computer Journal, 7(2):155-162, 1964.

[21]

(22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

PSO-Central-Group. Standard PSO 2006, 2007, and 2011. Technical
Report [online] http://www.particleswarm.info/, Particle Swarm Central,
January 2011.

D. J. Sheskin. Handbook of Parametric and Nonparametric Statistical
Procedures. Chapman & Hall/CRC, 2007.

P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A. Auger,
and S. Tiwari. Problem Definitions and Evaluation Criteria for the
CEC’05 Special Session on Real-Parameter Optimization. Technical
Report KanGAL Report 2005005, Nanyang Technological University,
Singapore and Kanpur, India, 2005.

A. M. Sutton, D. Whitley, M. Lunacek, and A. Howe. Pso and
multi-funnel landscapes: how cooperation might limit exploration. In
Proceedings of the 8th annual conference on Genetic and evolutionary
computation, GECCO ’06, pages 75-82, New York, NY, USA, 2006.
ACM.

K. Tang, X. Yao, P. N. Suganthan, C. MacNish, Y. P. Chen, C. M. Chen,
and Z. Yang. Benchmark functions for the CEC’08 special session and
competition on large scale global optimization. Technical report, Na-
ture Inspired Computation and Applications Laboratory, USTC, China,
November November 2007.

D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in
practice: the condor experience. Concurrency - Practice and Experience,
17(2-4):323-356, 2005.

I. C. Trelea. The particle swarm optimization algorithm: convergence
analysis and parameter selection. Inf. Process. Lett., 85:317-325, March
2003.

L. Tseng and Chun C. Multiple trajectory search for Large Scale Global
Optimization. In IEEE Congress on Evolutionary Computation, pages
3052-3059, 2008.

L. Tseng and C. Chen. Multiple trajectory search for uncon-
strained/constrained multi-objective optimization. In Proceedings of
the Eleventh conference on Congress on Evolutionary Computation,
CEC’09, pages 1951-1958, Piscataway, NJ, USA, 2009. IEEE Press.

José Garcia-Nieto Biography text here.

PLACE
PHOTO
HERE

Enrique Alba Biography text here.

PLACE
PHOTO
HERE




