Skip to main content
Log in

A hybrid evolutionary multiobjective optimization algorithm with adaptive multi-fitness assignment

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

There are several studies on hybrid multi-operator recombination methods, while few works have been proposed in the area of combining different fitness assignment in a framework. On the other hand, it is known that fitness assignment has a marked impact on the performance of evolutionary multiobjective optimization algorithm (EMOA). In this paper, a hybrid EMOA is proposed, which divides the population into several smaller subpopulations according to their distribution in the objective space. Each subpopulation is evolved by an individual EMOA, and a hybrid performance measure estimates the performance of these EMOAs. We focus on the fitness assignment and assume that all EMOAs used in the subpopulations adopt the same recombination operator. To evaluate performance of the proposed algorithm, we compare it with MOEA/D-M2M, MOE-A/D, SMS-EMOA and NSGA-II on 16 test instances. Experimental results show that the proposed algorithm performs better than or similar to those compared EMOAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bader J, Zitzler E (2011) HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol Comput 19(1):45–76

    Article  Google Scholar 

  • Beume N, Fonseca CM, López-Ibáñez M, Paquete L, Vahrenhold J (2009) On the complexity of computing the hypervolume indicator. IEEE Trans Evol Comput 13(5):1075–1082

    Article  Google Scholar 

  • Branke J, Schmeck H, Deb K, ReddyS M (2004) Parallelizing multiobjective evolutionary algorithms: Cone separation. In: Proceedings of the Congress on Evolutionary Computation, pp 1952–1957

  • Bringmann K, Friedrich T (2010) An efficient algorithm for computing hypervolume contributions. Evol Comput 18(3):383–402

    Article  Google Scholar 

  • Burke EK, Gendreau M, Hyde M, Kendall G, Ochoa G, EnderÖzcan QuR (2013) Hyper-heuristics: a survey of the state of the art. J Oper Res Soc 64(12):1695–1724

    Article  Google Scholar 

  • Chen X, Ong YS, Lim MH, Tan KC (2011) A multi-facet survey on memetic computation. IEEE Trans Evol Comput 15(5):591–607

    Article  Google Scholar 

  • Deb K (2001) Multiobjective optimization using evolutionary algorithms. Wiley, New York

    Google Scholar 

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  • Deb K, Zope P, Jain A (2003) Distributed computing of pareto-optimal solutions with evolutionary algorithms. In: Proceedings of Evolutionary multi-criterion optimization, pp 534–549

  • Eckart Z, Marco L, Lothar T (2001) SPEA2: Improving the strength pareto evolutionary algorithm for multiobjective optimization. In: Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems, pp 95–100

  • Emmerich M, Beume N, Naujoks B (2005) An EMO algorithm using the hypervolume measure as selection criterion. In: Proceedings of Evolutionary Multi-Criterion Optimization, pp 62–76

  • Giagkiozis I, Purshouse RC, Fleming PJ (2013) Generalized decomposition. In: Proceedings of Evolutionary multi-criterion optimization, pp 428–442

  • Gu F, Liu HL, Tan KC (2012) A multiobjective evolutionary algorithm using dynamic weight design method. Int J Innov Comput Inf Control 8(5B):3677–3688

    Google Scholar 

  • Hadka D, Reed P (2013) Borg: an auto-adaptive many-objective evolutionary computing framework. Evol Comput 21(2):231–259

    Article  Google Scholar 

  • Hiroyasu T, Miki M, Watanabe S (1999) Distributed genetic algorithms with a new sharing approach in multiobjective optimization problems. In: Proceedings of the Congress on Evolutionary computation, pp 69–76

  • Hiroyasu T, Miki M, Watanabe S (2000) The new model of parallel genetic algorithm in multiobjective optimization problems divided range multiobjective genetic algorithm. In: Proceedings of the Congress on Evolutionary computation, pp 333–340

  • Hisao I, Tadashi Y, Tadahiko M (2003) Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE Trans Evol Comput 7(2):204–223

  • Iacca G, Neri F, Mininno E, Ong YS, Lim MH (2012) Ockham’s Razor in memetic computing: three stage optimal memetic exploration. Inf Sci 188:17–43

    Article  MathSciNet  Google Scholar 

  • Kong X, Ouyang H, Piao X (2013) A prediction-based adaptive grouping differential evolution algorithm for constrained numerical optimization. Soft Comput 17(12):2293–2309

    Article  Google Scholar 

  • Li H, Zhang Q (2009) Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-II. IEEE Trans Evol Comput 13(2):284–302

    Article  Google Scholar 

  • Liu HL, Wang Y, Cheung YM (2009) A multiobjective evolutionary algorithm using min-max strategy and sphere coordinate transformation. Intell Autom Soft Co 15(3):361–384

    Article  Google Scholar 

  • Liu HL, Gu F, Cheung YM, Xie S, Zhang J (2014a) On solving WCDMA network planning using iterative power control scheme and evolutionary multiobjective algorithm. IEEE Comput Intell M 9(1):44–52

    Article  Google Scholar 

  • Liu HL, Gu F, Zhang Q (2014b) Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems. IEEE Trans Evol Comput 18(3):450–455

    Article  Google Scholar 

  • Lu H, Yen GG (2003) Rank-density-based multiobjective genetic algorithm and benchmark test function study. IEEE Trans Evol Comput 7(4):325–343

    Article  Google Scholar 

  • Miettinen K (1999) Nonlinear multiobjective optimization. Kluwer, Norwell

    MATH  Google Scholar 

  • Nguyen S, Zhang M, Mark J, Tan KC (2013) A computational study of representations in genetic programming to evolve dispatching rules for the job shop scheduling problem. IEEE Trans Evol Comput 17(5):621–639

    Article  Google Scholar 

  • Nguyen S, Zhang M, Mark J, Tan KC (2014) Automatic design of scheduling policies for dynamic multi-objective job shop scheduling via cooperative coevolution genetic programming. IEEE Trans Evol Comput 18(2):193–208

    Article  Google Scholar 

  • Nicola B, Naujoks B, Emmerich M (2007) SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur J Oper Res 181(3):1653–1669

    Article  MATH  Google Scholar 

  • Sato H, Aguirre HE, Tanaka K (2004) Local dominance using polar coordinates to enhance multiobjective evolutionary algorithms. In: Proceedings of the Congress on Evolutionary computation, pp 188–195

  • Sindhya K, Ruuska S, Haanpää T, Miettinen K (2011) A new hybrid mutation operator for multiobjective optimization with differential evolution. Soft Comput 15(10):2041–2055

    Article  Google Scholar 

  • VanVeldhuizen D, Zydallis J, Lamont G (2003) Considerations in engineering parallel multiobjective evolutionary algorithms. IEEE Trans Evol Comput 7(2):144–173

    Article  Google Scholar 

  • Vrugt JA, Robinson BA (2007) Improved evolutionary optimization from genetically adaptive multimethod search. Proceedings of the National Academy of Sciences of the United States of America 104(3):708–711

    Article  Google Scholar 

  • Wang Y, Cai Z, Zhang Q (2011) Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans Evol Comput 15(1):55–66

    Article  MathSciNet  Google Scholar 

  • Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Article  Google Scholar 

  • Zhang Q, Li H (2007) MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731

    Article  Google Scholar 

  • Zhao ZQ (2009) A novel modular neural network for imbalanced classification problems. Pattern Recogn Lett 30(9):783–788

    Article  Google Scholar 

  • Zitzler E, Thiele L, Laumanns M, Fonseca CM, da Fonseca VG (2003) Performance assessment of multiobjective optimizers: An analysis and review. IEEE Trans Evol Comput 7(2):117–132

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Q. Zhang for giving many suggestions. This work was supported by the Natural Science Foundation of Guangdong Province (S2011030002886, S2012010008813) and the Programme of Science and Technology of Guangzhou (2014J4100209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Lin Liu.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, F., Liu, HL. & Tan, K.C. A hybrid evolutionary multiobjective optimization algorithm with adaptive multi-fitness assignment. Soft Comput 19, 3249–3259 (2015). https://doi.org/10.1007/s00500-014-1480-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-014-1480-9

Keywords

Navigation