Skip to main content
Log in

Convergence of knowledge, nature and computations: a review

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Bio-inspired computing is just one of the branches of natural computing which also encompasses different paradigms. This review provides a brief and general overview of natural computing and incorporates comparative study of computational techniques derived from different natural phenomena including molecular and quantum computing which uses a radically different type of hardware. The bio-inspired computation is supposed to be extracted from system biology, which provides the knowledge necessary for the development of synthetic biology tools. This review describes the intertwining between system and synthetic biology. Further, a brief overview of data mining and knowledge discovery process is incorporated including different data mining tasks as well as knowledge discovery processes. Moreover, attempts have been made to justify knowledge and computation as the dual aspects of nature. In addition, inter-linking and inter-dependency of different regulatory networks, e.g., gene regulatory network, protein–protein interaction networks, and transport networks is discussed and it is emphasized that entire genomic regulatory network can be inferred as a computational system mentioned as “genomic computer”. Differences between genomic computer and traditional electronic computer have been briefly discussed. Furthermore, it is reviewed that knowledge generation can be naturalized by adopting computational model of cognition and evolutionary approach. In this naturalized approach of knowledge generation, knowledge is observed as a transformation of input data by an interactive computational process going on in the cognizing agent during the interaction with environment. How fusion of knowledge generation and nature, i.e., naturalized knowledge generation can help towards the realization of computation beyond the Turing limit has been discussed. Finally, granular aspect of information processing in natural computing is also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adleman L (1994) Molecular computation of solutions to combinatorial problems. Science 266:1021–1024

    Article  Google Scholar 

  • Adleman L (1998) Computing with DNA. Sci Am 279(2):54–61

    Article  Google Scholar 

  • Agrawal R, Imielinski T, Swami A (1993) Mining association rules between sets of items in large databases. In: Proc. Int. Conf. Management of Data (SIGMOD-93), Washington, DC, USA, pp 207–216

  • Agrawal R, Mannila H, Srikant R, Toivonen H, Verkamo AI (1996) Fast discovery of association rules. In: Fayyad UM, Piatetsky-Shapiro G, Smith P, Uthurusamy R (eds.) Advances in knowledge discovery and data mining. AAAI/MIT, pp 307–328

  • Al Qasem R, Eldos T (2013) An Efficient Cell Placement Using Gravitational Search Algorithms. J Comput Sci 9(8):943–948

    Article  Google Scholar 

  • Albus JS, Meystel A (1995) A reference model architecture for design and implementation of semiotic control in large and complex systems, In: Proc. ISIC Workshop, Monterey

  • Albus JS (1991) Outline for a theory of intelligence. IEEE Trans Syst Man Cybern 21(3):473–509

    Article  MathSciNet  Google Scholar 

  • Alcala Rafael, Nojima Yusuke, Herrera Francisco, Ishibuchi Hisao (2011) Multiobjective genetic fuzzy rule selection of single granularity-based fuzzy classification rules and its interaction with the lateral tuning of membership functions. Soft Comput 15:2303–2318

    Article  Google Scholar 

  • Andrianantoandro E, Basu S, Karig D, Weiss R (2006) Synthetic biology: new engineering rules for an emerging discipline. Mol Syst Biol 2:1–14

    Article  Google Scholar 

  • Back T, Fogel D, Michalewicz Z (1997) Handbook of evolutionary computation. IOP Publishing, UK

    Book  Google Scholar 

  • Baklouti N, John R, Alimi AM (2012) Interval type-2 fuzzy logic control of mobile robots. J Intel Learn Syst Appl 4:291–302

    Google Scholar 

  • Baklouti N, Alimi AM (2009) The geometric interval type-2 fuzzy logic approach in robot mobile issue. IEEE International conference on fuzzy systems, Jeju Island, pp 1971–1976

  • Bates MJ (2005) Information and knowledge: an evolutionary framework for information science. Inf Res 10(4)

  • Benioff P (1980) The computer as a physical system: a microscopic quantum mechanical Hamilitonian model of computers as represented by Turning machines. J Stat Phys 22(5):561–563

    Article  MathSciNet  Google Scholar 

  • Bennett C, Grinstein G (1985) Role of irreversibility in stabilizing complex and non-ergodic behavior in locally interacting discrete systems. Phys Rev Lett 55:657–660

    Article  Google Scholar 

  • Bennett C, Brassard G (1984) Quantum cryptography: public key distribution and coin testing. In: Proc. IEEE Int. Conf. on Comp., Syst., and Signal Processing, pp 175–179

  • Bickhard MH (2014) The dynamic emergence of representation, In: Clapin H, Staines P, Slezak P (eds.), Representation in mind: new approaches to mental representation, Elsevier, pp 71–90

  • Brooks R (2000) Artificial life: from robot dreams to reality. Nature 406:945–947

    Article  Google Scholar 

  • Burgin M (2005) Super recursive algorithms. Springer Monographs in Computer Science

  • Cardelli L (2005) Brane calcui: interactions of biological membranes. LNCS Springer 3082:257–280

    MathSciNet  Google Scholar 

  • Cardelli L (2007) Machines of system biology. Bull EATCS 93:176–204

    Google Scholar 

  • Catlett J (1991) On changing continuous attributes into ordered discrete attributes. In: Proc. European Working Session on Learning (EWSL-91). Lecture Notes in Artificial Intelligence 482:164–178

  • Chaitin G (2006) Epistemology as information theory. COLLAPSE, vol. 1, pp 27–51, Lecture given at E-CAP, Sweden, 2005

  • Chen H, Zhu YL (2008) Optimization based on symbiotic multi-species co-evolution. J Appl Math Comput 205

  • Ciobanu G, Paun G, Perez-Jimenez M (2006) Application of membrane computing. Springer, Berlin

  • Darwin C (1859) The origin of species by means of natural selection, Adamant Media Corp, Original 2001

  • Dasgupta D (1998) Artificial immune system and their applications. Springer, Berlin

  • de Castro LN, Von Zuben FJ (2005) Recent development in biologically inspired computing. Idea group publishing, Von Zuben

    Book  Google Scholar 

  • de Castro L, Timmis J (2002) Artificial immune systems: a new computational intelligence approach. Springer

  • De Jong K (2006) Evolutionary computation: a unified approach. MIT Press, Cambridge

  • Deutsch D (1985) Quantum theory, the Church-Turing principle and the universal quantum computer. Proc Royal Soc Lond A400:97–117

    Article  MathSciNet  Google Scholar 

  • Di Ventura B, Lemerle C, Michalodimitrakis K, Serrano L (2006) From in vivo to in silico biology and back. Nature 443:527–533

    Article  Google Scholar 

  • Dodig-Crnkovic G (2006) Investigations into information semantics and ethics of computing. Malardalen University Press, pp 1–133

  • Dodig-Crnkovic G (2008) Knowledge generation as natural computation. J Syst Cybern Inf 6(3):12–16

    Google Scholar 

  • Dorigo M (1992) Optimization, Learning and natural algorithms, Ph.D. thesis, Politecnico di Milano

  • Dryer DC, Eisbach C, Ark WS (1999) At what cost pervasive? A social computing view of mobile computing systems. IBM Syst J 38(4):652–676

  • Endy D (2005) Foundations for engineering biology. Nature 438:449–453

    Article  Google Scholar 

  • Engelbrecht A (2005) Fundamentals of computational swarm intelligence. Wiley, Chichester

  • Ermentrout G, Edelstein-Keshet L (1993) Cellular automata approach to biological modeling. J Theor Biol 160:97–133

    Article  Google Scholar 

  • Eusuff MM, Lansey KE (2003) Optimization of water distribution network design using the SFLA. J Water Resour Plan Manag 129(3):210–225

  • Farmer J, Packard N, Perelson A (1986) The immune system, adaptation, and machine learning. Physica D 22:187–204

    Article  MathSciNet  Google Scholar 

  • Fayyad UM, Piatetsky-Shapiro G, Smyth P (1996) From data mining to knowledge discovery: an overview. In: Advances in Knowledge Discovery and Data Mining, AAAI/MIT Press, pp 1–34

  • Fernandez A, Jesus MJ, Herrera F (2009) Hierarchical fuzzy rule based classification systems with genetic rule selection for imbalanced data-sets. Int J Approx Reason 50:561–577

    Article  MATH  Google Scholar 

  • Feynman R (1982) Simulating physics with computers. Int J Theor Phys 21(6/7):467–488

    Article  MathSciNet  Google Scholar 

  • Fisher D, Hapanyengwi G (1993) Database management and analysis tools of machine induction. J Intel Inf Syst 2(1):5–38

    Article  Google Scholar 

  • Flake GW (2000) The computational beauty of nature. MIT Press, Cambridge

  • Flake GW (1998) The computational beauty of nature: computer explorations of fractals. Complex systems and adaptation. MIT Press, Chaos

    Google Scholar 

  • Fogel L, Owens A, Walsh M (1966) Artificial Intelligence through Simulated Evolution. Wiley, New York, USA

  • Forrest S, Perelson A, Allen L, Cherukuri R (1994) Self-nonself discrimination in a computer. In: Proc IEEE System on Res In Security and Privacy, pp 202–212

  • Fox E, Harel D (2007) Beyond the gene. PLoS One 2(11):e1231

    Article  Google Scholar 

  • Fredkin E (1990) Digital mechanics: an informational process based on reversible universal CA. Physics D 45:254–270

    Article  MathSciNet  MATH  Google Scholar 

  • Freitas AA (2000) Understanding the crucial differences between classification and discovery of association rules: a position paper. AcM aIGKDD Explor Newsl 2(1):65–69

  • Freitas AA, Lavington SH (1998) Mining Very Large Databases with Parallel Processing. Kluwer academic publisher

  • Gardenfors P (2000) Conceptual spaces. Bradford Books, MIT Press

  • Gardenfors P (2003) How homo became sapiens: on the evolution of thinking. Oxford University Press, Oxford

  • Gauci M, Dodd TJ, Groß R (2012) Why ‘GSA: a gravitational search algorithm’ is not genuinely based on the law of gravity. Nat Comput 11(4):1–2

  • Gebhardt C (1925) Spinoza Opera. Winters, Heidelberg

    Google Scholar 

  • Gell-Mann M (1995) The quark and jaguar: adventures in the simple and the complex. Owl Books

  • Goertzel B (1993) The Evolving Mind. Gordon and Breach, New York, USA

  • Goertzel B (1994) Chaotic logic: language, thought and reality from the perspective of complex systems science. Plenum Press, New York

  • Guyon I, Matic N, Vapnik V (1996) Discovering informative patterns and data cleaning. In: Fayyad UM, Piatetsky-Shapiro G, Smith P and Uthurusamy R (eds.) Advances in knowledge discovery and data mining. AAAI/MIT Press, Cambridge, MA, pp 181–203

  • Ha Minghu, Yang Yang, Wang Chao (2013) A new support vector machine based on type-2 fuzzy samples. Soft Comput 17:2065–2074

    Article  Google Scholar 

  • Hagras H (2004) A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots. IEEE Trans Fuzzy Syst 12(4):524–539

    Article  Google Scholar 

  • Hagras H (2007) Type-2 FLCs: A new generation of fuzzy controllers. IEEE Comput Intel Mag 2(1):30–43

    Article  Google Scholar 

  • Hand DJ (1997) Construction and assessment of classification rules. Wiley, Chichester

  • Head T (1987) Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviors. Bull Math Biol 49:737–759

    Article  MathSciNet  MATH  Google Scholar 

  • He S, Wu QH (2006) A novel group search optimizer inspired by animal behavioral ecology. In: IEEE Congress on Evolutionary computation, p 1272–1278

  • Hirvensalo M (2004) Quantum computing, 2nd edition. Springer, Berlin

  • Howe J (2006) The rise of crowd sourcing, Wired

  • Howe J (2008) Crowdsourcing: Why the power of the crowd is driving the future of business, Crown

  • Howe J (2008) Crowdsourcing: How the power of the crowd is driving the future of business. Business Books, Great Britain

  • Istrail S, De-Leon SBT, Davidson E (2007) The regulatory genome and the computer. Dev Biol 310:187–195

    Article  Google Scholar 

  • John GH, Kohavi R, Pfleger K (1994) Irrelevant features and the subset selection problem. In: Proc. 11\(^{\rm th}\) Int. Conf. Machine Learning, p 121–129

  • Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 39:459–471

    Article  MathSciNet  MATH  Google Scholar 

  • Kari L, Rozenberg G (2008) The many facet of natural computing. Commun ACM 51(10):72–83

  • Karnik N, Mendel J, Liang Q (1999) Type-2 fuzzy logic systems. IEEE Trans Fuzzy Syst 7(6):643–658

    Article  Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proc. IEEE Int. Conf. Neural Networks, IEEE Press

  • Khadanga RK, Panda S (2011) Gravitational search algorithm for Unified Power Flow Controller based damping controller design. 2011 International Conference on Energy, automation and signal, pp 1–6

  • Knight T Jr, Sussman G (1998) Cellular gate technology. In: Unconventional Models of Computation. Springer, Berlin, pp 257–272

  • Kohn K (1999) Molecular interaction map of the mammalian cell cycle control and DNA repair systems. Mol Biol Cell 10(8):2703–2734

    Article  Google Scholar 

  • Kornblith H (1999) Knowledge in Humans and Other Animals. Nous 33:327

  • Kornblith H (1994) Naturalizing epistemology, 2nd edn. The MIT Press, Cambridge

    Google Scholar 

  • Koza J (1992) Genetic programming: on the programming of computers by means of natural selection, MIT Press

  • Kulakov A, Stojanov G (2002) Structures, inner values, hierarchies and stages: essentials for developmental robot architecture, 2nd International Workshop on Epigenetic Robotics, Edinbourgh, 2004

  • Kurzweil R (2005) The singularity is near. Viking, New York

    Google Scholar 

  • Landweber I, Kari L (1999) The evolution of cellular computing: nature’s solution to a computational problem. Biosystems 52(1/3):3–13

    Article  Google Scholar 

  • Langton C (1990) Artificial life. Addison-Wesley Longman, Boston

  • Li X, Shao Z, Qian J (2002) An optimizing method base on autonomous animates: fish- swarm algorithm. Syst Eng Theory Pract 22:32–38

    Google Scholar 

  • Liang Qilian, Mendel Jerry M (2000) Interval type-2 fuzzy logic system: Theory and design. IEEE Trans Fuzzy Syst 8(5):535–550

    Article  Google Scholar 

  • Lindenmayer A (1968) Mathematical models for cellular interaction in development, part I and II. J Theor Biol 18:280–315

    Article  Google Scholar 

  • Lioyd S (2006) Programming the Universe: a quantum computer scientist takes on the cosmos, Knopf

  • Lipson H, Pollack J (2000) Automatic design and manufacture of robotic life forms. Nature 406:974–978

    Article  Google Scholar 

  • Liu Z, Xu S, Zhang Y, Chen X, Philip Chen CL (2014) Interval type-2 fuzzy kernel based support vector machine algorithm for scene classification of humanoid robot

  • Lloyd S (2006) Programming the Universe: a quatum computer scientist takes on the cosmos. Knopf Alfred A

  • MacLennan B (2004) Natural computation and non-turing models of computation. Theor Comput Sci 317:115–145

    Article  MathSciNet  MATH  Google Scholar 

  • Maturana H, F Varela (1992) The Tree of Knowledge. Shambala

  • Maturana H, Varela F (1980) Autopoiesis and cognition: the realization of the living. D. Reidel, Holland

  • Mehrabian AR, Lucas C (2006) A novel numerical optimization algorithm inspired from weed colonization. Ecol Inf pp 355–366

  • Mendel JM (2001) Uncertain rule-based fuzzy logic systems: Introduction and new directions, Upper Saddle River. Prentice Hall PTR, NJ

    Google Scholar 

  • Mendel J, John R (2002) Type-2 fuzzy sets made simple. IEEE Trans Fuzzy Syst 10(2):117–127

    Article  Google Scholar 

  • Mendel J, John R (2001) A fundamental decomposition of type-2 fuzzy sets. In: IFSA world congress and 20th NAFIPS International Conference 4:1896–1901

  • Meystel A (1993) Nested hierarchical control. In: An introduction to intelligent and autonomous control. Kluwer Academic Publishers, Boston

  • Michie D, Spiegelhalter DJ, Taylor CC (1994) Machine learning, neural and statistical classification. Ellis Horwood, New York

    MATH  Google Scholar 

  • Milner R (1999) Communicating and mobile systems: the \(\pi \)-calculus. Cambridge University Press, Cambridge, UK

  • Monod J, Jacob F (1961) Telenomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harb Symp Quant Biol 26:389–401

    Article  Google Scholar 

  • Moscato P (1989) On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms. Caltech Concurrent Computation Program (report 826)

  • Nagasaki M, Onami S, Miyano S, Kitano H (1999) Bio-calculus: its concept and molecular interaction. Genome Inf 10:133–143

    Google Scholar 

  • Nakagawa H, Sakamoto K, Sakakibara Y (2006) Development of an in vivo computer based on Escherichia Coli, In LNCS 3892, Springer, pp 203–212

  • Neal M, Timmis J (2003) Timidity: A useful mechanism for robot control? Informatica 27(4):197–204

    MATH  Google Scholar 

  • Neal M, Timmis J (2005) Once more unto breach: towards artificial homeostasis. Recent development in biologically inspired computing. Idea Group Publishing, pp 340–365

  • Orriols-Puig Albert, Casillas Jorge (2011) Fuzzy knowledge representation study for incremental learning in data streams and classification problems. Soft Comput 15:2389–2414

    Article  Google Scholar 

  • Pal SK, Meher SK, Dutta S (2012) Class dependent rough fuzzy granular space, dispersion index and classification. Pattern Recog 45:2690–2707

    Article  Google Scholar 

  • Pal SK, Meher SK (2013) Natural computing: a problem solving paradigm with granular information processing. Appl Soft Comput 13:3944–3955

  • Pandey SC, Nandi GC (2012) Blood sugar regularization based evolutionary algorithm for data classification. Appl Soft Comput 12:2266–2273

    Article  Google Scholar 

  • Pandey SC, Nandi GC (2013) Artificial endocrine system: a new paradigm of knowledge discovery, International journal of information acquisition. Int J Inf Acquis World Sci 9(3, 4):1–21

    Google Scholar 

  • Pandey SC, Nandi GC (2014) TSD based framework for mining the induction rules. J Comput Sci 5(2):184–195

    Article  MathSciNet  Google Scholar 

  • Parameswaran M, Whinston AB (2007) Social computing: an overview. CAIS 19(37):762–780

    Google Scholar 

  • Park So-Youn, Lee Ju-Jang (2014) An efficient differential evolution using speeded-up k-nearest neighbor estimator. Soft Comput 18:35–49

    Article  Google Scholar 

  • Passino KM (2002) Bio-mimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst Mag 22(3):52–67

    Article  MathSciNet  Google Scholar 

  • Paul N, Springsteen G, Joyce G (2006) Conversion of a ribozyme to a deoxyribozyme through in vitro evolution. Chem Biol 13(3):329–338

    Article  Google Scholar 

  • Paun G (2002) Membrane computing: an introduction, Springer

  • Paun G, Rozenberg G (2002) A guide to membrane computing. Theor Comput Sci 287(1):73–100

    Article  MathSciNet  MATH  Google Scholar 

  • Paun G, Rozenberg G, Salomaa A (1998) DNA computing: new computing paradigms. Springer, Heidelberg

  • Pawlak Z (1982) Rough sets. Int J Comput Inf Sci 11:341–356

    Article  MathSciNet  MATH  Google Scholar 

  • Pedrycz W, Skowron A, Kreinovich V (2008) Hand book of granular computing, Willey

  • Pfahringer B (1995) Supervised and unsupervised discretization of continuous features. In: Proc. 12\(^{\rm th}\) Int. Conf. Machine Learning, pp 456–463

  • Popper KR (1972) Objective knowledge: an evolutionary approach. The Clarendon Press, Oxford

    Google Scholar 

  • Pyle D (1999) Data preparation for data mining. Morgan Kaufmann, USA

  • Ramirez-Serrano A, Boumedine M (1996) Real-time navigation in unknown environments using fuzzy logic and ultrasonic sensing, Dearborn, pp 26–30

  • Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    Article  MATH  Google Scholar 

  • Rechenberg I (1965) Cybernetic solution path of an experimental problem, Royal AirCraft Establishment, Library Translation, pp 1122

  • Rechenberg I (1973) Evolutionsstrategie;optimierung technischer systems nach prinzipien der biologischen evolution, Fromman-Holzboog

  • Regev A, Shapiro E (2002) Cellular abstractions: cells as computation. Nature 419:343–343

    Article  Google Scholar 

  • Ren Q, Balazinski M, Baron L, Jemielniak K, Botez R (2014) Type-2 fuzzy tool condition monitoring system based on acoustic emission in micromilling. Inf Sci 255:121–134

    Article  Google Scholar 

  • Rogers H Jr (1967) Theory of recursive functions and effective computability. McGraw-Hill Book Company, New York

    MATH  Google Scholar 

  • Rowe G (1994) The theoretical models in biology. Oxford University Press, New York

  • Rozenberg G (2008) Computer science, informatics and natural computing, personal reflections In: New computational paradigms: changing conceptions of what is computable. Springer, New York, pp 373–379

  • Sazani P, Larralde R, Szostak J (2004) A small aptamer with strong and specific recognition of the triphosphate of ATP. J Am Chem Soc 126(27):8370–8371

    Article  Google Scholar 

  • Schneider TD (1991) Theory of molecular machines. II. Energy dissipation from molecular machines. J Theor Biol 148:125–137

  • Schwefel HP (1965) Kybernetische Evolution als Strategie der experimentellen Forschung in der Stromungstechnik, Dipl-Ing. Tech. Univ., Berlin, Thesis

  • Shah-Hosseini H (2007) Shahid Beheshti Univ., Tehran Problem solving by intelligent water drops IEEE Congress on Evolutionary Computation, 2007, CEC

  • Shor P (1994) Algorithms for quantum computation: discrete logarithms and factoring. In Proc. FOCS, IEEE Press

  • Siegelmann HT (1995) Computation beyond the turing limit. Science 268(5210):545–548

  • Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713

    Article  Google Scholar 

  • Simoudis E, Livezey B, Kerber R (1996) Integrating inductive and deductive reasoning for data mining. In: Fayyad UM, Piatetsky-Shapiro G, Smith P, Uthurusamy R (eds.) Advances in knowledge discovery and data mining. AAAI/MIT, pp 353–373

  • Son Ji-Hwan, Ahn Hyo-Sung (2014) Bio-insect and artificial robot interaction: learning mechanism and experiment. Soft Comput 18:1127–1141

    Article  Google Scholar 

  • Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11:341–359

    Article  MathSciNet  MATH  Google Scholar 

  • Stuart S (2003) The self as an embodied agent. Minds Mach 13(2):187

    Article  Google Scholar 

  • Teuscher C (2002) Turing’s connectionism: an investigation of neural networks architectures. Springer, New York, USA

  • Timmis J, Andrews P, Owens N, Clark E (2008) An interdisciplinary perspective on artificial immune systems. Evol Intel 1(1):5–26

    Article  Google Scholar 

  • Turing AM (1950) Computing machinery and intelligence. Mind 59(236):433–460 (Reprinted in Copeland (2004))

  • Ursin R et al (2007) Entanglement-based quantum communication over 144 km. Nat Phys 3:481–486

    Article  Google Scholar 

  • Uzkent B, Barkana BD, Yang J (2011) Automatic environmental noise source classification model using fuzzy logic. Expert Syst Appl 38(7):8751–8755

  • Vandwe AJ, Sherman J, Luciano D (1990) Human physiology: the mechanisms of body function, 5\(^{\rm th}\) edn., McGraw-Hill Publishing Company, Columbus, OH

  • Vichniac G (1984) Simmulating physics with cellular automata. Physica D 10(1/2):96–116

    Article  MathSciNet  Google Scholar 

  • von Ahn L (2005) Human computation. Doctoral Thesis. UMI Order Number: AAI3205378, CMU

  • von Neumann J (1958) The computer and the brain. Yale University Press, New Haven, CT, USA

  • von Neumann J (1966) Theory of self-reproduction automata. In: Burks AW (ed) U. Illinois Press, Urbana and London

  • Wayland F (1838) The limitations of human responsibility. Applewood Books, Bedford

    Google Scholar 

  • Wegner P (1998) Interactive foundations of computing. Theor Comput Sci 192:315–351

    Article  MathSciNet  MATH  Google Scholar 

  • Weiss SM, Kulikowski CA (1991) Computer Systems that Learn. Morgan Kaufmann

  • Weiss R, Knight T Jr (2001) Engineered communications for microbial robotics. LNCS 2054:1–16

    Google Scholar 

  • Whitehead AN (1978) Process and reality: an essay in cosmology. The Free Press, New York

    Google Scholar 

  • Wolfram S (2002) A new kind of science, Wolfram Media

  • Wright S (1932) The roles of mutation, inbreeding, crossbreeding and selection in evolution, In: Proc., \(6^{\rm th}\) International Congress of. Genetics 1:356–366

  • Yang XS (2009) Fire fly algorithm for multimodal optimization. In: Proceedings of the stochastic algorithms: foundations and applications (SAGA 109). Lecture notes in computer sciences, vol 5792. Springer, Berlin, pp 169–178

  • Zadeh LA (1965) Fuzzy sets. Infect Control 8:338–353

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning. Inf Sci 8(3):199–249

  • Zhang J, Wille F, Knoll A (1996) Fuzzy logic rules for mapping sensor data to robot control. Proc First Euromicro Worksh Adv Mob Robot 10(2):29–38

    Article  Google Scholar 

Download references

Acknowledgments

Authors are deeply indebted to reviewers who have given of their valuable time to read this paper and gave important comments which immensely helped us for improving the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhash Chandra Pandey.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, S.C., Nandi, G.C. Convergence of knowledge, nature and computations: a review. Soft Comput 20, 319–342 (2016). https://doi.org/10.1007/s00500-014-1510-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-014-1510-7

Keywords

Navigation