
ar
X

iv
:1

40
9.

49
88

v1
  [

cs
.L

G
] 

 1
7 

Se
p 

20
14

An Agent-Based Algorithm exploiting Multiple Local

Dissimilarities for Clusters Mining and Knowledge

Discovery

Filippo Maria Bianchia,∗, Enrico Maiorinoa, Lorenzo Livib, Antonello Rizzia,
Alireza Sadeghianb

aDept. of Information Engineering, Electronics, and Telecommunications, SAPIENZA
University of Rome, Via Eudossiana 18, 00184 Rome, Italy

bDept. of Computer Science, Ryerson University, 350 Victoria Street, Toronto, ON M5B
2K3, Canada

Abstract

We propose a multi-agent algorithm able to automatically discover relevant

regularities in a given dataset, determining at the same time the set of con-

figurations of the adopted parametric dissimilarity measure yielding compact

and separated clusters. Each agent operates independently by performing a

Markovian random walk on a suitable weighted graph representation of the

input dataset. Such a weighted graph representation is induced by the specific

parameter configuration of the dissimilarity measure adopted by the agent,

which searches and takes decisions autonomously for one cluster at a time.

Results show that the algorithm is able to discover parameter configurations
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that yield a consistent and interpretable collection of clusters. Moreover, we

demonstrate that our algorithm shows comparable performances with other

similar state-of-the-art algorithms when facing specific clustering problems.

Keywords: Agent Based Algorithms; Data Mining; Knowledge Discovery;

Clustering; Local Dissimilarity Measure; Graph conductance; Random

Walk.

1. Introduction

Finding characterizing regularities in data is an important knowledge dis-

covery task, which can be exploited for a multitude of purposes. When there

is not any a-priori knowledge on the dataset at hand, it could be useful to

perform an initial analysis of the data in order to learn how to compare the

elements in a meaningful way, so that relevant patterns in the dataset can be

discovered. Clustering [27, 37, 11, 39, 9, 26, 51] is a well-established approach

that can be used to this end. Among the many solutions available in this

field, it is worth citing those clustering techniques based on graph-theoretical

results and multi-agent systems [10, 46, 18, 20, 21, 6, 38, 1, 22]. Graph-based

techniques have the fundamental advantage of mapping the original problem

onto a “dimensionless” object: the graph. Moreover, graph theory offers a

plateau of theoretical results to be exploited by effective algorithms, which

easily integrate with the agent-based paradigm. Typical settings involving

the interplay of both approaches include random walk (RW) based algo-

rithms [2, 19], in which agents move and interact on the graph via specific

(probabilistic) mechanisms.

When there is uncertainty about the nature of the dataset at hand, a
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fundamental issue is the definition of the dissimilarity among the input pat-

terns [30, 43, 17], since the specific dissimilarity measure adopted by the

data mining procedure affects the possibility of discovering meaningful reg-

ularities. Depending on the application at hand, data can be collected and

represented relying on several different formalisms [31]. Accordingly, many

(non metric) parametric dissimilarity measures could be designed depending

on the specific task. Recently, there is a steady increasing interest in us-

ing several, possibly heterogeneous, dissimilarity measures at the same time

[28, 40, 41, 8, 24]. Regardless of the number of dissimilarity measures, the

setting of their characterizing parameters is what really allows to discover

the relevant information hidden in the data.

Metric learning [44, 48, 49, 50, 14] is an important subfield of pattern

recognition. Techniques in this field deal with the problem of learning an

optimal setting of the parameters characterizing the particular dissimilarity

for the problem at hand – usually it is assumed to be a metric distance. For a

given dissimilarity measure, it is possible to distinguish two main approaches

[35]: those trying to determine a partition of data, and those that focus

on searching for isolated clusters surrounded by uncategorized data. Local

description of data is of particular interest, since it allows to characterize the

input data by means of a heterogeneous collection of descriptions [8].

In this paper we propose the Local Dissimilarities - Agent Based Clus-

ters Discoverer (LD-ABCD) algorithm. LD-ABCD is designed to discover

(learn) configurations of a parametric dissimilarity measure yielding at least

a well-formed cluster in the data. Cluster discovery is implemented by means

of multiple RWs that are performed independently by several agents on the
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graph representing the dataset. Each agent first selects a specific parameter

configuration (PC), with which it constructs a weighted graph representing

the relations among the input patterns. The behavior of a RW is thus de-

pendent on the specific configuration of the parameters. During a RW, an

agent searches and takes decisions autonomously for one cluster at a time.

A suitable online mechanism is designed to decide whether a set of patterns

found (i.e., “walked upon”) by an agent should be accepted or rejected as a

meaningful cluster. To this end, we heavily exploit the graph conductance

concept [27]. We demonstrate the validity of our approach by performing

different types of experiments. First, we compare LD-ABCD with respect

to (w.r.t.) three different state-of-the-art graph-based clustering algorithms

over suitable clustering problems. In particular, we evaluate the capabil-

ity of the considered algorithms to discover clusters composed of patterns

belonging to the same (predefined) class. Successively, we evaluate the capa-

bility of LD-ABCD of discovering relevant PCs (RPCs), that is, those that

yield well-formed clusters. Additionally, we provide demonstrative examples

introducing the concept of equivalency among PCs. Finally, we provide a

comparison between two variants of the LD-ABCD algorithm.

The remainder of the paper is structured as follows. In Sec. 2 we in-

troduce LD-ABCD, describing in detail all relevant stages of the algorithm.

In Sec. 3 we present a variant of LD-ABCD that exploits two diverse fami-

lies of agents. Experimental evaluations are presented and discussed in Sec.

4, while in Sec. 5 we show our conclusions. Finally, Appendix A provides

the technical details related to the definition and calculation of the graph

conductance.
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1.1. Related Works

The work that we present in this paper is related to several different

topics, specifically graph clustering, conductance evaluation, metric learning,

and agent-based computing. At the best of the author knowledge, it was not

possible to identify other works that treat the problem of clustering and

knowledge discovery with approaches similar to the one that we proposed.

The aim of this section is helping the reader to contextualize our work and

to correctly identify the concepts to which our work is related.

In particular LD-ABCD identifies clusters on a dataset that is repre-

sented through a labeled graph: graph clustering is a well-known problem

and it has been addressed in many other works [10, 46, 18, 20, 21, 38].

Such clusters are discovered by different agents, which operate according to

a paradigm inspired by the multi-agent systems that can be found in the

literature [6, 36, 13, 12, 16, 2, 38]. Each agent examines the patterns by

performing a RW [2, 19] on the graph that represents the dataset and tries

to group them in different clusters. Once the clusters are identified, they are

evaluated using the well-known conductance measurement [27], which is com-

puted using numerical approximation techniques [4, 25, 47, 29, 5, 33, 23, 42].

Finally, each agent searches the clusters in the dataset using different configu-

rations of the adopted dissimilarity measure, seeking for the ones that better

characterize the set of elements contained in the cluster. This procedure is

strongly related to the problem of the metric-learning [44, 48, 49, 50, 14],

which is the task of determining the optimal parameters of a given met-

ric distance. However, in our case we make no a-priori assumptions on the

adopted distance (which we call dissimilarity measure in our study).
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2. The Proposed LD-ABCD Algorithm

The proposed multi-agent algorithm is designed to operate over a general

input domain, X , which may not necessarily be a subset of R
n. Let d :

X × X → R
+ be a symmetric dissimilarity measure that depends on some

parameters/weights, i.e., PCs, which we denote as m ∈ M. The main goal

of the proposed algorithm is to determine all RPCs which are capable of

inducing a well-formed cluster structure. In this sense, our algorithm should

be intended also as a “knowledge discovery” algorithm, since, in addition to

the clusters discovered using local configurations of d(·, ·;m), it outputs all

relevant settings of the parameters characterizing the dissimilarity measure,

which may be useful in terms of interpretability of the data and related

clusters. Without loss of generality, we also assume that M = [0, 1]D, where

D is the number of parameters/weights characterizing d(·, ·;m).

Fig. 1 provides the overall high-level schema of the LD-ABCD algorithm,

together with details of the operations performed by a single agent within the

proposed system. Each agent ai uses a different PC m
(i)
j for evaluating the

dissimilarity among the patterns in the input dataset S = {x1, x2, ..., xn} ⊂

X . The dataset is initially represented as a weighted complete undirected

graph, Gj = (V, E , w), where each edge ekl ∈ E is characterized by a weight,

w(ekl;m
(i)
j ) ∈ [0, 1], which depends on the dissimilarity d(xk, xl;m

(i)
j ) evalu-

ated with the specific m
(i)
j . Each agent performs a Markovian RW [32] on

the graph Gj , visiting a number of vertices (nodes) until a quantity called

“energy” is not depleted. The RW transition probabilities from one node

to another are determined by the weight values of the edges between pairs

of nodes and, hence, depend on the parameter configuration associated with
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the agent. When an agent ai equipped with the PC m
(i)
j runs out of en-

ergy, the vertices visited so far during the RW are interpreted as the cluster

ch(m
(i)
j ) ⊂ V (or chj for notation simplicity) found by the agent – which cor-

responds also to the subgraph ghj. Therefore, each agent generates a single

cluster at a time that is readily evaluated by the agent itself, which takes

an autonomous decision on its acceptance. Since each agent generates the

clusters independently from the others, the clusters retrieved by LD-ABCD

may overlap (i.e. a given pattern can belong to more than one cluster) and,

also, their union could not be equal to V; thus LD-ABCD does not generate

a partition of the data (i.e. not all the patterns in the data set will belong

to a cluster). During its lifetime, an agent performs several RWs on differ-

ent versions of the same graph, which depend on the adopted PCs. Since

it is possible for an agent to find similar clusters when using different PCs,

these are progressively aggregated in prototypes called meta-clusters. The

algorithm proceeds as long as new distinct clusters are extracted or new PCs

are discovered. When the stop criterion has been met the meta-clusters are

returned along with the PCs associated to the set of clusters represented by

each meta-cluster. Finally, a centralized unit re-aggregates meta-clusters be-

longing to different agents according to their similarity to obtain new global

meta-clusters. The final solution returned by LD-ABCD is the collection of

all global meta-clusters and their corresponding sets of associated PCs. In

LD-ABCD, the number of agents is defined a priori by the user and it remains

the same during the execution. This number is supposed to be proportional

to the available computational resources.

In the following, we provide the details about the tasks performed by a
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Figure 1: Overall schema of the LD-ABCD algorithm. Initially, several agents are gener-

ated and each of them performs a series of tasks, which are shown in detail for the first

agent. At first a new PC is selected which is used for building a weighted graph of the

dataset S and then a RW is performed on it. The set of visited nodes is treated as a

cluster, which is evaluated by the agent. If the cluster is accepted it will be saved along

with the other clusters found so far, otherwise if it is rejected the agent restarts the whole

procedure from the selection of a new PC. Similar clusters are aggregated and the proce-

dure goes on until the stop criterion has been met. When all the agents terminate their

search, the found aggregated clusters are collected by a central unit which performs a final

merging of similar solutions found by different agents.

single agent during its lifetime. First, we discuss how the weighted graph is

constructed over the input dataset (2.1). Then we focus on the implemen-

tation of the RWs (2.2) and the evaluation of the discovered clusters (2.3).

The procedure for managing the energy of the agents is discussed in Sec.

2.4. In Sec. 2.5, we describe the process of selection of the new PCs to be

exploited, while in Sec. 2.6 we discuss the aggregation of the solutions found
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by different agents and the global convergence criterion of LD-ABCD (Sec.

2.7). Finally we analyze the computational complexity of the algorithm in

Sec. 2.8.

2.1. Graph Construction

Let assume that an agent ai is equipped with the PC m
(i)
j , and let S

be the dataset under analysis, with n = |S|. The corresponding weighted

graph Gj = (V, E , w), is described by the vertices V, each one representing a

pattern in S, and by the edges E , which are weighted by implementing w(·)

as the exponential kernel:

w(elk;m
(i)
j ) = exp(−τexp · d(xl, xk;m

(i)
j )). (1)

The setting of the parameter τexp ≥ 0 is an important issue and it will be

discussed later in Sec 2.2. A weighted graph can be described by the n × n

weighted adjacency matrix Aj, defined as:

Aj(l, k) = w(elk;m
(i)
j ). (2)

Since the vertex set is not affected by the specific PC, we keep the related

data in a shared data structure, which is accessible by all agents. The edges,

which instead can differ on the base of the specific PC, are stored “locally” by

each agent, encoded in their weighted adjacency matrix. The computational

and space costs for Aj is quadratic in the number of vertices-patterns (such a

matrix is always dense). For large datasets, the construction of those graphs

on a single computing machine could be unfeasible due to memory limitation.

By exploiting the distributed nature of the adopted agent-based modeling, we

could easily elude this technical problem by suitably dispatching “chunks” of
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the original datasets among the various agents–machines. This would imply

a distributed communication mechanism that, at this stage of development

of LD-ABCD, is not implemented yet. Therefore, in the following we assume

each agent to be able to process the input dataset as a whole.

2.2. Random Walk for Cluster Search

To perform a RW on Gj we need to define the so-called transition matrix

[32], Mj , which is used by an agent to navigate among the vertices. Mj is

defined as follows,

Mj = D−1
j Aj, (3)

where Dj is the (diagonal) degree matrix: Dj(l, l) =
∑|V|

k=1Aj(l, k). A RW

can be effectively characterized by exploiting the stationary distribution (SD)

πj of the Markov process underlying the RW. The SD can be interpreted as

the left eigenvector of Mj , associated to the largest eigenvalue, i.e., 1. Every

complete and non bipartite graph has a stationary distribution [32], which

can be conveniently defined by exploiting the so-called degree distribution,

πj(vl) =
D(l, l)

2|E|
, ∀vl ∈ V. (4)

We use the SD πj for selecting the starting vertex vs from which an

agent starts a RW, since highly central vertices will have higher probability

according to the SD. In this way, we let an agent start a RW from a dense

region of the graph, rather than from a peripheral region in which it could

be stuck or it could easily move to a vertex belonging to a “different” dense

region (see Fig. 2).

A correct setting of τexp (1) is crucial, since it affects the behavior of

the RW performed by an agent. In fact, a higher value of τexp magnifies
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Figure 2: RW example. Small dissimilarity values are represented with continuous lines,

while the large ones are drew with dashed lines. The probability of moving from one

node to another is given by the transition matrix of Eq. 3, which takes into account the

magnitude of the dissimilarities. The current node is represented with dark gray color,

while explored and unexplored nodes are represented, respectively, with light gray and

white colors. The graph is fully connected but some edges are not shown for clarity. (a)

The agent starts from node B, which is a central node in the graph selected using the SD

π. (b) The agent uses the transition matrix M for choosing the next node to visit. In this

case, the node A is selected with probability PBA as the next node in the walk. (c) The

agent continues its walk moving from node D to node C. (d) The resulting set of all the

nodes visited by the agent during its walk.
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the edge weights between similar patterns, making less likely the unwanted

transitions to vertices connected by low weights (i.e., dissimilar patterns).

Notably, if we assign to τexp a value that is too high, the lower weights could

be excessively magnified. In this case, an agent would repeatedly move on a

very small set of vertices, instead of exploring a larger portion of the graph

(transition probabilities become degenerate). On the other hand, assigning a

too small value to τexp would lead to the opposite situation, as it would allow

the agent to jump to different regions of the graph during the RW (transition

probabilities become uniform).

In LD-ABCD, we heuristically set τexp as a value proportional to the

average distance between the input patterns, evaluated using the dissimilarity

measure configured with the PC currently selected by the agent,

τexp = βn−2

n∑

l,k=1

Aj(l, k), (5)

where β is a user-defined value that is set empirically.

Of course, more accurate methods could be defined for estimating τexp.

However, since in our setting d(·, ·) may be possibly not metric (and also not

algebraic, i.e., which cannot be expressed in closed form), it is hard to find

a strong relation among τexp and the transition probabilities.

2.3. Cluster Quality Evaluation

An agent ai generates a cluster chj during a RW performed on Gj with

the PC m
(i)
j , which consists in the set of vertices of the subgraph ghj visited

during the RW (see Fig. 2). In the following, we will refer equivalently to

ghj and chj. Once a cluster chj is returned by an agent ai, the cluster can

be either accepted or rejected, depending on its quality. Intuitively, a cluster
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is considered to be good if it contains several elements, which are also very

similar to each other according to the current PC. A well-established measure

used for evaluating the quality of a cluster associated to a subgraph of a

larger graph is the conductance [27], φ(chj), which quantifies how well knit is

the subgraph internally and how many edges (with their associated weights)

connected to vertices outside the cluster are cut. In terms of clustering, a

subgraph with low conductance represents a compact and populated cluster,

which is also well-separated from the remaining elements of the dataset. A

straightforward method for evaluating the quality of a cluster then consists

in defining a function CQ1 directly proportional to its conductance:

CQ1(chj) = 1− φ(chj). (6)

A cluster chj is therefore accepted if CQ1(chj) ≥ τCQ, where τCQ ≥ 0 is a

user-defined threshold.

However, directly using the conductance as a quality measure of clusters

discovered in different datasets could be not easily manageable. In fact, the

value of the conductance of a cluster depends also on the configuration of

the rest of the dataset and thus it could fall within very diverse ranges, mak-

ing the decisions and interpretations regarding its quality a difficult task.

Additionally, since in our work we made no assumption on the employed dis-

similarity measure used for comparing the patterns, it is not easy to express in

closed form the variation of the conductance as the values of the parameters

of the dissimilarity value change. Thus, given a dataset, it is hard to describe

analytically the relation among the quality of the clusters and the used PCs.

For those reasons, we introduce here a new quantity for evaluating the qual-

ity of a cluster, which takes into account the properties of the whole graph
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constructed by using a specific PC. In particular, we assert that the quality

of a cluster chj is proportional to the closeness of its conductance, φ(chj), to

the minimum conductance of the whole graph Gj (or simply the conductance

of Gj), denoted as Φ(Gj). The exact computation of Φ(Gj) is a NP-Hard

problem [27], and hence it is not computationally feasible. As a consequence,

in this paper we use an approximation for Φ(Gj), defined through a pair of

real numbers, lb(Φ(Gj)), ub(Φ(Gj)), which represent, respectively, the lower

and the upper bound of the interval that contains the actual value of Φ(Gj).

These values can be computed exploiting the Cheeger’s inequality, by means

of a procedure that is discussed in Appendix A. We introduce a novel cluster

quality function, CQ2, defined as:

CQ2(chj) = 1−
φ(chj)− lb(Φ(Gj))

ub(Φ(Gj))− lb(Φ(Gj))
. (7)

From our preliminary experiments, we observed that the use of CQ2 rather

than CQ1 characterizes much better the quality of the clusters in our multi-

parameter setting. To explain this fact with greater detail, let us consider

an example where the two aforementioned functions are used for evaluating

the cluster quality in two different datasets of R2 vectors depicted in Fig.

3. We decided to consider two different datasets because the evaluation of

the conductance is strictly correlated not only to the cluster itself, but also

to the whole dataset to which it belongs. In both datasets, we select two

different subsets of vertices of the respective graph representations: the first

one is associated with a well-defined cluster, while the second one is randomly

determined, which accordingly induces a low quality cluster. In Fig. 4 (a)

and (b) we plotted the values assumed by CQ1 and CQ2 on the well-defined

clusters, which are evaluated as a function of the PCs (in this case uniformly
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sampled in the parameters space [0, 1]2). Instead, in Fig. 4 (c) and (d) we

performed the same calculations for the randomly determined clusters. As it

is possible to observe, the values assumed by CQ2 fall within similar ranges

in the two datasets, allowing to use comparable threshold values (i.e., τCQ)

for evaluating good clusters in different datasets. By using the CQ2 rather

than CQ1, we are also able to better discriminate those PCs that better

characterize the clusters – for the first dataset, these are individuated along

the bisecting line, while for the second one PCs close to the {0, 1} setting are

preferable. In fact CQ2, in correspondence of such PCs, assumes values that

better evaluate the quality of clusters: random clusters are always highly

penalized while well-formed clusters are better magnified.

To conclude, since CQ2 is normalized according to the conductance of the

graph, we consider Eq. 7 as an absolute quality measure that can be used for

comparing clusters generated by different agents using different PCs. The

soundness of such an assumption will be demonstrated by the experiments.

In the following of this paper we will always use CQ2 as the function used

for evaluating the quality of a cluster and, for the sake of notation, we will

refer at it as “CQ”.

2.4. Energy Update

Setting a proper value for the (maximum) length of a RW is another

important issue to be considered, since it is strictly related to the typical size

of the returned clusters/subgraphs. A quantity called energy ei determines

how many steps an agent ai is able to perform during a RW. The energy is

initialized to a value einit and it is successively modified at each step of the

RW. As an agent visits the graph, it builds a subgraph ghj adding the new
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Figure 3: Datasets considered to appreciate the differences in using CQ2 rather than CQ1.

The blue dots represent a well-defined cluster, the red dots a bad cluster composed by

randomly selected patterns, while the white dots represent the unselected patterns in the

dataset.

vertices that are being visited, increasing its size and modifying accordingly

its current conductance. In particular, when a vertex vl is inserted in ghj,

the conductance of the subgraph increases if vl is distant (i.e., very different

in our setting) from the other vertices of ghj; otherwise, the conductance

will decrease. Note that since the graph is complete, inserting a vertex vl

to a subgraph ghj includes the insertion of all edges connecting vl to all

vertices in ghj. Hence, the variation of the conductance during a RW can

be used for discerning whether an agent is walking in the “right” or in the

“wrong” direction, i.e., if the agent is visiting or not a compact area of G.

For this reason, we modify the energy ei according to the variations of the

conductance of ghj at each step of the RW: if the conductance is decreasing
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Figure 4: With this picture we provide an example to justify our choice about the function

used for evaluating the quality of a cluster. In particular, we plot the profile of the cluster

quality computed using CQ1 (in blue) or by considering CQ2 (in red) when varying the

PCs (2 parameters). In Fig. (a) and (b) we plot the profiles associated to two well-defined

clusters in the two datasets in Fig. 3, while in Fig. (c) and (d) we plot the profiles of

the cluster quality evaluated on some random points in the same datasets. CQ2 shows a

better discriminative power as it generally assumes a bigger range of values w.r.t. CQ1,

hence allowing for a better separation of relevant PCs. Furthermore, if we consider Fig.

(a) and (c) or (b) and (d), it is possible to observe a more marked difference of the values

associated to different clusters. In particular, if we use CQ2 the difference of the values

associated to good and bad clusters result to be higher w.r.t. the values obtained with

CQ1.
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the energy increases, otherwise the energy is reduced. If the conductance

remains constant, it means that the agent is moving on vertices that have

been already visited. This happens when a suitably dense region has been

completely visited and the agent is stuck moving on the same vertices over

and over. For this reason, we added also a constant energy decrement in

order to consider loops that occur if the agent is not visiting new vertices for

a prolonged period.

The expression describing the energy update reads as,

e
(new)
i = e

(old)
i + f(∆φ(ghj))− τenergy, (8)

where f(∆φ(ghj)) is a function that depends on the variation of the conduc-

tance of ghj, and τenergy is the user-defined quantity that controls the constant

decrement of the energy. For evaluating the function f(·), we take into ac-

count how the conductance of the subgraph ghj varies each time a vertex

is visited in the RW and, possibly, added to the subgraph. If the agent is

correctly visiting the vertices of a proper cluster, we expect the conductance

to decrease. This decrement, however, in most of the cases is neither regular

nor monotone. For this reason, we decided to consider an average computed

on r values estimated in r steps of the RW.

The energy function f
[
∆rφ(ghj)

]
that computes the moving average vari-

ation of the conductance on r steps of the RW is defined as follows:

f
[
∆rφ

(
ghj(t)

)]
=

1

r

r−1∑

q=0

φ
(
ghj(t− q)

)
− φ

(
ghj(t− q − 1)

)
, (9)

where ghj(t) indicates the subgraph ghj at the t-th time step of the RW.

If the value of r is sufficiently low, f
[
∆rφ(ghj)

]
quickly assumes a negative

value when the agent exits from a cluster and then it is readily stopped. On
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the other hand, choosing a value too low for r, makes the system very sensitive

to small variations of the conductance, which often occur when the agent is

moving within the same cluster. In our experiments (Sec. 4) we set r = 3,

a value that allows to detect sufficiently fast when an agent leaves a cluster,

filtering at the same time non-relevant changes of the conductance.

2.5. Selection of New PCs

A RW is terminated when the energy ei reaches a value lower or equal

to zero. The subset of vertices that have been visited forms the resulting

cluster, chj, whose quality is evaluated according to Eq. 7. If CQ(chj) is

greater or equal than τCQ, the cluster is added to the collection of good

clusters discovered by the agents, along with the PC m
(i)
j used by the agent

for discovering such a cluster. Since it is likely that a dataset contains more

than one cluster of elements which are similar w.r.t. the same PC, it is

reasonable to assume that if a PC m
(i)
j has lead to the identification of a

good cluster, it can be further exploited to discover additional good clusters

within the same dataset. Then, when a cluster is accepted we restore the

initial quantity of energy of the agent, i.e. we set ei = einit and we start a

new RW on the same weighted graph, enabling the agent to explore a new

unseen region of the graph. For that reason, we set to zero the weights of

the matrix Aj associated to the vertices which have been already visited by

ai in the previous RW using m
(i)
j . In this way both πj and Mj are modified:

changing πj has the effect that the next RW starts from another dense region

of the graph, while the modification of Mj prevents the agent from reaching

vertices which have already been visited in the past.

Otherwise if CQ(chj) is not high enough, chj is rejected and the agent
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selects a new PC, say mnew; the energy ei is reset to the default starting

value, einit. This implies the recalculation of Anew, Mnew, and hence of πnew,

inducing a completely new RW characterized by a possibly different behavior.

The new PC mnew is selected by considering a uniform distribution over M.

In Sec. 3 we describe a variant of LD-ABCD that implements a different

PC selection strategy, which is more suitable for scenarios where the core

dissimilarity measure is characterized by many parameters.

2.6. Aggregation of Clusters/PCs

As long as the execution of LD-ABCD proceeds, an agent might find

very similar (or even equal) clusters using different PCs, in the sense that

they may overlap significantly. If an agent identify the same cluster ch using

different PCs, ma and mb, we say that such PCs are equivalent w.r.t. ch,

in the sense that ch contains patterns that are characterized similarly by

considering either ma or mb. This is an important qualitative information

that describes the cluster in terms of the parameters of the dissimilarity

measure used for discriminating the elements of the cluster from the rest of

the dataset. Additionally, showing that the same cluster can be obtained

using different PCs underlines their relation within the dataset, allowing

further analysis and semantic interpretations of the data at hand.

In order to group similar clusters, we merge into a single meta-cluster

all such clusters whose intersection, in terms of contained patterns, is suffi-

ciently high. It is therefore necessary to define a dissimilarity measure among

clusters: in order to do that, we represented each cluster chj with a Boolean

vector, chj ∈ {0, 1}n, where each entry of the vector represents an index to

an element in S, in particular the l-th entry chj(l) = 1 if the l-th pattern of
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S is contained in chj, while chj(l) = 0 otherwise. At this point, the dissimi-

larity among clusters is computed though the the Hamming distance dH(·, ·)

that evaluates the distance among the two Boolean vectors that represent

the clusters. Two clusters c1 and c2 are considered similar if their Hamming

distance dH(c1, c2) is less or equal to θ. The parameter θ ≥ 0 is set propor-

tional to |S| and it can be interpreted as the maximum fraction of patterns

on which two clusters can disagree in order to be considered similar.

With ĉxi we call the x-th meta-cluster associated to the agent ai, that

represents a set of clusters Cxi sufficiently similar to each other w.r.t. the

Hamming distance. The meta-cluster ĉxi is composed of a Boolean vector

µxi, defined as the rounded mean of all the Boolean representations of the

clusters in Cxi and a list Lxi that contains all the PCs used for discovering

the clusters in Cxi. Each PC in Lxi is associated to a CQ value, which is used

to perform a “ranking” of the PCs used for discovering the clusters; PCs

associated to a meta-cluster are ordered in non-ascending order of CQ value.

In our experiments we have discovered that the PCs with higher CQ are the

ones which better describe the original clusters in the dataset (see Sec. 4.2

and 4.3).

Every time a cluster chj is discovered by an agent ai using a metric m
(i)
j ,

it is compared with all the mean Boolean vectors of the K(t) meta-clusters

existing at the time t, and it is assigned to the most similar meta-cluster, let

say ĉxi. Then chj is added to the set Cxi and µxi is recomputed on such set.

Finally, the PC m
(i)
j is added to Lxi.

If no meta-clusters have still been generated, or if the dissimilarity value

to the most similar meta-cluster is above a given threshold θ, a new meta-
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cluster ĉyi is instantiated starting from chj: in this case µyi is initialized with

chj and the metric m
(i)
j used for discovering chj is inserted in the list Lyi,

which initially will be empty.

With Ĉi we refer to the collection of all the meta-clusters generated by

ai which represents the set of all similar clusters that have been generated

using different PCs.

When all the agents terminate their procedure of cluster discovery (see

the following section), similar meta-clusters generated by different agents are

in turn merged together by a centralized unit into a global meta-cluster. In

fact, there are no guarantees that different agents do not generate the same

meta-cluster. In order to aggregate 2 meta-clusters ĉa1 and ĉb2 generated by

the agents a1 and a2, we check if the hamming distance between µa1 and µb2

is below the threshold θ; in that case the clusters are merged in a new meta-

cluster ĉnew, where Cnew = Ca1 ∪ Cb2, Lnew = La1 ∪ Lb2 and µnew is computed

as the rounded mean element in Cnew.

2.7. Convergence Criterion

To determine the convergence criterion of LD-ABCD we decided to ana-

lyze how the meta-clusters evolve, rather than considering the single clusters

returned by the agents. In fact, due to the random nature of the walk, a

single cluster returned by an agent may differ by very few elements from

the already existing ones, making it hard to decide if it is an effectively new

cluster.

The agents terminate the search when for a given time period, defined by

the integer-valued threshold τstop, no new meta-clusters are generated and the

average cluster quality of the existing meta-clusters does not increase. The
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cluster quality of a meta-cluster is evaluated as the average of the cluster

qualities of the single clusters associated to it. In particular, if an agent

returns consecutively for τstop times a cluster which is associated to an already

existing meta-cluster and it does not improve its average CQ or if the cluster

is rejected because its CQ is too low, the agent stops. In fact, if an agent of

the system has already visited the dataset with a sufficiently high number

of PCs, it becomes less likely that new informative clusters are going to be

discovered. When all the agents reach their convergence criterion, the whole

system stops and the results found by each agent are aggregated as described

in the previous section. The parameter τstop can be set by the user; it directly

affects the execution time of the algorithm and accordingly the precision of

the results.

Now that all the functionalities of the system have been explained, we

present in Fig. 5 a more detailed overall-schema of a single agent behavior

over its lifetime.

2.8. Analysis of Computational Complexity

In this section we study the time and space complexity of LD-ABCD.

For what concerns the space occupancy, the upper-bound consists in storing

the weighted adjacency matrix, A, which each agent must use in order to

represent the graph. The space required to store the matrix is O(n2), where

n = |S|.

On the other hand, the time complexity strictly depends on the number

of iterations performed by each agent during the random walk. The length

of a typical RW is related to the energy e of the agent and on how this

quantity is modified (which is affected by the experimental setting of the
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Figure 5: Detailed flow-chart of the single agent behavior.. The diagram part enclosed in

dashed line is the expansion of the “Perform RW and Evaluate Cluster” block of Fig. 1

and it shows more in detail the sequence of operations that an agent ai performs during the

random walk.. The energy ei is initialized to a default value einit. At each step a new node

is considered and, if it is visited for the first time by the agent, it is inserted in the cluster.

The energy of the agent is modified accordingly to the variation of the conductance of

the cluster found so far. When the energy is depleted, the cluster is evaluated and if its

cluster quality is sufficiently high it is accepted and saved, otherwise it is discarded and a

new PC is selected.

algorithm and by the intrinsic random nature of the RWs). The energy

variation depends also on the nature of the dataset at hand, which makes

a precise analysis difficult to perform. In order to give an estimation of the

computational time complexity, we assume here that an agent performs in

average T different steps during a typical RW.

The time complexity can be estimated as the composition of several costs.
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The operations performed by an agent can be divided in the following cate-

gories, which scale with the input data size in different ways:

• the PC initialization step, which includes the generation of the PC

given the selected policy and the evaluation of the adjacency and tran-

sition matrices and the computation of the graph conductance bounds.

Sampling a random PC has a cost that scales linearly with the number

of parameters of the dissimilarity measure, and so it can be gener-

ally considered negligible w.r.t. the costs depending on dataset size.

Building the adjacency and transition matrices has a cost of O(n2 · δ),

where δ is the cost of the dissimilarity measure. Evaluating the bounds

of the graph conductance, used for evaluating CQ (see Eq. 7), has

the same cost of computing the second eigenvalue of the adjacency

matrix, which in our study it has been approximated with the power

method described in Appendix A. The power method complexity scales

as O((n+n2) · 1
ǫ
· log n

ǫ
), where ǫ is the user-defined parameter defining

the precision on the approximation. We refer then to the time required

for initialization step with tinit = O(n2 · (δ + log(n)));

• the random walk step, which consists in selecting a new node and

updating the energy e of an agent, according to the variation of the

conductance of the subgraph visited so far. While the energy updating

procedure can be performed in a constant time, selecting the next node

in the RW is an operation which involves analyzing all the elements of

the row of the adjacency matrix relative to the current node, which

scales as O(n). We then define the cost tstep = O(n);
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• the cluster quality evaluation step consists in the evaluation of the

cluster conductance, which is an operation that costs O(n2), since all

the edges of the (complete) graph must be considered – see Appendix

A. The estimated time required for performing this step is given by

teval = O(n2).

• the cluster aggregation step that consists in updating the set of existing

meta-clusters with the cluster that has been accepted by the agent.

This operation consists in comparing the cluster with all theK(t) meta-

clusters which have been generated so far at the time t, using the

hamming distance. The hamming distance is linear in the number of

the elements, which is the size of the dataset n, since each cluster is

represented in the vectorial form described in Sec. 2.6. Note that the

aggregation procedure occurs only when a cluster is accepted, i.e. when

its quality is sufficiently high, so this cost sometimes is equal to zero.

We can then define taggr = O(K(t) · n).

To summarize, the total time ttot required by an agent to evaluate a PC

mj can be expressed as:

ttot =tinit + T · tstep + teval + taggr

=O(n2 · (δ + log(n))) + T · O(n) +O(n2) +O(K(t) · n)

Since the procedure must be repeated each time a new PC is considered,

the total time required for executing the whole LD-ABCD system is M · ttot,

where M is the number of PC evaluated (we remind that the number of

agents is fixed in our algorithmic setting).
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3. LD-ABCD with Exploration–Exploitation Agents

Since the PC space can be extremely large even for a modest number of

parameters of the dissimilarity measure, the technique used for searching PCs

described in Sec. 2.5 – uniform sampling – could easily become ineffective. In

this section, we propose an alternative approach for exploring the PC space.

The search method is inspired to the well-known Metropolis-Hastings algo-

rithm [34], often employed in statistical physics. In this variation, the agents

operate according to two different policies (strategies, behaviors), which we

named exploration and exploitation. An agent that operates according to the

exploration strategy is called “explorer”. The exploration strategy coincides

with the uniform search described in Sec. 2.5 and it is meant to perform

an exploratory wide-range search in the PC space. An explorer randomly

evaluates several different PCs. Every time a RPC is identified by an ex-

plorer, it is stored to a shared data structure to allow successive tentative

improvements via the exploitation. Accordingly, an agent that implements

the exploitation strategy, instead, is called “exploiter”. The objective of the

exploiters consists in trying to improve the RPCs found so far by the ex-

plorers. An exploiter randomly selects one of the available RPCs, say m
(i)
j ,

along with its corresponding cluster chj , and initiates a search in the PC

space nearby m
(i)
j , given a suitable PCs similarity measure dPC(·, ·). This

search strategy is meant to discover other PCs that yield a higher CQ (7)

on the same cluster chj. In fact, since it is reasonable to assume that agents

with similar PCs are likely to perform similar RWs (and hence accept/reject

similar clusters), we keep fixed the cluster structure (i.e., the patterns that

it contains) and we just recompute its CQ using the new PCs. The fact that
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we recompute the CQ of the cluster without issuing a new RW results in

a significant improvement in terms of computational resources. The imple-

mentation of the similarity measure between PCs depends on the nature of

the parameters (e.g., Hamming distance for binary configurations, Euclidean

distance for real-valued parameters, etc.). If an exploiter is able to select a

new PC m̄
(i)
j that yields a better CQ than m

(i)
j , this latter is deleted (along

with the related cluster chj) and it is replaced by m̄
(i)
j and the associated

cluster by c̄hj.

Every agent can exclusively assume the role of the explorer or the ex-

ploiter (Fig. 6), modifying hence its search strategy accordingly. Before

starting a new RW, an agent checks the current ratio of explorers and ex-

ploiters operating in the system. If the ratio is above a user-defined thresh-

old 0 < τEXPL ≤ 1, and at least one RPC has been already discovered by

an explorer, the agent adopts the exploitation policy, otherwise it behaves

as an explorer. The factor τEXPL controls the balance between the diversity

and the accuracy of the returned RPCs and can be tuned according to the

available computational resources and the particular problem at hand. The

exploration–exploitation version of LD-ABCD herein discussed is designed to

be able to perform a more targeted search on large PC spaces. This results,

in general, in a faster convergence of the whole algorithm, with a faster dis-

covery of the high-quality clusters and related PCs present in the data (we

will provide experimental evidence of this claim later in Sec. 4.4). Finally,

the herein presented exploration-exploitation variant is characterized by the

same computational costs described in Sec. 2.8, as the operations for the

explorers and exploiters are asymptotically the same.
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Figure 6: Diagram of the Exploration–Exploitation procedure for selecting the new PC.

The thick arrows represent the read/write operations performed by the agents on the

shared data structure, highlighted in gray, containing the discovered clusters and PCs.

4. Experiments

In this section we discuss the experiments performed to asses the perfor-

mances of (both variants of) LD-ABCD. First, in Sec. 4.1 we discuss the

tests performed to evaluate the quality of the clusters found by LD-ABCD

on some well-known benchmarking datasets. We offer a comparison w.r.t.

state-of-the-art graph-based and RW-based algorithms over a particular set-

ting of clustering, where patterns are labeled with ground-true class labels
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for performance evaluation. Then in Sec. 4.2 we present some experiments

which underline the capability of our system to discover relevant information

in noisy datasets. Notably, the identification of relevant clusters, together

with the PCs used for discovering such clusters, provide a semantic character-

ization and a high-level description of the data. In Sec. 4.3 we demonstrate

the capability of LD-ABCD to discover multiple PCs which characterize in-

dividual clusters, defining then a relation among the features considered by

each PCs in the data contained in the cluster. Those first three experiments

are performed with the LD-ABCD version discussed in Sec. 2. Finally, in

Sec. 4.4 we discuss the results obtained by using the exploration–exploitation

technique described in Sec. 3 for improving the selection (discovery) of the

RPCs.

As stressed throughout the paper, our approach is dissimilarity-based.

Therefore LD-ABCD is able to process virtually any input data type (e.g.,

graphs, sequences and so on). However, for the sake of simplicity and for an

easier interpretation of the results, we decided to test only datasets of real-

valued vectors (features); extensions to other settings are straightforward.

The adopted dissimilarity measure is the weighted Euclidean distance; each

m
(i)
j is a vector in [0, 1]D, where D is the dimensionality of the data at hand.

We do not use a Mahalanobis-like distance (e.g., by using the full weight

matrix), since the former distance allows a more direct interpretation of the

results in terms of feature selection (and it is characterized by much less

parameters).

Our algorithm depends on a number of parameters and thresholds, which

are τCQ, τstop, β (used in the definition of τexp), θ and τenergy. In our exper-
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iments we used different configurations of those parameters, that have been

set empirically accordingly to the dataset and to the problem at hand. How-

ever, in several cases we kept those parameters unaltered, since modifying

their values does not lead to any remarkable changes in the results, making

their choice not very critical.

4.1. Evaluating the Purity of the RWs

We have processed four different real-world datasets from the UCI Ma-

chine Learning Repository [7], which are Wine, Breast Cancer, Iris, and

E-Coli. We decided to use the aforementioned datasets since they are very

well-known, easy to obtain and for some of them it was possible to provide

a comparison with the results obtained by other algorithms which perform

clustering using a RW [2]. All datasets contain labeled patterns organized in

different classes. As we described in Sec. 2.3, the LD-ABCD algorithm uses

the CQ (7) – a criterion based only on the evaluation of the conductance – for

accepting or rejecting the clusters identified during the RWs. In the follow-

ing experiments, we demonstrate the reliability of our (unsupervised) cluster

acceptance criterion using the supervised information of the class labels. In

this test, the PCs are defined as real-valued numbers.

As mentioned before, we provide a comparison with the MARW algorithm

[2] and two other algorithms therein considered, which are Nibble [45] and

Apr.PageRank [3] (in the following denoted as N and APR), relatively to the

first two dataset treated (Wine and Breast Cancer). MARW is an agent-

based and RW-based clustering algorithm. Agents perform the RW on the

same graph together, with the constraint of having a (geodesic) distance of at

most l from each other. This corresponds to decreasing the chance that the
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multi-agent RW “mistakenly” merges two different clusters (low transition

probabilities are easily zeroed). To make results comparable, we adopted

the same performance measure described in [2] for evaluating the purity of a

cluster. The purity is the percentage of vertices visited during the RW that

has the same class label of the starting vertex. Let vs be the starting vertex,

l(v) the true label value of v, and ch the accepted cluster made of vertices

visited during a RW. The cluster purity (CP) is defined as:

r =
|{v|l(v) = l(vs)}|

|ch|
. (10)

In LD-ABCD, the starting node, vs, is selected from the SD, π (see Sec.

2.2). Hence, vs is selected from a central part of the graph, making its class

label a reliable estimation of the class of the cluster to which vs effectively

belongs.

For each processed dataset, we identify K meta-clusters and their associ-

ated collection of equivalent PCs (see Sec. 2.6). From each meta-cluster, we

chose the PC that has generated the cluster with the highest CQ and then

we check its CP (10). We use the average value of those K CPs as the perfor-

mance index on the whole dataset (we report the standard deviations). The

results obtained by our system are reported in Tab. 1, along with the results

found by the other algorithms for what concerns the first two datasets.

In addition to this numerical comparison, in the following we briefly dis-

cuss the behavior of LD-ABCD in each dataset, in order to provide a more

complete overview of its functioning. Since there is no pre-processing on the

considered data, we decided to show a principal component analysis (PCA),

which we use only for facilitating the comprehension of the following discus-

sion (see Fig. 7).
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Table 1: CP results on the considered UCI datasets. In parentheses we show the number

of distinct vertices required to stop the RWs.

Datasets Algorithms

Patterns Dimensions Classes N APR MARW a = 3 MARW a = 4 LD-ABCD

Wine (40) 178 13 3 82.31 86.80 88.02 91.76 100.0±0.000

Breast Cancer (160) 683 9 2 93.26 94.66 94.37 96.02 100.0±0.000

Iris (40) 150 4 3 - - - - 76.00±0.120

E-Coli (50) 336 8 8 - - - - 91.00±0.231

Wine. In this dataset, LD-ABCD was able to identify three different meta-

clusters that correctly cover the three classes of the dataset. Each meta-

cluster contains only patterns belonging to a single class and thus the CP

associated to the PC with the highest CQ is 1 in every meta-cluster. Ac-

cording to MARW [2], we stopped the RWs as soon as a given number z of

different vertices are visited. The value of z is selected proportional to the

smallest class in the dataset at hand.

Breast Cancer. This dataset contains two different classes of patterns which

are characterized by a very different distribution, as we can see from the

related PCA in Fig. 7. The elements of the first class are very similar and

they occupy a compact portion of the space, while the others are spread on

a less dense region. On this dataset our algorithm returned only one meta-

cluster containing patterns belonging exclusively to the first class and thus

the resulting average CP is 1. If at a first sight the absence in the output of a

meta-cluster representing the second class may look as a failure, this behavior

is perfectly aligned with the design of LD-ABCD, which tries to identify only

the most compact and separated clusters in the dataset. From the point of

view of clustering, in this dataset there is only one well-defined cluster (those
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Figure 7: First two components of the PCA of the considered UCI datasets. We use

different colors and shapes to distinguish among the different classes in the dataset (color

version online).

in blue). In fact, every time an agent tries to evaluate a cluster over the red

patterns, it systematically rejects those clusters because the related CQ is

too low (they are highly conductive).

Iris. For this dataset we have performed two different runs. In the first one,

we have kept the threshold τCQ to the standard value (0.9) used in all other

experiments, while in the second run we have lowered it to 0.5, In this way
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we allowed the algorithm to return more clusters, since the ones with a lower

CQ are accepted. In the first test, only one meta-cluster is returned that

contains points from the most isolated region (see the PCA in Fig. 7). The

CP obtained in this first run is equal to 1.

In the second run, instead, three different meta-clusters are returned.

The first one contains again elements of the most isolated class and its CP

is equal to 1, while the others two meta-clusters represent the two remaining

classes and their CP is lower. In fact they are not well-separated and the

agent during a random walk switch between elements belonging to these two

different classes, decreasing the CP of the resulting clusters. Also the CQ of

those two clusters is significantly low since the agent moves freely on a larger

portion of the graph, returning then a subgraph characterized by a higher

conductance. The CP associated to the PC with the highest CQ of those

two clusters is respectively 0.6 and 0.67, making the total CP obtained on

the dataset equal to 0.76.

E-Coli. Notwithstanding the dataset contains 8 different classes, the number

of the resulting meta-clusters is 3 and they are mainly populated by patterns

belonging to the largest classes of the dataset. In fact, the number of elements

in the 5 remaining classes is remarkably lower, and they have been partially

aggregated in the clusters representing the 3 principal classes. For this reason,

the CP obtained on this dataset is not 1, even if it still maintains a good

score: the best PC of the 3 clusters have the following CP: 0.96, 0.93 and

0.84, making the average CP of the whole dataset 0.91.
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4.2. Discovering Relevant PCs

In this first test, we focus on the problem of finding the PCs that best

highlight the local structure of the clusters characterizing the dataset. In

particular, we identify a collection of meta-cluster (see Sec. 2.6) associated

with the list L of the equivalent PCs that have been used for identifying the

aggregated clusters. We order the PCs in L according to their CQ (see Sec.

2.3). Since by definition each cluster of the considered dataset is characterized

by its own specific PC, we expect (i) to retrieve the correct PC and (ii) that

the PC associated to the highest CQ is the one that better characterizes the

cluster.

In order to demonstrate the capabilities of LD-ABCD, we have generated

a synthetic dataset in R
4, which contains 4 different clusters c1, c2, c3, and

c4. The vectors forming each cluster are characterized by values drawn from

a tensor product of a three-dimensional Gaussian distribution with spherical

covariance matrix and a unidimensional uniform distribution – the uniform

distribution plays the role of the noise. For each of the 4 clusters, we select a

specific dimension to add the values that come from a uniform distribution.

Specifically, referring with x[n] as the n-th component of the vectors of the

dataset, we insert the values drawn from the uniform distribution in x[1]

relatively to the patterns of c1, in x[2] for the patterns of c2, in x[3] for the

patterns of c3, and finally in x[4] for the patterns of c4.

In Fig. 8 we show the first three components of the considered patterns,

omitting the 4-th component, x[4]. As it is possible to observe from the

figure, although the clusters are characterized by a narrow variance on a

specific dimension, they are clearly well-separated. While the clusters c1, c2,
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and c3 (plotted with blue dots) have the component containing the noise in

one of the three displayed dimensions (respectively on x[1], x[2], and x[3]), c4

(plotted with red dots) has all the components with values drawn from the

Gaussian distribution in R
3 and the component containing the noise is x[4].

Note that the values of x[4] for the blue clusters are drawn from a Gaussian

distribution instead. We execute LD-ABCD using Boolean PCs only (mj are

Boolean vectors), until the stop criterion (described in Sec. 2.7) is reached.

As expected, LD-ABCD discovered four different meta-clusters ĉi, ĉii, ĉiii, and

ĉiv. In Tab. 2 we report the PC with higher CQ found for each meta-cluster

and the relative CQ value.
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Figure 8: Plot of the first three dimensions of the dataset characterized by four clusters

in [0, 1]4. Every cluster contains vectors with a component whose values are drawn from

a uniform distribution, which plays the role of a noisy component. The blue clusters have

that component in one of the displayed dimensions, while the 4-th dimension of the red

cluster is the one containing the noise.

As it is possible to observe, the PCs that have been found showing the
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Table 2: PCs found for the four meta-clusters and the associated CQ values.

Meta-cluster PC CQ

ĉi {x[1], x[2], x[3], x[4]} = {0, 1, 1, 1} 0.9247

ĉii {x[1], x[2], x[3], x[4]} = {1, 0, 1, 1} 0.9442

ĉiii {x[1], x[2], x[3], x[4]} = {1, 1, 0, 1} 0.9181

ĉiv {x[1], x[2], x[3], x[4]} = {1, 1, 1, 0} 0.9475

highest CQ values are those that assign 1 in each cluster in correspondence of

the components drawn from the Gaussian distribution (i.e., the signal), and

0 to the component drawn from uniform distribution (i.e., the noise). This

demonstrates that LD-ABCD is able to discover the local structure of the

relevant clusters in the dataset, identifying also the specific PC that allow

such structures to emerge.

In our experiment we reported for each cluster the first PC in the list L

of equivalent PCs, that is the one with the highest CQ value, and thus the

one that better characterizes the cluster. Such PCs are reported in Tab. 2.

Notice that for this test the threshold τCQ can be set to an arbitrarily low

value, because we are considering only the first PC (in terms of CQ) in L

and ignoring the others.

4.3. Identification of Equivalent PCs

In this section we evaluate the capability of LD-ABCD to discover the

PCs which can equivalently characterize a portion of the data. In Sec. 2.6 we

have introduced the concept of equivalent PCs which are associated to each

meta-cluster. Such PCs are collected in the structure L associated to each

meta-cluster in Ĉ. Each PC in L is characterized by a specific CQ value: the

higher the CQ, the better the PC characterizes the meta-cluster. If a meta-
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cluster is associated with a set of PCs that are characterized by high and

similar CQ values, we interpret them as equivalent, in the sense that they

can be used interchangeably to suitably identify and characterize locally the

cluster. Furthermore, we can identify relations among the parameters w.r.t.

the dataset at hand.

To show this process and make it easily understandable, we have used

a synthetic dataset in [0, 1]4, which contains four different clusters. Each

cluster contains data points which are very compact in two dimensions, while

having uncorrelated values in the other two dimensions. More precisely, the

projection of the cluster on the hyperplane formed by the first two dimensions

is normally distributed with narrow variance around the center. This means

that the first cluster is defined by the vectors whose first two components are

extracted from two Gaussian distributions, GA and GB; the second cluster

is formed by vectors whose third and fourth components are drawn from

the distributions GE and GF , and so on (see Fig. 9 for an illustration).

On the remaining dimensions, the vectors contain values which are drawn

from a mixture of different Gaussian distributions (each one belonging to a

different cluster) or noise. Since we wanted to keep the data in each cluster

sufficiently isolated from the others, we drew the noise values by a random

sampling considering a domain obtained by subtracting from [0, 1]4 a suitable

neighborhood of all the clusters.

In this sense, each cluster can be identified by PCs which assign high

weights to any of the two signal components (or both), and a low weight to the

others. For example, if we consider Boolean PCs, the cluster which contains

vectors of the type [A,B,∼,∼], where ∼ denotes either a signal different from
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Figure 9: (Color version online) A snapshot of the dataset of vectors in [0, 1]4, containing

four different clusters. Vectors of a given cluster are characterized by two components

(signal) drawn from 8 different Gaussian distributions GA, .., GH (characterized in the

figure by the use of different colors) and two components which are not relevant. For

example, the vectors of the first cluster have values drawn from GA on the first component,

values drawn from GB on the second component, and random values on the last two

components.

A and B or a noisy component, can be identified by the following equivalent

PCs: {1, 1, 0, 0}, {0, 1, 0, 0}, and {1, 0, 0, 0}.

In the herein presented experiment, we have generated a dataset of the

form described above, which is exemplified in Fig. 9. Such a dataset contains

300 vectors in [0, 1]4, whose components are real values extracted from eight

different Gaussian distributions GA, GB, ..., GH or from a uniform distribu-

tion. Each Gaussian distribution is paired with another one, in the sense

that if a vector contains a value extracted from a distribution, it must also

contain a value extracted from a second one. For example, the vectors which
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have the first component extracted from GA must have the second compo-

nent extracted from GB, while the remaining two components can contain

any other value. In this way we assure a correlation between pairs of Gaus-

sian distributions for each specific cluster. This fact is illustrated in Tab. 3.

Table 3: characterization of the clusters of the dataset in terms of vector components

extracted from Gaussian distribution.

Cluster Vectors components

c1 GA GB ∼ ∼

c2 GC GD ∼ ∼

c3 ∼ ∼ GE GF

c4 ∼ ∼ GG GH

The mean of each Gaussian component is randomly generated, constrained

to be separated by the others by a value greater or equal to 0.2; we used a

variance σ = 0.005. The subspace from which we draw the noisy values using

the uniform distribution is defined by setting a radius 0.1 for the neighbor-

hoods of the clusters that we subtract from [0, 1]4.

The results obtained by running the system with the cluster quality

threshold τCQ equal to 0.8 are reported in Tab. 4. As it is possible to

observe, six different meta-clusters, ĉi-vi, have been found and four of them,

ĉi,ii,v,vi, correspond, respectively, to the expected clusters c2,1,3,4, while the

two remaining meta-clusters, ĉiii,iv, correspond to high density areas that oc-

curred randomly in the generation of the dataset. As Tab. 4 shows, the

meta-clusters ĉi,ii,v,vi have associated PCs which select the relevant compo-

nent of the vectors, according to the way the clusters have been generated.
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Table 4: Meta-clusters found with the respective list of the first three PCs sorted in terms

of CQ associated to each cluster. For each meta-cluster, we report also the ground truth

cluster with which it intersects the most and the related cardinality of the intersection

expressed in percentage.

Meta-Cluster Cluster with Highest Intersection PCs CQ

ĉi c2(100%)

[1, 0, 0, 0] 0.895

[1, 1, 0, 0] 0.876

[0, 1, 0, 0] 0.859

ĉii c1(100%)

[1, 0, 0, 0] 0.877

[0, 1, 0, 0] 0.856

[1, 1, 0, 0] 0.851

ĉiii c2(26%)

[1, 1, 1, 1] 0.902

[1, 0, 1, 0] 0.890

[0, 1, 1, 0] 0.817

ĉiv c4(22%)

[1, 1, 1, 1] 0.882

[1, 1, 1, 0] 0.853

[0, 1, 0, 1] 0.820

ĉv c3(100%)

[0, 0, 0, 1] 0.916

[0, 0, 1, 1] 0.859

[0, 0, 1, 0] 0.847

ĉvi c4(100%)

[0, 0, 1, 1] 0.934

[0, 0, 1, 0] 0.925

[0, 0, 0, 1] 0.830

4.4. Tests using Exploration–Exploitation Strategy

Here we evaluate the performance improvement obtained when using the

exploration–exploitation strategy presented in Sec. 3 w.r.t. the original PC

search of Sec. 2.5. We proceed by testing the two approaches on a high-

dimensional synthetic dataset. A good estimator of the search efficiency is

the mean CQ (MCQ) over all accepted clusters as a function of time (i.e.,
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algorithm iterations). Of course, after a short initial transient a higher MCQ

value, at every given time step, indicates a faster identification of the RPCs.

By definition, the MCQ ranges from τCQ to 1, and the maximum execution

time (measured in number of iterations) is a user-defined setting.

The generated dataset lies in a 30-dimensional space and it is character-

ized by ten well-separated clusters. The PC space consists of binary vectors

of 30 parameters, so there are 230−1 possible PCs (the all zeros configuration

is never considered). We defined the Hamming distance as the dissimilarity

measure dPC(·, ·) used for comparing different PCs (see Sec. 3). Given a

PC which is returned by an explorer, the exploiters generate similar PCs

that have a hamming-distance equal to 1 from the original selected PC. This

means that an exploiter randomly switches a parameter of the exploited PC

to obtain the new candidate PC to be tested.

Fig. 10 shows a plot of the MCQ obtained by both search methods, the

uniform and the exploration–exploitation search, as a function of time. The

exploration-exploitation setting has been run with the ratio τEXPL = 3/4

over a total of 4 agents, i.e., 3 explorers and 1 exploiter. Such results are

intended as the average of five different runs considered for each method,

executed by changing the random seeds. As it is possible to observe, the MCQ

obtained with the exploration–exploitation strategy rapidly assumes higher

values w.r.t. those of the uniform search, and this behavior is preserved until

convergence.

Please note that we are not reporting the results obtained by applying

the exploration–exploitation strategy on the experiments described in the

previous sections, since there are no significant variations that it is worth to
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discuss. In fact, since the dimension of the parameter space was reasonably

small (we usually considered less than ten parameters), the basic version

which explores the PCs with a uniform search was capable of considering a

sufficient number of configurations for identifying the desired solution. We

must remark that in the asymptotic regime the results obtained with the

two methods are the same, since all the PCs sooner or later will be consid-

ered. In this way, the tangible improvement introduced by the exploration–

exploitation method consists in identifying the RPCs sooner, rather than

discovering “better solutions” that cannot be found by the former technique.
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Figure 10: MCQ as a function of the time steps. The shaded areas represent the standard

deviation of the measured CQs at each time stamp.

5. Conclusions

With this study we presented a dissimilarity-based multi-agent system,

LD-ABCD, capable of discovering relevant clusters in a dataset, whose ele-

ments are grouped according to different and possibly equivalent configura-

tions (instances of parameter values) of the dissimilarity measure. Agents in
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LD-ABCD perform multiple and independent random walks. Accordingly,

each agent discovers and takes decisions independently over one cluster at

a time. The multiple parameter configurations highlight the characteristics

of patterns within the cluster that are considered to be discriminative, and

represent the key for interpreting and characterizing semantically the reg-

ularities found in the dataset. As a first step, we represented the entire

dataset as a weighted graph. The identified clusters are subgraphs whose

quality is evaluated as a function of their conductance normalized w.r.t. to

the bounds of the graph conductance. Guiding the evolution of our system

with a cluster quality measure based on the conductance allowed us to define

a powerful tool for evaluating the effectiveness of a given configuration of the

parameters and to identify well-formed clusters, as outlined also by the tests

performed on the UCI datasets for classification. We presented two differ-

ent approaches for searching the parameters characterizing the dissimilarity

measure: (i) a basic one which consists in extracting configurations of the

dissimilarity function parameters by means of a uniform distribution and (ii)

an improved search strategy in which the solutions are further improved by

searching in their neighborhood (the exploitation search strategy). In this

second strategy, agents are divided into two main families: the explorers and

the exploiters. Our work highly relied on the celebrated Cheeger’s inequal-

ity as reference to define suitable bounds for the definition of the cluster

quality. In this paper, we employed a very fast approach for computing an

approximation of the minimum conductance of a graph, which is based on

the numerical approximation of eigenvalues using the power method. This

solution proved to be very useful and handy in our practical implementation.
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The discussed experiments showed how LD-ABCD is capable of identifying

the characterizing parameters of the dissimilarity measure, locally tailored

for each single discovered cluster. Furthermore, when applied on the UCI

datasets with a known class structure, the clusters returned by our algo-

rithm contain elements belonging mostly to the same class.

Our future work will be focused on applying our system for clusters and

knowledge discovery to larger datasets. Accordingly, we will focus on the

aspects related to scalability and parallelization, showing how our algorithm

can work by distributing the computations over different cores and/or distinct

workstations, each of which would access a suitable fraction of the entire

dataset. In fact, since LD-ABCD does not produce a partition of the data,

it could also operate on a suitable subset of the entire dataset only.

Appendix A Graph Conductance and Related Approximation

Given a graph G = (V, E), with n = |V|, the conductance of a cut induced

by the subset S ⊂ V is defined as:

φ(S) =

∑
u∈S

∑
v∈S A(u, v)

min(A(S), A(S))
, (11)

where S = V \ S and A(S) =
∑

u,v∈S A(u, v) is the number of edges in S. If

the graph is weighted, then A(u, v) contains the weight (i.e., the strength)

of the edge among u and v; if it is not weighted then A(u, v) is equal to

one if and only if there is an edge among u and v. While computing the

conductance (11) of any subset S ⊂ V is simple, computing the conductance

of the graph Φ(G) consists in solving the following NP-Hard problem [15]:

Φ(G) = min
S⊂V

φ(S). (12)
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Finding the global optimum is unfeasible even for small graphs. As a

consequence, many approximation techniques have been proposed so far [29,

5, 33, 23, 42].

Among the many techniques, spectral techniques [15] provide a very pow-

erful approach. Let A be the (weighted) adjacency matrix of G, and let D

be diagonal matrix containing the vertex degrees:

D = diag(d1, .., dn),where di =
n∑

j=1

A(i, j). (13)

Let us define the transition matrix M as:

M = D−1A. (14)

The matrix M is not always symmetric. Therefore, it does not always ad-

mit a spectral representation of the form M = UΛUT , where Λ is a diagonal

matrix containing the n eigenvalues and U is a matrix containing the cor-

responding eigenvectors. Notwithstanding, M is conjugate to a symmetric

matrix, N, which is defined as follows:

N = D−1/2AD−1/2 = D1/2MD−1/2. (15)

M and N have the same eigenvalues and the eigenvectors are linearly

correlated [32, 15]. The eigenvalues of N satisfy the following relation:

1 = λ1 > λ2 ≥ ... ≥ λn ≥ −1. (16)

The celebrated Cheeger inequality [32] establishes an important relation

among the conductance of G (12) with λ2:

Φ(G)2

8
≤ 1− λ2 ≤ Φ(G), (17)
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which can be rewritten as:

1− λ2 ≤ Φ(G) ≤
√

8(1− λ2). (18)

By using the fact that φ(S) ≥ Φ(G) for any S ⊂ V, Eq. 18 can be used

as a local reference for a specific graph. According to Eq. 18, it is possible

to define the lower and the upper bound of the graph conductance as

lb(Φ(G)) = 1− λ2, (19)

ub(Φ(G)) =
√

8(1− λ2),

which can be used for evaluating how much the conductance of a cut φ(S) is

close to the conductance of the whole graph, Φ(G).

To make use of the bounds of Eq. 19, we need to compute the λ2 eigen-

value. The QR-decomposition [47] is the most straightforward numerical

technique for this purpose, which is however characterized by a cubic com-

putational complexity. To overcome this drawback, we can use the power

method described in [47], a fast algorithm that is able to compute in pseudo-

linear time the largest eigenvalue and related eigenvector of a positive semi

definite (PSD) matrix. Notably, the computational complexity of the power

method is O((V + |E|)1
ǫ
log |V|

ǫ
), where ǫ ≥ 0 is the approximation used in

computing λ2. Alg. 1 describes the pseudo-code of the power method. The

algorithm starts by randomly initializing a vector, x0 ∈ [−1, 1]n; it returns

the vector xt = M̃tx0, where M̃ is the PSD under analysis. The follow-

ing theorem is an important result for the convergence of the power method

[4, 25].

Theorem A.1. For every PSD matrix M̃, positive integer t, a parameter

ǫ > 0 and a vector x0 randomly picked with uniform probability p in [−1, 1]n,
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with p > 3
16

over the choice of x0, the power method outputs a vector xt such

that
x
⊺

tM̃xt

x
⊺

txt
≥ λ1(1− ǫ)

1

1 + 4n(1− ǫ)2t
, (20)

where λ1 is the largest eigenvalue.

The eigenvector v1 related to λ1 would be approximated by xt

‖xt‖
. Given

a PSD matrix M̃ and the (unitary) eigenvector v1 related to λ1, we can

compute λ2 by means of Alg. 2, which is a variation of Alg. 1. The algorithm

(2) returns a vector xt⊥v1, such that,

x
⊺

tM̃xt

x
⊺

txt

≥ λ2(1− ǫ)
1

1 + 4n(1− ǫ)2t
. (21)

The power method can only be applied to a PSD matrix, which is not

the case of N, whose eigenvalues are the ones in Eq. 16. Consider now the

matrixN = N+I. Every eigenvector ofN with eigenvalue λ is clearly also an

eigenvector of N with eigenvalue 1+λ and vice-versa, thus N has eigenvalues

2 = 1 + λ1 > 1 + λ2 ≥ ... ≥ 1 + λn ≥ 0 and thus it is PSD.

By using v1 (an eigenvector of λ1 computed with Alg. 1), and setting

t = O(ǫ−1 log n
ǫ
), Alg. 2 will find with probability at least 3/16 a vector

xt⊥1 such that
x
⊺

tM̃xt

x
⊺

txt

≥ λ2 − 4ǫ. (22)

From Eq. 22, it is possible to derive the approximation of λ2 that in turn

can be used in Eq. 19.
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Algorithm 1 Power method algorithm.

Input: PSD matrix M̃, tolerance ǫ

Output: Approximation of eigenvector v1 and related eigenvalue λ1

1: Pick random vector x0 ∈ {1,−1}n with uniform probability;

2: t = ǫ−1 log n

ǫ

3: for i = 1 to t do

4: xi = M̃ · xi−1;

5: xi =
xi

||xi||
;

6: end for

7: v1 = xt

8: λ1 =
x
⊺

t
M̃xt

x
⊺

t
xt

9: return v1, λ1;

Algorithm 2 Computation of the second eigenvalue.

Input: PSD matrix M̃, eigenvector v1, and tolerance ǫ

Output: Approximation of λ2

1: Pick random vector x0 ∈ {1,−1}n with uniform probability;

2: x0 = x0 − 〈v1 · x0〉v1;

3: t = ǫ−1 log n

ǫ

4: for i = 1 to t do

5: xi = M̃ · xi−1;

6: xi =
xi

||xi||
;

7: xi = xi − 〈v1 · xi〉v1;

8: end for

9: return λ2 =
x
⊺

t
M̃xt

x
⊺

t
·xt

− 1;
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