
Connectedness of graphs and its application to connected
matroids through covering-based rough sets

Aiping Huang, William Zhu∗

Lab of Granular Computing,
Minnan Normal University, Zhangzhou 363000, China

Abstract

Graph theoretical ideas are highly utilized by computer science fields especially data
mining. In this field, a data structure can be designed in the form of tree. Covering is a
widely used form of data representation in data mining and covering-based rough sets
provide a systematic approach to this type of representation. In this paper, we study the
connectedness of graphs through covering-based rough sets and apply it to connected
matroids. First, we present an approach to inducing a covering by a graph, and then
study the connectedness of the graph from the viewpoint of the covering approximation
operators. Second, we construct a graph from a matroid, and find the matroid and
the graph have the same connectedness, which makes us to use covering-based rough
sets to study connected matroids. In summary, this paper provides a new approach to
studying graph theory and matroid theory.

Keywords: Covering-based rough set, Connected graph, Approximation operator,
Connected matroid, Matrix.

1. Introduction

In different areas, various applications are addressed using graph models. This
model arrangements of various objects or technologies lead to new inventions and
modifications in the existing environment for enhancement in those fields. Connected
graph, as an important concept of graph theory, is used in iatrology to study the spread
of epidemics in a crowd where the vertices represent the persons in the crowd and the
edges represent the spread of disease. This model is important for tracking the spread
of the disease, thus conducive to controlling it. Just because graph theory can be used
to modeling various applications, it is highly utilized by computer science applica-
tions. Especially in data mining [5, 9], image segmentation [7, 12], clustering [3, 4],
networking [1].

In matroid theory [6], there are many terminology borrowed from graph theory,
largely because it is an abstraction of various notions in the field. The connectedness
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for matroids, which is extended by the corresponding notion for graph, is closely linked
with the connectedness for graphs. When the matroid is the cycle matroid induced
by a graph, the matroid and the graph have the same connectedness. It lays a sound
foundation for us to apply graphs to study the connectedness for matroids. In addition
to that, matroids provide well-established platforms for greedy algorithms [2] which
may come with the algorithms for graphs. The reasons given above are the motivations
behind the study of the connected matroids from the perspective of connected graphs.

In this paper, we pay our attention to the connectedness for graphs through covering-
based rough sets and apply it to connected matroids. First, we introduce an approach
to inducing a covering from a graph. Based on the covering, covering-based rough set
theory is used to study the issue of the connectedness for the graph. As an application,
we use the connection in graphs to study the connectedness for matroids. In this part,
we construct a graph from a matroid and find that they have the same connectedness,
which makes us use covering-based rough sets to study the connection of matroids.
In a word, this work provides new viewpoints for studying graph theory and matroid
theory.

2. Preliminaries

To facilitate our discussion, some fundamental concepts related to covering-based
rough sets, graphs and matroids are reviewed in this section.

2.1. Covering-based rough sets

As a generalization of a partition, the covering has more applicability and univer-
sality. To begin with, the concept of covering is introduced.

Definition 1. (Covering [13]) Let U be a universe of discourse and C a family of
subsets of U . If none of the subsets in C are empty and

⋃
C = U , then C is called a

covering of U and the pair (U,C) is called a covering approximation space.

As the two key concepts of covering-based rough sets, the lower and upper approx-
imation operators are defined to describe objects.

Definition 2. (Approximation operators [8]) Let C be a covering of U and X ⊆ U .
The covering upper and lower approximations of X , denoted by C(X) and C(X),
respectively, are defined as:

C(X) =
⋃
{K ∈ C : K

⋂
X 6= ∅},

C(X) = C(Xc)c,

where Xc denotes the complement of X in U .

Immediately following the above definition, certain properties of the covering up-
per approximation operator are presented, while the corresponding properties of the
covering lower one can be obtained by the duality property.
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Proposition 1. [8] Let C be a covering of U . The operator C has the following prop-
erties:
(1) C(∅) = ∅ (Normality).
(2) C(U) = U (Co-normality).
(3) For all X ⊆ U , X ⊆ C(X) (Extension).
(4) For all X,Y ⊆ U , C(X

⋃
Y ) = C(X)

⋃
C(Y ) (Additivity).

(5) If X ⊆ Y ⊆ U , then C(X) ⊆ C(Y ) (Monotonicity).

2.2. Graphs

Graphs are discrete structures to model the correlation between data. Theoretically,
a graph is a pair G = (V,E) comprising a set V of vertices and a set E of edges [11].
Generally, we write V (G) for V and E(G) for E, particularly when several graphs are
considered. Each element of E(G) has either one or two vertices associated with it,
called its endpoints. Through endpoints, the relationship between vertices and edges
can be established by the form of matrices, namely incidence matrices. LetG = (V,E)
be a graph with V = {v1, v2, · · · , vn} and E = {e1, e2, · · · , em}. The incidence
matrix I(G) of the graph is the n × m matrix in which entry mij is 1 if vi is an
endpoint of ej and otherwise is 0.

The edges in a graph may be directed or undirected. If any edge of the graph is
undirected, we say the graph is an undirected graph. In this case, we write e = uv or
e = vu for an edge e with endpoints u and v. In a graph G, two vertices are adjacent if
there is an edge that has them as endpoints. An isolated vertex is a vertex not adjacent
to any other vertices. If an edge links the same two endpoints, the edge is called a loop,
and if there are edges having the same pair of endpoints, they are called multiple edges.
A simple graph is a graph without loops or multiple edges. If the graph is simple and
the vertices of it are pairwise adjacent, it is called the complete graph. A subgraph
of the graph G is a graph whose vertices and edges are subsets of G. The subgraph
induced by a subset of vertices K ⊆ V (G) is called a vertex-induced subgraph of G,
and denoted by GK . This subgraph has vertex set K, and its edge set E

′ ⊆ E(G)
consists of those edges from E(G) that have both their endpoints in K.

Example 1. Let G = (V,E) be a graph as given in (I) of Figure 1. Suppose K =
{b, c, d}. Then the vertex-induced subgraph GK is shown in (III) of Figure 1.

A path of a graph G is a list v0v1 · · · vk of distinct vertices such that, for all 1 ≤
i ≤ k, vi−1vi is an edge of G, and a (u, v)−path is a path and has first vertex u and
last vertex v.

A graph G is connected if for every pair of distinct vertices u and v, there is a path
connecting both. If G has a (u, v)−path, then u is connected to v. The connection
relation on V (G) consists of the order pairs (u, v) such that u is connected to v. It was
noted in [11] that the connection relation is an equivalence relation on V (G). Suppose
the equivalence classes of the relation are V1, V2, · · · , Vs. Then the vertex-induced
subgraphs GV1 , GV2 , · · · , GVs are called the connected components of the graph. The
number of the connected components of graph G is denoted by ω(G).
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2.3. Matroids

Matroid theory borrows extensively from the terminology of graph theory, largely
because it is an abstraction of various notions of central importance in the field, such
as independent sets and circuits. The following definition of matroids is presented in
terms of circuits.

Proposition 2. (Circuit axiom [6]) Let C be a family of subsets of U . There exists a
matroid M such that C = C(M) if and only if C satisfies the following conditions:
(C1) ∅ /∈ C.
(C2) For all C1, C2 ∈ C, if C1 ⊆ C2, then C1 = C2.
(C3) For all C1, C2 ∈ C, if C1 6= C2 and x ∈ C1

⋂
C2, then there exists C3 ∈ C such

that C3 ⊆ C1

⋃
C2 − {x}.

If the family C of subsets of U satisfies the circuit axiom, then the members of C
are called the circuits of M and U is called the ground set of M . We often write C(M)
for C and U(M) for U , particularly when several matroids are being considered. For a
matroid M , if C ∈ C(M) and C = {x}, we say x is a loop of the matroid. If C(M)
dose not contain any single-point set, the matroid is loopless. By the family of circuits,
the connected matroids are defined. For any two elements e, f of U(M), define the
relation γ of U(M) by eγf if and only if e = f or M has a circuit containing e and f .
In [6], it was indicated that the relation γ is an equivalence relation. For any e ∈ U(M),
the γ−equivalence class γ(e) = {e}

⋃
{f ∈ U(M) : M has circuit containing e and

f} is called a connected component of M . If M has only one connected component
U(M), we call M is connected; Otherwise M is disconnected. In fact, we can also
describe the connected graph by the following proposition.

Proposition 3. [6] The matroidM is connected if and only if, for every pair of distinct
elements of U(M), there is a circuit containing both.

3. The study of the connectedness of graph through covering-based rough sets

Connected graphs are important discrete structures. Problems in many fields can be
addressed using the graph models. In this section, we apply the covering-based rough
sets to study the issue of the connection in a graph. Considering the matrix is related
significantly to the theory, the incidence matrices of a graph are also borrowed to study
the issue.

In this subsection, we present certain approaches to judging whether a graph is
connected or not through covering approximation operators. For this purpose, we need
to establish a relationship between a graph and a covering. In [10], it proposed the
following approach to converting a graph to a covering.

Definition 3. Let G = (V,E) be an undirected simple graph. One can define a family
F (G) of subsets of V as follows: For all u, v ∈ V ,

{u, v} ∈ F (G)⇔ uv ∈ E.
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Definition 3 indicates that a graph can be represented by a family of subsets of its
vertices. However, the family may not be a covering of the vertex set.

Example 2. Let G = (V,E) be the graph as given in (I) of Figure 1 where V =
{a, b, c, d, e} and E = {e1, e2, e3, e4, e5}. By Definition 3, we know F (G) = {{a, b},



a b

c d

e

1e

2e
3e

4e

(I)

a b

c d

1e

2e 3e

4e

(II)

b

c
d

3e

4e

(III)

5e 5e

Figure 1: An undirected simple graph.

{a, c}, {b, c}, {c, d}, {d, a}} and it is not a covering of V because there does not exist
any edge to connect with the vertex e.

In fact, the type of graph which can induce a covering was also embodied in [10].

Proposition 4. Let G = (V,E) be an undirected simple graph. The family F (G) is a
covering of V if and only if G has no isolated vertices.

Therefore, the graphs studied in this section are undirected, simple and without
isolated vertices unless otherwise specified. For the type of graph G, we denote the
covering induced from it by C(G). First, the connection of any pair of distant vertices
of the graph is studied by the covering.

Proposition 5. Let G = (V,E) be a graph and u, v be two distinct vertices of V . The
vertex u is connected to v if and only if {u, v} ∈ C(G) or there exists {K1,K2, · · · ,Kn}
⊆ C(G) satisfying u ∈ K1, v ∈ Kn and Ki

⋂
Ki+1 6= ∅ for any i = 1, 2, · · · , n− 1.

PROOF. (“ ⇒ ”): If u and v are adjacent, then {u, v} ∈ C(G). If u is connected to
v but they are not adjacent, then there exists a (u, v)−path u1u2u3 · · ·un−1un un+1,
where u = u1 and v = un+1. Let Ki = {ui, ui+1} for any i = 1, 2, · · ·n. It is clear
that {K1,K2, · · · ,Kn} ⊆ C(G). And u ∈ K1, v ∈ Kn and Ki

⋂
Ki+1 6= ∅ for any

i = 1, 2, · · · , n− 1 because ui+1 ∈ Ki

⋂
Ki+1.

(“ ⇐ ”): For u, v ∈ V , if {u, v} ∈ C(G), then u and v are adjacent. If there
exists {K1,K2, · · · ,Kn} ⊆ C(G) satisfying u ∈ K1, v ∈ Kn and Ki

⋂
Ki+1 6= ∅

for any i = 1, 2, · · · , n − 1, then let ui ∈ Ki

⋂
Ki+1 where i = 1, 2, · · · , n − 1.

Then there exists a list u0u1u2 · · ·un−1un connecting u and v, where u0 = u and
un = v. If there exist i, j ∈ {0, 1, · · · , n} (we may as well suppose i < j) such
that ui = uj , then delete the the vertices ui+1, ui+2, · · ·uj of the list. Finally, we can
obtain a (u, v)−path. Therefore u is connected to v.
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Based on the above proposition, an equivalent characterization for connected graph
is established in terms of the covering induced by the graph.

Theorem 1. LetG = (V,E) be a graph. The graph is connected if and only if, for any
pair of distinct vertices u and v of V , {u, v} ∈ C(G) or there exists {K1,K2, · · · ,Kn}
⊆ C(G) satisfying u ∈ K1, v ∈ Kn and Ki

⋂
Ki+1 6= ∅ for any i = 1, 2, · · · , n− 1.

PROOF. It is straightforward from Proposition 5 and the definition of connected graphs.

Example 3. Let G = (V,E) be the graph as given in (II) of Figure 1 where V =
{a, b, c, d} and E = {e1, e2, e3, e4, e5}. Then the covering induced by G is C(G) =
{K1, K2, K3, K4, K5}, where K1 = {a, b}, K2 = {a, c}, K3 = {b, c}, K4 =
{c, d} and K5 = {d, a}. For the pair of distinct vertices b and d of V , there exists
{K3,K4} ⊆ C(G) satisfying b ∈ K3 and d ∈ K4 and K3

⋂
K4 6= ∅, thus b is

connected to d. In the same way, we find that, for any two distinct vertices of V , they
are connected, i.e., G is a connected graph.

In fact, utilizing Theorem 1, the connected graphs can also be characterized equiv-
alently from the viewpoint of the covering upper approximation operator.

Theorem 2. LetG = (V,E) be a graph. The graph is connected if and only if, for any
∅ 6= X ⊂ V , C(G)(X) 6= X .

PROOF. (“ ⇒ ”) : Since C(G)(∅) = ∅, we need to prove only the result: ∀ ∅ 6=
X ⊆ V , if C(G)(X) = X , then X = V . Pitch u ∈ X . For all v ∈ V − {u}, if
{u, v} ∈ C(G), then v ∈ {u, v} ⊆ C(G)(X) = X which implies V − {u} ⊆ X .
If u and v are not adjacent, then there exists {K1,K2, · · · ,Kn} ⊆ C(G) satisfying
u ∈ K1, v ∈ Kn and Ki

⋂
Ki+1 6= ∅ for any i = 1, 2, · · · , n− 1. Since u ∈ K1

⋂
X ,

K1 ⊆ C(G)(X) = X . Because K2

⋂
K1 6= ∅, K2 ⊆ C(G)(K1). Combining

with the monotonicity of C(G), we have K2 ⊆ C(G)(K1) ⊆ C(G)(C(G)(X)) =
C(G)(X) = X . In the same way, we can obtain v ∈ Kn ⊆ X , then V − {u} ⊆ X .
Since u ∈ X , V ⊆ X . Combining with X ⊆ V , then X = V .

(“ ⇐ ”): For all u ∈ V , let Pu = {v ∈ V : v is connected to u}. Then Pu 6= ∅
because u ∈ Pu. Next, we want to prove C(G)(Pu) = Pu. For all v ∈ C(G)(Pu),
there exists K ∈ C(G) such that v ∈ K and K

⋂
Pu 6= ∅. We may as well suppose

w ∈ K
⋂
Pu, then v is connected to w and w is connected to u, thus v is connected

to u, i.e., v ∈ Pu. Thus C(G)(Pu) ⊆ Pu. Utilizing the extension of C(G), we
have Pu ⊆ C(G)(Pu). Then C(G)(Pu) = Pu. By assumption, we know Pu = V .
Therefore G is connected.

Given a covering approximation space (U,C), for all X ⊆ U , if C(X) = X , the
set X is called an outer definable set. From the viewpoint, Theorem 2 indicates that
a graph is connected if and only if the covering approximation space induced by the
graph has no non-empty outer definable proper subset.

By the duality, the connected graph characterized by the covering lower approxi-
mation operator is presented as follows.
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Corollary 1. Let G = (V,E) be a graph. The graph is connected if and only if, for
any ∅ 6= X ⊂ V , C(X) 6= X .

Example 4. Let G = (V,E) be the graph as given in (II) of Figure 1. By simple
computing, the outer definable subsets of covering approximation space (V,C(G)) are
∅ and V . Hence G is connected.

4. An application to connected matroids

As is known, when the matroid is the cycle matroid induced by a graph, the matroid
and the graph have the same connectedness. However, for a given matroid, it may
not be the cycle matroid of some graph. Therefore, using cycle matroids to study
the connectedness of matroids may not be effective. In this section, we propose an
approach to induce a graph from an arbitrary matroid. It is interesting that the graph
and the matroid have the same connectedness. Therefore, the covering-based rough
sets are used to study the connection of the matroid. First, the method to convert a
matroid to a graph is presented as follows.

Definition 4. LetM be a matroid. One can define an undirected simple graphG(M) =
(V,E) as follows:
(1) V = U(M).
(2) For any u, v ∈ V and u 6= v, uv ∈ E ⇔ ∃C ∈ C(M) s.t. {u, v} ⊆ C.

Remark 1. Once matroid M has loops, the graph G(M) has isolated vertices.

Example 5. Let M be a matroid with U(M) = {1, 2, 3, 4, 5, 6, 7} and C(M) =
{{1, 2, 3}, {6}, {2, 4, 5}, {1, 3, 4, 5}}. The graph induced by the matroid M is given
in Figure 2.





Figure 2: The graph G(M) induced by M .

In fact, the connectedness of the graph induced by a matroid is closely related to
that of the matroid. First, the equivalent characterization for the connection of any pair
of distinct vertices of the graph is presented through the circuits of the matroid.
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Lemma 1. [6] Let M be a matroid and C1, C2 ∈ C(M). If e1 ∈ C1 −C2, e2 ∈ C2 −
C1 and C1

⋂
C2 6= ∅, then there exists C3 ∈ C(M) such that e1, e2 ∈ C3 ⊆ C1

⋃
C2.

Proposition 6. Let M be a matroid and u, v a pair of distinct vertices of U(M). The
vertex u is connected to v in graph G(M) if and only if there exists C ∈ C(M) such
that {u, v} ⊆ C.

PROOF. The sufficiency is straightforward. Next, we prove the necessity. Since u is
connected to v in graph G(M), there exists the shortest (u, v)−path, let us assume the
length is n. We conclude that n = 1. Otherwise, we may well suppose the path is
u1u2 · · ·un+1, where u1 = u, un+1 = v, and n ≥ 2. Since u1u2 · · ·un+1 is a path,
there exist C1, C2, · · · , Cn ∈ C(M) such that {ui, ui+1} ⊆ Ci for all i = 1, 2, · · · , n.
Thus u ∈ C1, v ∈ Cn and Ci

⋂
Ci+1 6= ∅ for all i = 1, 2, · · · , n − 1. Because

the path is the shortest, the circuits C1, C2, · · · , Cn are different, and u /∈ Cj for all
j = 2, 3, · · · , n, and v /∈ Cj for all j = 1, 2, · · · , n − 1. As u ∈ C1 − C2, accord-
ing to (C2) of the circuit axiom, we know there exists v1 ∈ C2 − C1. Combining
with C1

⋂
C2 6= ∅ and Lemma 1, there exists C

′

1 ∈ C(M) such that {u, v1} ⊆ C
′

1 ⊆
C1

⋃
C2. Since v1 ∈ C2, if v1 /∈ C3, then v1 ∈ C2 − C3. Utilizing (C2) of the

circuit axiom, there exists v2 ∈ C3 − C2. According to Lemma 1 and C2

⋂
C3 6= ∅,

there exists C
′

2 ∈ C(M) such that {v1, v2} ⊆ C
′

2 ⊆ C2

⋃
C3. If v1 ∈ C3, then

we take C
′

2 = C3. It is clear that C
′

1

⋂
C

′

2 6= ∅ because v1 ∈ C
′

1

⋂
C

′

2. In the
same way, we can obtain C

′

1, C
′

2, · · · , C
′

n−1 ∈ C(M) such that u ∈ C
′

1, v ∈ C
′

n−1
and C

′

i

⋂
C

′

i+1 6= ∅ for all i = 1, 2, · · · , n − 2. Furthermore, v /∈ C
′

j for all
j = 1, 2, · · ·n − 2. If there exits j ∈ {1, 2, · · · , n − 2} such that v ∈ C

′

j , then
v ∈ C

′

j ⊆ Cj

⋃
Cj+1, i.e., v ∈ Cj or v ∈ Cj+1 which contradicts that v /∈ Cj

for all j ≤ n − 1. Similarly, for all j = 2, 3, · · · , n − 1, u /∈ C
′

j . Thus we have
C

′

1 6= C
′

n−1. However, the circuits C
′

1, C
′

2, · · · , C
′

n−1 may not be all different. There-
fore, we reduce the circuits by the following step. If there exist two distinct numbers
i, j of {1, 2, · · · , n − 1} such that C

′

i = C
′

j (we may as well suppose i < j), then
remove the circuits C

′

i+1, · · · , C
′

j . By the step, we can obtain the family of circuits
{C ′

s1 , C
′

s2 , · · · , C
′

st}(⊆ {C
′

1, C
′

2, · · · , C
′

n−1}) whose elements are different and sat-
isfy the condition: u ∈ C ′

s1 , v ∈ C ′

st and Csi

⋂
Csi+1 6= ∅ for all i = 1, 2, · · · , t− 1.

It is clear that s1 = 1, st = n − 1, u /∈ C
′

sj for all j = 2, 3, · · · , t and v /∈ C
′

sj

for all j = 1, 2, · · · t − 1. For the circuits C
′

s1 , C
′

s2 , · · · , C
′

st , repeat the above dis-
cussion. Finally, we can obtain two circuits Cu and Cv such that u ∈ Cu − Cv ,
v ∈ Cv − Cu and Cu

⋂
Cv 6= ∅. Utilizing Lemma 1, there exists C ∈ C(M) such that

{u, v} ⊆ C ⊆ Cu

⋃
Cv , i.e., uv ∈ E(G(M)) which implies n = 1. It contradicts the

assumption that n ≥ 2. Hence the result has been proved.

Remark 2. Any connected component of the graph G(M) is an isolated vertex or a
complete graph. Once the graph is connected, it is a completed graph.

By the above proposition, the relationship between the connectedness of a matroid
and that of the graph induced by the matroid can be embodied. We find that they have
the same connectedness.
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Theorem 3. Let M be a matroid. The graph G(M) is connected if and only if the
matroid M is connected.

PROOF. According to Proposition 3 and 6, G(M) is connected⇔ for any two distant
vertices u and v of V (G(M)), u is connected to v⇔ for any two distant vertices u and
v of U(M), there exists C ∈ C(M) such that {u, v} ⊆ C ⇔M is connected.

Now that a matroid and the graph induced by the matroid have the same connected-
ness, if the graph has isolated vertices, then the matroid is disconnected. From Example
5, we find that whether the graph has isolated vertices or not is not only determined by
the loops of the matroid. Indeed, it also has a relation with the other circuits of the
matroid.

Proposition 7. Let M be a matroid. The graph G(M) has no isolated vertices if and
only if M is loopless and C(M) is a covering of U(M).

PROOF. (“ ⇐ ”): If u is an isolated vertex of G(M), then for all v ∈ U(M) − {u},
there does not exist C ∈ C(M) such that {u, v} ⊆ C. Thus there exists C ∈ C(M)
such that C = {u} or there does not exist C ∈ C(M) such that u ∈ C, which contra-
dicts the assumption thatM is loopless and C(M) is a covering of U(M), respectively.

(“⇒ ”): It is clear that G(M) has no isolated vertices implies that M is loopless.
Next, we need to prove C(M) is a covering of U(M). According to the circuit axiom,
we know ∅ /∈ C(M). For all u ∈ U(M), there exists an element of U(M) which is
different from u such that u is connected to v. Utilizing Proposition 6, there exists
Cu ∈ C(M) such that u ∈ Cu. Thus U(M) =

⋃
u∈U(M){u} ⊆

⋃
u∈U(M) Cu ⊆⋃

C(M) ⊆ U(M), i.e., U(M) =
⋃
C(M). Therefore C(M) is a covering of U(M).

Next, we pay our attention to the connectedness of the matroid whose induced
graph has no isolated vertices. In this part, we introduce the approaches proposed in
Section 3 to study the issue. As is known, a graph without isolated vertices can induce
a covering through Definition 3. Combining with Proposition 7, we know for a matroid
M , when the graphG(M) has no isolated vertices, there are two coverings of its vertex
set, i.e. C(M) and C(G(M)). Generally, these two coverings are different, but they
can induce the same covering upper approximation operator.

Lemma 2. Let M be a matroid. If graph G(M) has no isolated vertices, then for all
X ⊆ U(M), C(G(M))(X) = C(M)(X).

PROOF. Since G(M) has no isolated vertices, the families C(G(M)) and C(M) are
two coverings of U(M). Thus C(G(M)) and C(M) are two covering upper approx-
imation operators of U(M), respectively. Next, we prove these two operators are
equal. For all x ∈ C(G(M))(X), there exists K ∈ C(G(M)) such that x ∈ K
and K

⋂
X 6= ∅. If x ∈ X , then x ∈ C(M)(X) because X ⊆ C(M)(X). If

x /∈ X , pitch y ∈ K
⋂
X , then x 6= y and K = {x, y}, i.e., x is connected to y.

According to Proposition 6, there exists C ∈ C(M) such that {x, y} ⊆ C which im-
plies that x ∈ C(M)(X). Hence C(G(M))(X) ⊆ C(M)(X). Conversely, for any
x ∈ C(M)(X), there exists C ∈ C(M) such that x ∈ C and C

⋂
X 6= ∅. If x ∈ X ,
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then x ∈ C(G(M))(X) because X ⊆ C(G(M))(X). If x /∈ X , pitch y ∈ C
⋂
X ,

then x 6= y and {x, y} ⊆ C, i.e., x and y are adjacent in graph G(M). Thus {x, y} ∈
C(G(M)) which implies x ∈ C(G(M))(X). Hence C(M)(X) ⊆ C(G(M))(X).

Therefore, the connectedness for the matroid, whose induced graph has no isolated
vertices, can be characterized by the circuit covering.

Theorem 4. Let M be a loopless matroid and the circuit family C(M) a covering of
U(M). The following statements are equivalent:
(1) M is connected.
(2) For any ∅ 6= X ⊂ U(M), C(M)(X) 6= X .
(3) For any x ∈ U(M), C(M)(x) = U(M).

PROOF. (1) ⇔ (2): M is connected if and only if G(M) is connected if and only if,
for all ∅ 6= X ⊂ U(M), C(G(M))(X) 6= X if and only if, for all ∅ 6= X ⊂ U(M),
C(M)(X) 6= X .

(1) ⇔ (3): M is connected if and only if G(M) is a complete graph if and only
if, for all x ∈ U(M), C(G(M))(x) = U(M) if and only if, for all x ∈ U(M),
C(M)(x) = U(M).

From the above discussion, there are three steps to determine the connectedness of
a matroid M .
Step 1: Judge whether M has loops or not.
Step 2: Judge whether or not C(M) is a covering of U(M).
Step 3: If the matroid has no loops and its circuit family forms a covering of its ground
set, then utilize Theorem 4 to determine the connectedness of it.

5. Conclusions

We have discussed in this paper the issue of the connection of graphs which are
undirected, simple and without isolated vertices in terms of covering-based rough sets.
Furthermore, the approaches to study the connection of graphs were applied to study
that of matroids. Based on the results of this paper, we intend designing efficient algo-
rithms to determine the connection of a graph and that of a matroid, and will investigate
some other problems of graph theory and matroid theory through rough sets.
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