Skip to main content

Advertisement

Log in

Parameter estimation of nonlinear chaotic system by improved TLBO strategy

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Estimation of parameters of chaotic systems is a subject of substantial and well-developed research issue in nonlinear science. From the viewpoint of optimization, parameter estimation can be formulated as a multi-modal constrained optimization problem with multiple decision variables. This investigation makes a systematic examination of the feasibility of applying a newly proposed population-based optimization method labeled here as teaching–learning-based optimization (TLBO) to identify the unknown parameters for a class of chaotic system. The preliminary test demonstrates that despite its global fast coarse search capability, teaching–learning-based optimization often risks getting prematurely stuck in local optima. To enhance its fine (local) searching performance of TLBO, Nelder–Mead simplex algorithm-based local improvement is incorporated into TLBO so as to continually search for the global optima through the reflection, expansion, contraction, and shrink operators. Working with the well-established Lorenz system, we assess the effectiveness and efficiency of the proposed improved TLBO strategy. The empirical results indicate the success of the proposed hybrid approach in which the global exploration and the local exploitation are well balanced, providing the best solutions for all instances used over other state-of-the-art metaheuristics for chaotic identification in literature, including particle swarm optimization, genetic algorithm, and quantum-inspired evolutionary algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Avriel M (2003) Nonlinear programming: analysis and methods. Dover Publications, New York

    MATH  Google Scholar 

  • Bäck T (1996) Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. Oxford University Press, New York

    MATH  Google Scholar 

  • Boccaletti S, Kurths J, Osipov G, Valladares DL, Zhou CS (2002) The synchronization of chaotic systems. Phys Rep Rev Sect Phys Lett 366(1–2):1–101

    MATH  MathSciNet  Google Scholar 

  • Bowong S, Kakmeni FMM, Fotsin H (2006) A new adaptive observer-based synchronization scheme for private communication. Phys Lett A 355(3):193–201

    Article  MATH  Google Scholar 

  • Chang JF, Yang YS, Liao TL, Yan JJ (2008) Parameter identification of chaotic systems using evolutionary programming approach. Exp Syst Appl 35(4):2074–2079

    Article  Google Scholar 

  • Chang WD (2006) Parameter identification of Rossler’s chaotic system by an evolutionary algorithm. Chaos Solitons Fractals 29(5):1047–1053

    Article  Google Scholar 

  • Chen G, Dong X (1998) From chaos to order: methodologies, perspectives, and applications. World Scientific, Singapore, River Edge, NJ

    Book  MATH  Google Scholar 

  • Chen SH, Lu JH (2002) Parameters identification and synchronization of chaotic systems based upon adaptive control. Phys Lett A 299(4):353–358

    Article  MATH  MathSciNet  Google Scholar 

  • Chen XS, Ong YS (2012) A conceptual modeling of meme complexes in stochastic search. IEEE Trans Syst Man Cybern Part C Appl Rev 42(5):612–625

    Article  Google Scholar 

  • Chen XS, Ong YS, Lim MH, Tan KC (2011) A multi-facet survey on memetic computation. IEEE Trans Evol Comput 15(5):591–607

    Article  Google Scholar 

  • Coelho LD, Bernert DLD (2009) An improved harmony search algorithm for synchronization of discrete-time chaotic systems. Chaos Solitons Fractals 41(5):2526–2532

    Article  MATH  Google Scholar 

  • Crepinsek M, Liu SH, Mernik L (2012) A note on teaching–learning-based optimization algorithm. Inf Sci 212:79–93

    Article  Google Scholar 

  • Dai D, Ma X-K, Li F-C, You Y (2002) An approach of parameter estimation for a chaotic system based on genetic algorithm. Acta Phys Sin 51(11):2459–2462

    Google Scholar 

  • Dede T (2013) Optimum design of grillage structures to LRFD-AISC with teaching–learning based optimization. Struct Multidiscip Optim 48(5):955–964

    Article  Google Scholar 

  • Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evolut Comput 1(1):3–18

    Article  Google Scholar 

  • Elabbasy EM, Agiza HN, El-Dessoky MM (2004) Adaptive synchronization of Lu system with uncertain parameters. Chaos Solitons Fractals 21(3):657–667

    Article  MATH  Google Scholar 

  • Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial intelligence through simulated evolution. Wiley, Chichester

    MATH  Google Scholar 

  • Fotsin HB, Woafo P (2005) Adaptive synchronization of a modified and uncertain chaotic Van der Pol-Duffing oscillator based on parameter identification. Chaos Solitons Fractals 24(5):1363–1371

    Article  MATH  MathSciNet  Google Scholar 

  • Fradkov AL, Evans RJ (2005) Control of chaos: methods and applications in engineering. Ann Rev Control 29(1):33–56

    Article  Google Scholar 

  • Ansola PG, de las Morenas J, García A, Otamendi J (2012) Distributed decision support system for airport ground handling management using WSN and MAS. Eng Appl Artific Intell 25(3):544–553

    Article  Google Scholar 

  • Ginsburgh V, Keyzer M (2002) The structure of applied general equilibrium models. The MIT Press, Cambridge

    Google Scholar 

  • Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, New York

    MATH  Google Scholar 

  • Grebogi C, Lai YC (1997) Controlling chaotic dynamical systems. Syst Control Lett 31(5):307–312

    Article  MATH  MathSciNet  Google Scholar 

  • Hübler A (1989) Adaptive control of chaotic systems. Helv Phys Acta 62:343–346

    Google Scholar 

  • Han KH, Kim JH (2002) Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Trans Evol Comput 6(6):580–593

    Article  Google Scholar 

  • Hart WE, Krasnogor N, Smith JE (2004) Recent advances in memetic algorithms. Springer, Heidelberg

    MATH  Google Scholar 

  • He Q, Wang L, Liu B (2007) Parameter estimation for chaotic systems by particle swarm optimization. Chaos Solitons Fractals 34(2):654–661

    Article  MATH  Google Scholar 

  • Helwig S, Branke J, Mostaghim S (2013) Experimental analysis of bound handling techniques in particle swarm optimization. IEEE Trans Evol Comput 17(2):259–271

    Article  Google Scholar 

  • Ho WH, Chou JH, Guo CY (2010) Parameter identification of chaotic systems using improved differential evolution algorithm. Nonlinear Dyn 61(1–2):29–41

    Article  MATH  MathSciNet  Google Scholar 

  • Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor

    Google Scholar 

  • Huberman BA, Lumer E (1990) Dynamics of adaptive systems. IEEE Trans Circuit Syst 37(4):547–550

    Article  Google Scholar 

  • Hyun CH, Kim JH, Kim E, Park M (2006) Adaptive fuzzy observer based synchronization design and secure communications of chaotic systems. Chaos Solitons Fractals 27(4):930–940

    Article  MATH  MathSciNet  Google Scholar 

  • Ishibuchi H, Yoshida T, Murata T (2003) Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE Trans Evolut Comput 7(2):204–223

    Article  Google Scholar 

  • Jiang S, Ong YS, Zhang J, Feng L (2014) Consistencies and contradictions of performance metrics in multiobjective optimization. IEEE Trans Cybern 44(12):2391–2404

  • Kapitaniak T (1995) Continuous control and synchronization in chaotic systems. Chaos Solitons Fractals 6:237–244

    Article  MATH  MathSciNet  Google Scholar 

  • Kennedy J, Eberhart RC, Shi Y (2001) Swarm intelligence. Morgan Kaufmann Publishers, San Francisco

    Google Scholar 

  • Krasnogor N, Smith J (2005) A tutorial for competent memetic algorithms: model, taxonomy, and design issues. IEEE Trans Evol Comput 9(5):474–488

    Article  Google Scholar 

  • Lagarias JC, Reeds JA, Wright MH, Wright PE (1998) Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM J Optim 9(1):112–147

    Article  MATH  MathSciNet  Google Scholar 

  • Le MN, Ong YS, Jin YC, Sendhoff B (2012) A unified framework for symbiosis of evolutionary mechanisms with application to water clusters potential model design. IEEE Comput Intell Mag 7(1):20–35

    Article  Google Scholar 

  • Liao TL (1998) Adaptive synchronization of two Lorenz systems. Chaos Solitons Fractals 9(9):1555–1561

    Article  MATH  Google Scholar 

  • Liu B, Keyzer M, Van den Boom B, Zikhali P (2012) How connected are Chinese farmers to retail markets? New evidence of price transmission. Chin Econ Rev 23(1):34–46

    Article  Google Scholar 

  • Liu B, Wang L, Jin YH, Huang DX, Tang F (2007) Control and synchronization of chaotic systems by differential evolution algorithm. Chaos Solitons Fractals 34(2):412–419

    Article  MATH  MathSciNet  Google Scholar 

  • Liu B, Wang L, Jin YH, Tang F, Huang DX (2005) Improved particle swarm optimization combined with chaos. Chaos Solitons Fractals 25(5):1261–1271

    Article  MATH  Google Scholar 

  • Liu B, Wang L, Liu Y, Qian B, Jin YH (2010) An effective hybrid particle swarm optimization for batch scheduling of polypropylene processes. Comput Chem Eng 34(4):518–528

    Article  Google Scholar 

  • Liu B, Wang L, Liu Y, Wang SY (2011) A unified framework for population-based metaheuristics. Ann Oper Res 186(1):231–262

    Article  MATH  Google Scholar 

  • Liu B, Wang L, Tang F, Huang D (2006) Directing orbits of chaotic systems by particle swarm optimization. Chaos Solitons Fractals 29(2):454–461

    Article  MATH  MathSciNet  Google Scholar 

  • Lou Z, Liu B, Xie H, Wang Y (2015) Adjustment of basal insulin infusion rate in T1DM by hybrid PSO. Soft Comput 19(7):1921–1937

  • Maybhate A, Amritkar RE (1999) Use of synchronization and adaptive control in parameter estimation from a time series. Phys Rev E 59(1):284–293

    Article  Google Scholar 

  • Moscato P (1989) On evolution, search, optimization, genetic algorithms and martial arts: toward memetic algorithms. Tech Rep Caltech Concurr Comput Prog Rep 826, Pasadena, CA, California Inst Technol

  • Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7(4):308–313

    Article  MATH  MathSciNet  Google Scholar 

  • Niknam T, Golestaneh F, Sadeghi MS (2012) Theta-multiobjective teaching–learning-based optimization for dynamic economic emission dispatch. IEEE Syst J 6(2):341–352

    Article  Google Scholar 

  • Ong YS, Keane AJ (2004) Meta-Lamarckian learning in memetic algorithms. IEEE Trans Evol Comput 8(2):99–110

    Article  Google Scholar 

  • Ong YS, Krasnogor N, Ishibuchi H (2007) Special issue on memetic algorithms. IEEE Trans Syst Man Cybern Part B Cybern 37(1):2–5

    Article  Google Scholar 

  • Ong YS, Lim MH, Chen XS (2010) Memetic computation-past, present and future. IEEE Comput Intell Mag 5(2):24–31

    Article  Google Scholar 

  • Ong YS, Lim MH, Neri F, Ishibuchi H (2009) Special issue on emerging trends in soft computing: memetic algorithms. Soft Comput A Fusion Found Methodol Appl 13(8–9):1–2

    Google Scholar 

  • Ong YS, Lim MH, Zhu N, Wong KW (2006) Classification of adaptive memetic algorithms: a comparative study. IEEE Trans Syst Man Cybern Part B Cybern 36(1):141–152

    Article  Google Scholar 

  • Ong YS, Nair PB, Keane AJ (2003) Evolutionary optimization of computationally expensive problems via surrogate modeling. AIAA J 41(4):687–696

    Article  Google Scholar 

  • Ott E, Grebogi C, Yorke JA (1990) Controlling Chaos. Phys Rev Lett 64(11):1196–1199

    Article  MATH  MathSciNet  Google Scholar 

  • Pan H, Wang L, Liu B (2008) Chaotic annealing with hypothesis test for function optimization in noisy environments. Chaos Solitons Fractals 35(5):888–894

    Article  Google Scholar 

  • Park JH (2005) Adaptive synchronization of Rossler system with uncertain parameters. Chaos Solitons Fractals 25(2):333–338

    Article  MATH  Google Scholar 

  • Parlitz U (1996) Estimating model parameters from time series by autosynchronization. Phys Rev Lett 76(8):1232–1235

    Article  Google Scholar 

  • Parlitz U, Junge L, Kocarev L (1996) Synchronization-based parameter estimation from time series. Phys Rev E 54(6):6253–6259

    Article  Google Scholar 

  • Patel V, Savsani V (2014) Optimization of a plate-fin heat exchanger design through an improved multi-objective teaching–learning based optimization (MO-ITLBO) algorithm. Chem Eng Res Des 92(11):2371–2382

    Article  Google Scholar 

  • Patel VK, Savsani VJ (2014b) A multi-objective improved teaching–learning based optimization algorithm (MO-ITLBO). Inf Sci. doi:10.1016/j.ins.2014.05.049

  • Pecora LM, Carroll TL (1990) Synchronization in chaotic systems. Phys Rev Lett 64(8):821–824

    Article  MATH  MathSciNet  Google Scholar 

  • Pecora LM, Carroll TL, Johnson GA, Mar DJ, Heagy JF (1997) Fundamentals of synchronization in chaotic systems, concepts, and applications. Chaos 7(4):520–543

    Article  MATH  MathSciNet  Google Scholar 

  • Rao R, Patel V (2012) An elitist teaching–learning-based optimization algorithm for solving complex constrained optimization problems. Int J Ind Eng Comput 3(4):535–560

    Google Scholar 

  • Rao RV, Patel V (2013) Comparative performance of an elitist teaching–learning-based optimization algorithm for solving unconstrained optimization problems. Int J Ind Eng Comput 4(1):29–50

    Google Scholar 

  • Rao RV, Patel V (2013) An improved teaching–learning-based optimization algorithm for solving unconstrained optimization problems. Sci Iran 20(3):710–720

    MathSciNet  Google Scholar 

  • Rao RV, Patel V (2013) Multi-objective optimization of heat exchangers using a modified teaching–learning-based optimization algorithm. Appl Math Model 37(3):1147–1162

    Article  MathSciNet  Google Scholar 

  • Rao RV, Patel V (2013) Multi-objective optimization of two stage thermoelectric cooler using a modified teaching–learning-based optimization algorithm. Eng Appl Artif Intell 26(1):430–445

    Article  Google Scholar 

  • Rao RV, Savsani VJ, Balic J (2012) Teaching–learning-based optimization algorithm for unconstrained and constrained real-parameter optimization problems. Eng Opt 44(12):1447–1462

    Article  Google Scholar 

  • Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315

    Article  Google Scholar 

  • Saha P, Banerjee S, Chowdhury AR (2004) Chaos, signal communication and parameter estimation. Phys Lett A 326(1–2):133–139

    Article  MATH  MathSciNet  Google Scholar 

  • Sornette D (2006) Critical phenomena in natural sciences: chaos, fractals, selforganization, and disorder : concepts and tools. Springer, Berlin, New York

    MATH  Google Scholar 

  • Storn R, Price K (1997) Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    Article  MATH  MathSciNet  Google Scholar 

  • Tien JP, Li THS (2012) Hybrid Taguchi–Chaos of multilevel immune and the artificial bee colony algorithm for parameter identification of chaotic systems. Comput Math Appl 64(5):1108–1119

    Article  Google Scholar 

  • Venkata Rao R, Patel V (2013) Multi-objective optimization of two stage thermoelectric cooler using a modified teaching–learning-based optimization algorithm. Eng Appl Artif Intell 26(1):430–445

    Article  Google Scholar 

  • Waghmare G (2013) Comments on “A note on teaching–learning-based optimization algorithm”. Inf Sci 229:159–169

    Article  Google Scholar 

  • Wang C, Ge SS (2001) Adaptive synchronization of uncertain chaotic systems via backstepping design. Chaos Solitons Fractals 12(7):1199–1206

    Article  MATH  Google Scholar 

  • Wang L, Li LP (2010) An effective hybrid quantum-inspired evolutionary algorithm for parameter estimation of chaotic systems. Expert Syst Appl 37(2):1279–1285

    Article  Google Scholar 

  • Wang L, Liu B (2008) Particle swarm optimization and scheduling algorithms. Tsinghua University Press, Beijing

    Google Scholar 

  • Wang L, Xu Y (2011) An effective hybrid biogeography-based optimization algorithm for parameter estimation of chaotic systems. Expert Syst Appl 38(12):15103–15109

    Article  Google Scholar 

  • Wang L, Xu Y, Li LP (2011) Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm. Expert Syst Appl 38(4):3238–3245

    Article  Google Scholar 

  • Yassen MT (2005) Adaptive synchronization of Rossler and Lu systems with fully uncertain parameters. Chaos Solitons Fractals 23(5):1527–1536

    Article  MATH  MathSciNet  Google Scholar 

  • Yu K, Wang X, Wang Z (2014) An improved teaching–learning-based optimization algorithm for numerical and engineering optimization problems. J Intell Manuf. doi:10.1007/s10845-014-0918-3

  • Zhai Y, Ong Y, Tsang I (2014) The emerging “Big Dimensionality”. IEEE Comput Intell Mag 9(3):14–26

    Article  Google Scholar 

  • Zhu ZX, Ong YS, Dash M (2007) Wrapper–filter feature selection algorithm using a memetic framework. IEEE Trans Syst Man Cybern Part B Cybern 37(1):70–76

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Francesco Marcelloni, Dr. Anand Venugopal and the anonymous referees for their constructive comments. The last author BL is very grateful to Prof. Yew-Soon Ong (Director of the Centre for Computational Intelligence, School of Computer Engineering, Nanyang Technological University, Singapore) who has provided very useful comments and invaluable help to improve this study. The authors thank Prof. Yihui Jin, Prof. Ling Wang (Department of Automation, Tsinghua University), Prof. JiKun Huang (Center for Chinese Agricultural Policy, Chinese Academy of Sciences), Prof. Shouyang Wang (Academy of Mathematics and Systems Science, Chinese Academy of Sciences) and Royal Honored Prof. M.A. Keyzer (Faculty of Economics and Business Administration, SOW-VU, Vrije Universiteit Amsterdam, The Netherlands) for their support and training. This research is partially supported by National Natural Science Foundation of China (Grant Nos. 71101139, 71103013, and 71390330), State Key Laboratory of Intelligent Control and Decision of Complex Systems of Beijing Institute of Technology, as well as Defense Industrial Technology Development Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Liu.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Li, B., Zhang, J. et al. Parameter estimation of nonlinear chaotic system by improved TLBO strategy. Soft Comput 20, 4965–4980 (2016). https://doi.org/10.1007/s00500-015-1786-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-015-1786-2

Keywords

Navigation