Skip to main content
Log in

Many-objective optimization based on information separation and neighbor punishment selection

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Many-objective optimization refers to optimizing a multi-objective optimization problem (MOP) where the number of objectives is more than 3. Most classical evolutionary multi-objective optimization (EMO) algorithms use the Pareto dominance relation to guide the search, which usually perform poorly in the many-objective optimization scenario. This paper proposes an EMO algorithm based on information separation and neighbor punishment selection (ISNPS) to deal with many-objective optimization problems. ISNPS separates individual’s behavior in the population into convergence information and distribution information by rotating the original coordinates in the objective space. Specifically, the proposed algorithm employs one coordinate to reflect individual’s convergence and the remaining \(m-1\) coordinates to reflect individual’s distribution, where m is the number of objectives in a given MOP. In addition, a neighborhood punishment strategy is developed to prevent individuals from being crowded. From a series of experiments on 42 test instances with 3–10 objectives, ISNPS has been found to be very competitive against six representative algorithms in the EMO area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Here the binary tournament selection (Miller and Goldberg 1995) is used as the mating selection.

  2. For MOEA/D, we adopt the original C++ code, which can be obtained at http://dces.essex.ac.uk/staff/zhang/webofmoead.htm.

  3. For NSGA-III, the C++ implemention (version 1.1) from professor Chiang is used in our study, which can be downloaded at web.ntnu.edu.tw/ tcchiang/publications/nsga3cpp/nsga3cpp.htm.

  4. For \(\epsilon \)-MOEA, we adopt the C implemention from KanGAL, which can be downloaded at www.iitk.ac.in/kangal/index.shtml.

  5. For MSOPS, the original MATLAB code is adopted, which can be found at .

  6. For IBEA, the Java implementation in jMetal (Durillo et al. 2010; Durillo and Nebro 2011) project (version 4.5) is utilized, which can be downloaded at .

  7. As suggested by Gómez and Coello Coello (2013), the Monte Carlo simulation is utilized to accelerate the calculation of hypervolume contribution of SMS-EMOA.

References

  • Adra SF, Fleming PJ (2009) A diversity management operator for evolutionary many-objective optimisation. In: Evolutionary multi-criterion optimization, pp. 81–94. Springer, Nantes, France. doi:10.1007/978-3-642-01020-0_11

  • Aguirre HE, Tanaka K (2007) Working principles, behavior, and performance of MOEAs on MNK-landscapes. Eur J Oper Res 181(3):1670–1690. doi:10.1016/j.ejor.2006.08.004

    Article  MATH  Google Scholar 

  • Bader J, Zitzler E (2011) HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol Comput 19(1):45–76. doi:10.1162/EVCO_a_00009

  • Bentley PJ, Wakefield JP (1997) Finding acceptable Pareto-optimal solutions using multiobjective genetic algorithms. Soft Comput Eng Des Manuf 5:231–240

    Google Scholar 

  • Beume N, Naujoks B, Emmerich M (2007) SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur J Oper Res 181(3):1653–1669. doi:10.1016/j.ejor.2006.08.008

    Article  MATH  Google Scholar 

  • Bosman PA, Thierens D (2003) The balance between proximity and diversity in multi-objective evolutionary algorithms. IEEE Trans Evol Comput 7(2):174–188. doi:10.1109/TEVC.2003.810761

    Article  Google Scholar 

  • Cheney W, Kincaid DR (2010) Linear algebra: theory and applications, 2nd edn. Jones & Bartlett Publishers. ISBN 1449613527, 9781449613525

  • Coello CA, Lamont GB (2004) Applications of multi-objective evolutionary algorithms. World Scientific Publisher, Singapore

    Book  MATH  Google Scholar 

  • Corne DW, Knowles JD (2007) Techniques for highly multiobjective optimisation: some nondominated points are better than others. In: Genetic and evolutionary computation conference, pp. 773–780. London, England, UK. doi:10.1145/1276958.1277115

  • Das I, Dennis JE (1998) Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J Optim 8(3):631–657. doi:10.1137/S1052623496307510

    Article  MathSciNet  MATH  Google Scholar 

  • Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley-interscience series in systems and optimization, 1st edn. Wiley, Chichester, New York

    Google Scholar 

  • Deb K, Agrawal RB (1994) Simulated binary crossover for continuous search space. Complex Syst 9(2):115–148

    MathSciNet  MATH  Google Scholar 

  • Deb K, Goyal M (1996) A combined genetic adaptive search (GeneAS) for engineering design. Comput Sci Inform 26(4):30–45

    Google Scholar 

  • Deb K, Jain H (2004) An evolutionary many-objective optimization algorithm using reference-point based non-dominated sorting approach, part I: solving problems with box constraints. IEEE Trans Evol Comput 18(4):577–601. doi:10.1109/TEVC.2013.2281535

    Article  Google Scholar 

  • Deb K, Jain S (2002) Running performance metrics for evolutionary multi-objective optimization. Tech. Rep. Kangal Report No. 2002004, Indian Institute of Technology

  • Deb K, Kumar A (1995) Real-coded genetic algorithms with simulated binary crossover: studies on multimodal and multiobjective problems. Complex Syst 9(6):431–454

    Google Scholar 

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197. doi:10.1109/4235.996017

    Article  Google Scholar 

  • Deb K, Thiele L, Laumanns M, Zitzler E (2005) Scalable test problems for evolutionary multi-objective optimization. In: Evolutionary multiobjective optimization, advanced information and knowledge processing, pp. 105–145. Springer, Berlin. doi:10.1007/1-84628-137-7_6

  • Drechsler N, Drechsler R, Becker B (2001) Multi-objective optimisation based on relation favour. In: Evolutionary multi-criterion optimization, pp. 154–166. Springer, Berlin. doi:10.1007/3-540-44719-9_11

  • Durillo JJ, Nebro AJ (2011) jMetal: a java framework for multi-objective optimization. Adv Eng Softw 42:760–771. doi:10.1016/j.advengsoft.2011.05.014

    Article  Google Scholar 

  • Durillo JJ, Nebro AJ, Alba E (2010) The jMetal framework for multi-objective optimization: design and architecture. In: IEEE congress on evolutionary computation, pp. 4138–4325. Barcelona, Spain. doi:10.1109/CEC.2010.5586354

  • Farina M, Amato P (2002) On the optimal solution definition for many-criteria optimization problems. In: Proceedings of the NAFIPS-FLINT international conference, pp. 233–238. IEEE Serv Center. doi:10.1109/NAFIPS.2002.1018061

  • Farina M, Amato P (2004) A fuzzy definition of “optimality” for many-criteria optimization problems. IEEE Trans Syst Man Cybern Part A: Syst Hum 34(3):315–326. doi:10.1109/TSMCA.2004.824873

    Article  Google Scholar 

  • Glaser RE (1983) Levene’s robust test of homogeneity of variances. Encycl Stat Sci 4:608–610

    Google Scholar 

  • Gómez RH, Coello CA (2013) MOMBI: a new metaheuristic for many-objective optimization based on the R2 indicator. In: IEEE congress on evolutionary computation, pp. 2488–2495. Cancun. doi:10.1109/CEC.2013.6557868

  • Huband S, Hingston P, Barone L, While L (2006) A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans Evol Comput 10(5):477–506. doi:10.1109/TEVC.2005.861417

    Article  MATH  Google Scholar 

  • Hughes EJ (2003) Multiple single objective Pareto sampling. In: IEEE congress on evolutionary computation, vol. 4, pp. 2678–2684. IEEE, Canberra, Australia. doi:10.1109/CEC.2003.1299427

  • Hughes EJ (2005) Evolutionary many-objective optimisation: many once or one many? In: IEEE congress on evolutionary computation, vol. 1, pp. 222–227. IEEE Press. doi:10.1109/CEC.2005.1554688

  • Ikeda K, Kita H (2001) Failure of Pareto-based MOEAs: does non-dominated really mean near to optimal? IEEE Congr Evol Comput 2:957–962. doi:10.1109/CEC.2001.934293

    Google Scholar 

  • Inselberg A (1985) The plane with parallel coordinates. Vis Comput 1(4):69–91. doi:10.1007/BF01898350

    Article  MathSciNet  MATH  Google Scholar 

  • Inselberg A, Dimsdale B (1990) Parallel coordinates: a tool for visualizing multi-dimensional geometry. In: IEEE conference on visualization, pp. 361–378. IEEE Computer Society Press. doi:10.1109/VISUAL.1990.146402

  • Ishibuchi H, Sakane Y, Tsukamoto N, Nojima Y (2009) Evolutionary many-objective optimization by NSGA-II and MOEA/D with large populations. In: IEEE International Conference on Systems, Man, and Cybernetics, pp. 1820–1825. San Antonio, USA. doi:10.1109/ICSMC.2009.5346628

  • Ishibuchi H, Tsukamoto N, Hitotsuyanagi Y, Nojima Y (2008) Effectiveness of scalability improvement attempts on the performance of NSGA-II for many-objective problems. In: Annual conference on genetic and evolutionary computation, pp. 649–656. ACM, New York, USA. doi:10.1145/1389095.1389225

  • Ishibuchi H, Tsukamoto N, Nojima Y (2008) Evolutionary many-objective optimization: A short review. In: IEEE congress on evolutionary computation, pp. 2424–2431. doi:10.1109/CEC.2008.4631121

  • Jaimes AL, Quintero LVS, Coello CA (2009) Ranking methods in many-objective evolutionary algorithms. In: Nature-inspired algorithms for optimisation, pp. 413–434. Springer, Berlin

  • Knowles JD, Corne DW (2007) Quantifying the effects of objective space dimension in evolutionary multiobjective optimization. In: Evolutionary multi-criterion optimization, pp. 757–771. Springer, Berlin. doi:10.1007/978-3-540-70928-2_57

  • Köppen M, Yoshida K (2007) Substitute distance assignments in NSGA-II for handling many-objective optimization problems. In: Evolutionary multi-criterion optimization, pp. 727–741. doi:10.1007/978-3-540-70928-2_55

  • Laumanns M, Thiele L, Deb K, Zitzler E (2002) Combining convergence and diversity in evolutionary multi-objective optimization. Evol Comput 10(3):263–282. doi:10.1162/106365602760234108

    Article  Google Scholar 

  • Li M, Yang S, Liu X (2014) Diversity comparison of Pareto front approximations in many-objective optimization. IEEE Trans Cybern 44(12):2568–2584. doi:10.1109/TCYB.2014.2310651

  • Li M, Yang S, Liu X (2014) Shift-based density estimation for Pareto-based algorithms in many-objective optimization. IEEE Trans Evol Comput 18(3):348–365. doi:10.1109/TEVC.2013.2262178

    Article  Google Scholar 

  • Li M, Yang S, Liu X, Shen R (2013) A comparative study on evolutionary algorithms for many-objective optimization. In: Evolutionary multi-criterion optimization, lecture notes in computer science, pp. 261–275. Sheffield, UK. doi:10.1007/978-3-642-37140-0_22

  • Li M, Zheng J, Li K, Yuan Q, Shen R (2010) Enhancing diversity for average ranking method in evolutionary many-objective optimization. In: Parallel problem solving from nature, pp. 647–656. Springer, Berlin. doi:10.1007/978-3-642-15844-5_65

  • Li M, Zheng J, Shen R, Li K, Yuan Q (2010) A grid-based fitness strategy for evolutionary many-objective optimization. In: Genetic and evolutionary computation conference, pp. 463–470. ACM. doi:10.1145/1830483.1830570

  • Miller BL, Goldberg DE (1995) Genetic algorithms, tournament selection, and the effects of noise. Complex Syst 9:193–212

    MathSciNet  Google Scholar 

  • Miller RGJ (1981) Simultaneous statistical inference, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  • Mostaghim S, Schmeck H (2008) Distance based ranking in many-objective particle swarm optimization.In: Parallel problem solving from nature, pp. 753–762. Springer, Berlin. doi:10.1007/978-3-540-87700-4_75

  • Phan DH, Suzuki J (2013) R2-IBEA: R2 indicator based evolutionary algorithm for multiobjective optimization. In: IEEE congress on evolutionary computation, pp. 1836–1845. IEEE, Cancun, Mexico. doi:10.1109/CEC.2013.6557783

  • Phan DH, Suzuki J, Hayashi I (2011) BIBEA: boosted indicator based evolutionary algorithm for multiobjective optimization. In: Asia pacific symposium of intelligent and evolutionary systems. Yokosuka, Japan

  • di Pierro F (2006) Many-objective evolutionary algorithms and applications to water resources engineering. Ph.d. thesis, school of engineering, computer science and mathematics, University of Exeter, UK

  • di Pierro F, Khu ST, Savić DA (2007) An investigation on preference order ranking scheme for multiobjective evolutionary optimization. IEEE Trans Evol Comput 11(1):17–45. doi:10.1109/TEVC.2006.876362

    Article  Google Scholar 

  • Purshouse RC, Fleming PJ (2003) Evolutionary many-objective optimization: an exploratory analysis. IEEE Congr Evol Comput 3:2066–2073. doi:10.1109/CEC.2003.1299927

  • Purshouse RC, Fleming PJ (2007) On the evolutionary optimization of many conflicting objectives. IEEE Trans Evol Comput 11(6):770–784. doi:10.1109/TEVC.2007.910138

    Article  Google Scholar 

  • Rice J (1995) Mathematical statistics and data analysis. Duxbury Press

  • Rudolph G, Trautmann H, Sengupta S, Schütze O (2013) Evenly spaced Pareto front approximations for tricriteria problems based on triangulation. In: Evolutionary multi-criterion optimization, pp. 443–458. Springer, Sheffield, UK. doi:10.1007/978-3-642-37140-0_34

  • Sato H, Aguirre HE, Tanaka K (2007) Controlling dominance area of solutions and its impact on the performance of MOEAs. In: Evolutionary multi-criterion optimization, pp. 5–20. Springer, Berlin. doi:10.1007/978-3-540-70928-2_5

  • Tamhane AC (1977) Multiple comparisons in model I one-way ANOVA with unequal variances. Commun Stat 6(1):15–32. doi:10.1080/03610927708827466

  • Veldhuizen DAV, Lamont GB (1998) Evolutionary computation and convergence to a Pareto front. In: Late breaking papers at the genetic programming 1998 conference, pp. 221–228. Stanford University Bookstore, University of Wisconsin, Madison, Wisconsin, USA

  • Wagner T, Beume N, Naujoks B (2007) Pareto-, aggregation-, and indicator-based methods in many-objective optimization. In: Evolutionary multi-criterion optimization, pp. 742–756. Springer, Berlin. doi:10.1007/978-3-540-70928-2_56

  • Wegman EJ (1990) Hyperdimensional data analysis using parallel coordinates. J Am Stat Assoc 85:664–675

    Article  Google Scholar 

  • Yang S, Li M, Liu X, Zheng J (2013) A grid-based evolutionary algorithm for many-objective optimization. IEEE Trans Evol Comput 17(5):721–736. doi:10.1109/TEVC.2012.2227145

    Article  Google Scholar 

  • Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731. doi:10.1109/TEVC.2007.892759

    Article  MathSciNet  Google Scholar 

  • Zitzler E (1999) Evolutionary algorithms for multiobjective optimization: methods and applications. Ph.d. thesis, Eidgenössische Technische Hochschule Zürich. Swiss Federal Institute of Technology

  • Zitzler E, Künzli S (2004 Indicator-based selection in multiobjective search. In: Parallel problem solving from nature, pp. 832–842. Springer, Berlin. doi:10.1007/978-3-540-30217-9_84

  • Zitzler E, Laumanns M, Thiele L (2002) SPEA2: improving the strength Pareto evolutionary algorithm for multiobjective optimization. Evolutionary methods for design., optimisation, and controlCIMNE, Barcelona, Spain, pp 95–100

  • Zitzler E, Thiele L (1998) Multiobjective optimization using evolutionary algorithms—a comparative case study. In: Parallel problem solving from nature, pp. 292–301. Springer, Berlin. doi:10.1007/BFb0056872

  • Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evol Comput 3(4):257–271. doi:10.1109/4235.797969

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the support of the National Natural Science Foundation of China (Grant Nos. 61379062, 61372049, 61403326), the Science Research Project of the Education Office of Hunan Province (Grant Nos. 12A135, 12C0378), the Hunan Province Natural Science Foundation (Grant Nos. 14JJ2072, 13JJ8006), the Science and Technology Project of Hunan Province (Grant No. 2014GK3027), the Construct Program of the Key Discipline in Hunan Province, and the Hunan Provincial Innovation Foundation For Postgraduate (Grant No. CX2013A011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhua Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, R., Zheng, J., Li, M. et al. Many-objective optimization based on information separation and neighbor punishment selection. Soft Comput 21, 1109–1128 (2017). https://doi.org/10.1007/s00500-015-1842-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-015-1842-y

Keywords

Navigation