Skip to main content
Log in

Interval-valued hesitant fuzzy Einstein prioritized aggregation operators and their applications to multi-attribute group decision making

  • Foundations
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Interval-valued hesitant fuzzy information aggregation plays an important role in interval-valued hesitant fuzzy set theory, which has received more and more attention in recent years. In this paper, we investigate interval-valued hesitant fuzzy multi-attribute group decision-making problems in which there exists a prioritization relationship among the attributes. Firstly, we introduce some Einstein operational laws on interval-valued hesitant fuzzy sets, and discuss some relations of these operations. Then, we develop two interval-valued hesitant fuzzy prioritized aggregation operators with the help of Einstein operations, such as the interval-valued hesitant fuzzy Einstein prioritized weighted average (IVHFEPWA) operator and the interval-valued hesitant fuzzy Einstein prioritized weighted geometric (IVHFEPWG) operator, whose desirable properties are investigated in detail. We further analyze the relationship between these proposed operators and the existing interval-valued hesitant fuzzy prioritized aggregation operators. Moreover, an approach to interval-valued hesitant fuzzy multi-attribute group decision making is given on the basis of the proposed operators. Finally, a numerical example is provided to demonstrate their effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ando T, Li CK, Mathias R (2004) Geometric means. Linear Algebra Appl 385:305–334

    Article  MathSciNet  MATH  Google Scholar 

  • Atanassov K (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20:87–96

    Article  MathSciNet  MATH  Google Scholar 

  • Atanassov K (1989) More on intuitionistic fuzzy sets. Fuzzy Sets Syst 33:37–46

    Article  MathSciNet  MATH  Google Scholar 

  • Atanassov K (2000) Two theorems for intuitionistic fuzzy sets. Fuzzy Sets Syst 110:267–269

    Article  MathSciNet  MATH  Google Scholar 

  • Atanassov K, Gargov G (1989) Interval-valued intuitionistic fuzzy sets. Fuzzy Sets Syst 31:343–349

    Article  MathSciNet  MATH  Google Scholar 

  • Beliakov G, Bustince H, Goswami DP, Mukhherjee UK, Pal NR (2011) On averaging operators for Atanassov’s intuitionistic fuzzy sets. Inf Sci 181:1116–1124

    Article  MATH  Google Scholar 

  • Chen N, Xu ZS, Xia MM (2013a) Interval-valued hesitant preference relations and their applications to group decision making. Knowl Based Syst 37:528–540

    Article  MathSciNet  Google Scholar 

  • Chen N, Xu ZS, Xia MM (2013b) Correlation coefficients of hesitant fuzzy sets and their applications to clustering analysis. Appl Math Model 37:2197–2211

    Article  MathSciNet  Google Scholar 

  • Deschrijver G, Kerre EE (2003) On the composition of intuitionistic fuzzy relations. Fuzzy Sets Syst 136:333–361

    Article  MathSciNet  MATH  Google Scholar 

  • Deschrijver G, Cornelis C, Kerre EE (2004) On the representation of intutitionistic fuzzy t-norms and t-conorms. IEEE Trans Fuzzy Syst 12:45–61

    Article  Google Scholar 

  • Deschrijver G, Kerre EE (2005) Implicators based on binary aggregation operators in interval-valued fuzzy set theory. Fuzzy Sets Syst 153:229–248

    Article  MathSciNet  MATH  Google Scholar 

  • Deschrijver G (2007) Arithmetric operators in interval-valued fuzzy set theory. Inf Sci 177:2906–2924

    Article  MathSciNet  MATH  Google Scholar 

  • Dubois D, Prade H (1980) Fuzzy sets systems: theory and applications. Academic Press, New York

    MATH  Google Scholar 

  • Gu X, Wang Y, Yang B (2011) A method for hesitant fuzzy multiple attribute decision making and its application to risk investment. J Converg Inf Technol 6:282–287

    Article  Google Scholar 

  • Klement E, Mesiar R, Pap E (2000) Triangular Norms. Kluwer Academic Publishers, Dordrecht

    Book  MATH  Google Scholar 

  • Li DF (2010) TOPSIS-based nonlinear-programming methodology for multiattribute decision making with interval-valued intuitionistic fuzzy sets. IEEE Trans Fuzzy Syst 18:299–311

    Article  Google Scholar 

  • Torra V, Narukawa Y (2007) Modeling decision: information fusion and aggregation operators. Springer, New York

  • Torra V, Narukawa Y (2009) On the hesitant fuzzy sets and decision. The 18th IEEE International Conference on Fuzzy Systems. Jeju Island, Korea, pp 1378–1382

    Google Scholar 

  • Torra V (2010) Hesitant fuzzy sets. Int J Intell Syst 25:529–539

    MATH  Google Scholar 

  • Turksen IB (1986) Interval-valued fuzzy sets based on normal forms. Fuzzy Sets Syst 20:191–210

    Article  MathSciNet  MATH  Google Scholar 

  • Wang WZ, Liu XW (2011) Intuitionistic fuzzy geometric aggregation operators based on Einstein operations. Int J Intell Syst 26:1049–1075

    Article  Google Scholar 

  • Wang WZ, Liu XW (2012a) Intuitionistic fuzzy information aggregation using Einstein operations. IEEE Trans Fuzzy Syst 20:923–938

    Article  Google Scholar 

  • Wang WZ, Liu XW (2012b) Some interval-valued intuitionistic fuzzy geometric aggregation operators based on Einstein operation. The 9th IEEE International Conference on Fuzzy Systems and Knowledge Discovery. Sichuan, China, pp 604–608

    Google Scholar 

  • Wei GW (2011) Gray relational analysis method for intuitionistic fuzzy multiple attribute decision making. Expert Syst Appl 38:11671–11677

    Article  Google Scholar 

  • Wei GW, Zhao XF, Wang H, Lin R (2012) Application of correlation coefficient to interval-valued intuitionistic fuzzy multiple attribute decision making. Information 52:395–407

  • Wei GW (2012) Hesitant fuzzy prioritized operators and their application to multiple attribute decision making. Knowl Based Syst 31:176–182

    Article  Google Scholar 

  • Wei GW, Zhao XF, Lin R (2013) Some hesitant interval-valued fuzzy aggregation operators and their applications to multiple attribute decision making. Knowl Based Syst 46:43–53

    Article  Google Scholar 

  • Wei GW, Zhao XF (2013) Induced hesitant interval-valued fuzzy Einstein aggregation operators and their application to multiple attribute decision making. J Intell Fuzzy Syst 24:789–803

    MathSciNet  MATH  Google Scholar 

  • Xia MM, Xu ZS (2010) Some new similarity measures for intuitionistic fuzzy values and their application in group decision making. J Syst Sci Syst Eng 19:430–452

    Article  Google Scholar 

  • Xia MM, Xu ZS (2011a) Hesitant fuzzy information aggregation in decision making. Int J Approx Reason 52:395–407

    Article  MathSciNet  MATH  Google Scholar 

  • Xia MM, Xu ZS (2011b) Distance and similarity measures for hesitant fuzzy sets. Inf Sci 181:2128–2138

    Article  MathSciNet  MATH  Google Scholar 

  • Xia MM, Xu ZS (2012) Entropy/cross entropy-based group decision making under intuitionistic fuzzy environment. Inf Fusion 13:31–47

    Article  Google Scholar 

  • Xia MM, Xu ZS, Zhu B (2012) Some issues on intuitionistic fuzzy aggregation operators based on Archimedean t-conorm and t-norm. Knowl Based Syst 31:78–88

    Article  Google Scholar 

  • Xia MM, Xu ZS, Chen N (2013) Some hesitant fuzzy aggregation operators with their application in group decision making. Group Decis Negot 22:259–279

    Article  Google Scholar 

  • Xu ZS (2000) On consistency of the weighted geometric mean complex judgment matrix in AHP. Eur J Oper Res 126:683–687

    Article  MATH  Google Scholar 

  • Xu ZS (2007) Multi-person multi-attribute decision making models under intuitionistic fuzzy environment. Fuzzy Optim Decis Making 6:221–236

    Article  MathSciNet  MATH  Google Scholar 

  • Xu ZS (2010) Choquet integrals of weighted intuitionistic fuzzy information. Inf Sci 180:726–736

    Article  MathSciNet  MATH  Google Scholar 

  • Yager RR (1986) On the theory of bags. Int J Gen Syst 13:23–37

    Article  MathSciNet  Google Scholar 

  • Yager RR (2008) Prioritized aggregation operators. Int J Approx Reason 48:263–274

    Article  MathSciNet  MATH  Google Scholar 

  • Yager RR (2009a) Prioritized OWA aggregation. Fuzzy Optim Decis Making 8:245–262

    Article  MathSciNet  MATH  Google Scholar 

  • Yager RR (2009b) Some aspects of intuitionistic fuzzy sets. Fuzzy Optim Decis Making 8:67–90

    Article  MathSciNet  MATH  Google Scholar 

  • Yu DJ, Wu YY, Lu T (2012) Interval-valued intuitionistic fuzzy prioritized operators and their application in group decision making. Knowl Based Syst 30:57–66

    Article  Google Scholar 

  • Yu DJ, Wu YY, Zhou W (2012) Generalized hesitant fuzzy Bonferroni mean and its application in multi- criteria group decision making. J Inf Comput Sci 2:267–274

    Google Scholar 

  • Yu XH, Xu ZS (2013) Prioritized intuitionistic fuzzy aggregation operators. Inf Fusion 14:108–116

    Article  MathSciNet  Google Scholar 

  • Zadeh LA (1965) Fuzzy Sets. Inf Control 8:338–353

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao XF, Wei GW (2013) Some intuitionistic fuzzy Einstein hybrid aggregation operators and their application to multiple attribute decision making. Knowl Based Syst 37:472–479

    Article  Google Scholar 

  • Zhu B, Xu ZS, Xia MM (2012) Hesitant fuzzy geometric Bonferroni means. Inf Sci 205:72–85

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The work was supported by National Natural Science Foundation of China (Nos. 71271071, 71301001, 71371011), National Social Science Foundation of China (No. 10CGL024), the National “863” Key Project on Cloud Manufacturing (No. 2011AA040501). The authors are thankful to the anonymous reviewers and the editor for their valuable comments and constructive suggestions that have led to an improved version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feifei Jin.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Communicated by A. Di Nola.

Appendix

Appendix

Proof

Since \(0\le \tilde{\gamma }_j^L \le \tilde{\gamma }_j^U \le 1\) for all j, then we have

$$\begin{aligned}&0\le \frac{\prod \nolimits _{j=1}^n {(1+\tilde{\gamma }_j^L )^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} -\prod \nolimits _{j=1}^n {\left( 1-\tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }{\prod \nolimits _{j=1}^n {\left( 1+\tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} +\prod \nolimits _{j=1}^n {\left( 1-\tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }\nonumber \\&\quad \le \frac{\prod \nolimits _{j=1}^n {\left( 1+\tilde{\gamma }_j^U \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} -\prod \nolimits _{j=1}^n {\left( 1-\tilde{\gamma }_j^U \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }{\prod \nolimits _{j=1}^n {\left( 1+\tilde{\gamma }_j^U \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} +\prod \nolimits _{j=1}^n {\left( 1-\tilde{\gamma }_j^U \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }\le 1, \end{aligned}$$
(31)

which indicates that the aggregated value by the IVIHEPWA operator is an IVHFE. In addition, by mathematical induction on n:

  1. 1.

    For \(n=2\): Since

$$\begin{aligned} \frac{T_1 }{\sum \nolimits _{i=1}^n {T_i } }\tilde{h}_1= & {} \left\{ \left[ \frac{\left( 1+\tilde{\gamma }_1^L \right) ^{\frac{T_1 }{\sum \nolimits _{i=1}^n {T_i } }}-\left( 1-\tilde{\gamma }_1^L \right) ^{\frac{T_1 }{\sum \nolimits _{i=1}^n {T_i } }}}{\left( 1+\tilde{\gamma }_1^L \right) ^{\frac{T_1 }{\sum \nolimits _{i=1}^n {T_i } }}+\left( 1-\tilde{\gamma }_1^L \right) ^{\frac{T_1 }{\sum \nolimits _{i=1}^n {T_i } }}}, \right. \right. \nonumber \\&\left. \left. \left. \frac{\left( 1+\tilde{\gamma }_1^U \right) ^{\frac{T_1 }{\sum \nolimits _{i=1}^n {T_i } }}-\left( 1-\tilde{\gamma }_1^U \right) ^{\frac{T_1 }{\sum \nolimits _{i=1}^n {T_i } }}}{(1+\tilde{\gamma }_1^U )^{\frac{T_1 }{\sum \nolimits _{i=1}^n {T_i } }}+\left( 1-\tilde{\gamma }_1^U \right) ^{\frac{T_1 }{\sum \nolimits _{i=1}^n {T_i } }}} \right] \right| \right. \nonumber \\&\left. \tilde{\gamma }_1 \in \tilde{h}_1 \right\} , \end{aligned}$$
(32)
$$\begin{aligned} \frac{T_2 }{\sum \nolimits _{i=1}^n {T_i } }\tilde{h}_2= & {} \left\{ \left[ \frac{\left( 1+\tilde{\gamma }_2^L \right) ^{\frac{T_2 }{\sum \nolimits _{i=1}^n {T_i } }}-\left( 1-\tilde{\gamma }_2^L \right) ^{\frac{T_2 }{\sum \nolimits _{i=1}^n {T_i } }}}{\left( 1+\tilde{\gamma }_2^L \right) ^{\frac{T_1 }{\sum \nolimits _{i=1}^n {T_i } }}+\left( 1-\tilde{\gamma }_2^L \right) ^{\frac{T_2 }{\sum \nolimits _{i=1}^n {T_i } }}}, \right. \right. \nonumber \\&\left. \left. \left. \frac{\left( 1+\tilde{\gamma }_2^U \right) ^{\frac{T_2 }{\sum \nolimits _{i=1}^n {T_i } }}-\left( 1-\tilde{\gamma }_2^U \right) ^{\frac{T_2 }{\sum \nolimits _{i=1}^n {T_i } }}}{\left( 1+\tilde{\gamma }_2^U \right) ^{\frac{T_2 }{\sum \nolimits _{i=1}^n {T_i } }}+\left( 1-\tilde{\gamma }_2^U \right) ^{\frac{T_2 }{\sum \nolimits _{i=1}^n {T_i } }}} \right] \right| \right. \nonumber \\&\left. \tilde{\gamma }_2 \in \tilde{h}_2 \right\} . \end{aligned}$$
(33)

Then, we have

$$\begin{aligned}&\mathrm{IVHFEPWA}\left( \tilde{h}_1,\tilde{h}_2 \right) =\frac{T_1 }{\sum \nolimits _{i=1}^n {T_i } }\tilde{h}_1 \oplus _\varepsilon \frac{T_2 }{\sum \nolimits _{i=1}^n {T_i } }\tilde{h}_2\nonumber \\&\quad =\left\{ \left[ \frac{\frac{\left( 1+\tilde{\gamma }_1^L \right) ^{\frac{T_1 }{\sum \nolimits _{i=1}^n {T_i } }}-\left( 1-\tilde{\gamma }_1^L \right) ^{\frac{T_1 }{\sum \nolimits _{i=1}^n {T_i } }}}{\left( 1+\tilde{\gamma }_1^L \right) ^{\frac{T_1 }{\sum \nolimits _{i=1}^n {T_i } }}+\left( 1-\tilde{\gamma }_1^L \right) ^{\frac{T_1 }{\sum \nolimits _{i=1}^n {T_i } }}}+\frac{\left( 1+\tilde{\gamma }_2^L \right) ^{\frac{T_2 }{\sum \nolimits _{i=1}^n {T_i } }}-\left( 1-\tilde{\gamma }_2^L \right) ^{\frac{T_2 }{\sum \nolimits _{i=1}^n {T_i } }}}{\left( 1+\tilde{\gamma }_2^L \right) ^{\frac{T_1 }{\sum \nolimits _{i=1}^n {T_i } }}+\left( 1-\tilde{\gamma }_2^L \right) ^{\frac{T_2 }{\sum \nolimits _{i=1}^n {T_i } }}}}{1+\frac{\left( 1+\tilde{\gamma }_1^L \right) ^{\frac{T_1 }{\sum \nolimits _{i=1}^n {T_i } }}-\left( 1-\tilde{\gamma }_1^L \right) ^{\frac{T_1 }{\sum \nolimits _{i=1}^n {T_i } }}}{\left( 1+\tilde{\gamma }_1^L \right) ^{\frac{T_1 }{\sum \nolimits _{i=1}^n {T_i } }}+\left( 1-\tilde{\gamma }_1^L \right) ^{\frac{T_1 }{\sum \nolimits _{i=1}^n {T_i } }}}\cdot \frac{\left( 1+\tilde{\gamma }_2^L \right) ^{\frac{T_2 }{\sum \nolimits _{i=1}^n {T_i } }}-\left( 1-\tilde{\gamma }_2^L \right) ^{\frac{T_2 }{\sum \nolimits _{i=1}^n {T_i } }}}{\left( 1+\tilde{\gamma }_2^L \right) ^{\frac{T_1 }{\sum \nolimits _{i=1}^n {T_i } }}+\left( 1-\tilde{\gamma }_2^L \right) ^{\frac{T_2 }{\sum \nolimits _{i=1}^n {T_i } }}}}, \right. \right. \nonumber \\&\quad \left. \left. \left. \frac{\frac{\left( 1+\tilde{\gamma }_1^U \right) ^{\frac{T_1 }{\sum \nolimits _{i=1}^n {T_i } }}-\left( 1-\tilde{\gamma }_1^U \right) ^{\frac{T_1 }{\sum \nolimits _{i=1}^n {T_i } }}}{\left( 1+\tilde{\gamma }_1^U \right) ^{\frac{T_1 }{\sum \nolimits _{i=1}^n {T_i } }}+\left( 1-\tilde{\gamma }_1^U \right) ^{\frac{T_1 }{\sum \nolimits _{i=1}^n {T_i } }}}+\frac{\left( 1+\tilde{\gamma }_2^U \right) ^{\frac{T_2 }{\sum \nolimits _{i=1}^n {T_i } }}-\left( 1-\tilde{\gamma }_2^U \right) ^{\frac{T_2 }{\sum \nolimits _{i=1}^n {T_i } }}}{\left( 1+\tilde{\gamma }_2^U \right) ^{\frac{T_2 }{\sum \nolimits _{i=1}^n {T_i } }}+\left( 1-\tilde{\gamma }_2^U \right) ^{\frac{T_2 }{\sum \nolimits _{i=1}^n {T_i } }}}}{1+\frac{\left( 1+\tilde{\gamma }_1^U \right) ^{\frac{T_1 }{\sum \nolimits _{i=1}^n {T_i } }}-\left( 1-\tilde{\gamma }_1^U \right) ^{\frac{T_1 }{\sum \nolimits _{i=1}^n {T_i } }}}{\left( 1+\tilde{\gamma }_1^U \right) ^{\frac{T_1 }{\sum \nolimits _{i=1}^n {T_i } }}+\left( 1-\tilde{\gamma }_1^U \right) ^{\frac{T_1 }{\sum \nolimits _{i=1}^n {T_i } }}}\cdot \frac{\left( 1+\tilde{\gamma }_2^U \right) ^{\frac{T_2 }{\sum \nolimits _{i=1}^n {T_i } }}-\left( 1-\tilde{\gamma }_2^U \right) ^{\frac{T_2 }{\sum \nolimits _{i=1}^n {T_i } }}}{\left( 1+\tilde{\gamma }_2^U \right) ^{\frac{T_2 }{\sum \nolimits _{i=1}^n {T_i } }}+\left( 1-\tilde{\gamma }_2^U \right) ^{\frac{T_2 }{\sum \nolimits _{i=1}^n {T_i } }}}} \right] \right| \right. \nonumber \\&\quad \left. \tilde{\gamma }_1 \in \tilde{h}_1,\tilde{\gamma }_2 \in \tilde{h}_2 \right\} \nonumber \\&\quad =\left\{ {\left[ {\frac{\left( 1+\tilde{\gamma }_1^L \right) ^{\frac{T_1 }{\sum \nolimits _{i=1}^n {T_i } }}\left( 1+\tilde{\gamma }_2^L \right) ^{\frac{T_2 }{\sum \nolimits _{i=1}^n {T_i } }}-\left( 1-\tilde{\gamma }_1^L \right) ^{\frac{T_1 }{\sum \nolimits _{i=1}^n {T_i } }}\left( 1-\tilde{\gamma }_2^L \right) ^{\frac{T_2 }{\sum \nolimits _{i=1}^n {T_i } }}}{\left( 1+\tilde{\gamma }_1^L \right) ^{\frac{T_1 }{\sum \nolimits _{i=1}^n {T_i } }}\left( 1+\tilde{\gamma }_2^L \right) ^{\frac{T_2 }{\sum \nolimits _{i=1}^n {T_i } }}+\left( 1-\tilde{\gamma }_1^L \right) ^{\frac{T_1 }{\sum \nolimits _{i=1}^n {T_i } }}\left( 1-\tilde{\gamma }_2^L \right) ^{\frac{T_2 }{\sum \nolimits _{i=1}^n {T_i } }}},} \right. } \right. \nonumber \\&\quad \left. \left. \left. \frac{\left( 1+\tilde{\gamma }_1^U \right) ^{\frac{T_1 }{\sum \nolimits _{i=1}^n {T_i } }}\left( 1+\tilde{\gamma }_2^U \right) ^{\frac{T_2 }{\sum \nolimits _{i=1}^n {T_i } }}-\left( 1-\tilde{\gamma }_1^U \right) ^{\frac{T_1 }{\sum \nolimits _{i=1}^n {T_i } }}\left( 1-\tilde{\gamma }_2^U \right) ^{\frac{T_2 }{\sum \nolimits _{i=1}^n {T_i } }}}{\left( 1+\tilde{\gamma }_1^U \right) ^{\frac{T_1 }{\sum \nolimits _{i=1}^n {T_i } }}\left( 1+\tilde{\gamma }_2^U \right) ^{\frac{T_2 }{\sum \nolimits _{i=1}^n {T_i } }}+\left( 1-\tilde{\gamma }_1^U \right) ^{\frac{T_1 }{\sum \nolimits _{i=1}^n {T_i } }}\left( 1-\tilde{\gamma }_2^U \right) ^{\frac{T_2 }{\sum \nolimits _{i=1}^n {T_i } }}} \right] \right| \right. \nonumber \\&\quad \left. \tilde{\gamma }_1 \in \tilde{h}_1,\tilde{\gamma }_2 \in \tilde{h}_2 \right\} . \end{aligned}$$
(34)

(2) Suppose Eq. (8) holds for \(n=k\), that is:

$$\begin{aligned}&\mathrm{IVHFEPWA}\left( \tilde{h}_1,\tilde{h}_2,\ldots ,\tilde{h}_k \right) \nonumber \\&\quad =\left\{ \left[ \frac{\prod \nolimits _{j=1}^k {\left( 1+\tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} -\prod \nolimits _{j=1}^k {\left( 1-\tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }{\prod \nolimits _{j=1}^k {\left( 1+\tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} +\prod \nolimits _{j=1}^k {\left( 1-\tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }, \right. \right. \nonumber \\&\quad \left. \left. \left. \frac{\prod \nolimits _{j=1}^k {(1+\tilde{\gamma }_j^U )^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} -\prod \nolimits _{j=1}^k {\left( 1-\tilde{\gamma }_j^U \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }{\prod \nolimits _{j=1}^k {\left( 1+\tilde{\gamma }_j^U \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} +\prod \nolimits _{j=1}^k {\left( 1-\tilde{\gamma }_j^U \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} } \right] \right| \right. \nonumber \\&\quad \left. {\begin{array}{*{20}c} {\tilde{\gamma }_1 \in \tilde{h}_1,\tilde{\gamma }_2 \in \tilde{h}_2 ,} \\ {\ldots ,\tilde{\gamma }_k \in \tilde{h}_k } \\ \end{array} } \right\} . \end{aligned}$$
(35)

Then, when \(n=k+1\), by the operational laws described in Sect. 3, we have

$$\begin{aligned}&\mathrm{IVHFEPWA}\left( \tilde{h}_1,\tilde{h}_2,\ldots ,\tilde{h}_{k+1}\right) \\&\quad =\left\{ \left[ \frac{\prod \nolimits _{j=1}^k {\left( 1+\tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} -\prod \nolimits _{j=1}^k {\left( 1-\tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }{\prod \nolimits _{j=1}^k {\left( 1+\tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} +\prod \nolimits _{j=1}^k {\left( 1-\tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }, \right. \right. \nonumber \\&\quad \left. \left. \left. \frac{\prod \nolimits _{j=1}^k {\left( 1+\tilde{\gamma }_j^U \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} -\prod \nolimits _{j=1}^k {\left( 1-\tilde{\gamma }_j^U \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }{\prod \nolimits _{j=1}^k {\left( 1+\tilde{\gamma }_j^U \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} +\prod \nolimits _{j=1}^k {\left( 1-\tilde{\gamma }_j^U \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} } \right] \right| \right. \nonumber \\&\quad \left. \begin{array}{*{20}c} {\tilde{\gamma }_1 \in \tilde{h}_1,\tilde{\gamma }_2 \in \tilde{h}_2 ,} \\ {\ldots ,\tilde{\gamma }_k \in \tilde{h}_k } \\ \end{array} \right\} \end{aligned}$$
$$\begin{aligned}&\quad \oplus _\varepsilon \left\{ \left. \left[ \frac{\left( 1+\tilde{\gamma }_{k+1}^L \right) ^{\frac{T_{k+1} }{\sum \nolimits _{i=1}^n {T_i } }}-\left( 1-\tilde{\gamma }_{k+1}^L \right) ^{\frac{T_{k+1} }{\sum \nolimits _{i=1}^n {T_i } }}}{\left( 1+\tilde{\gamma }_{k+1}^L \right) ^{\frac{T_{k+1} }{\sum \nolimits _{i=1}^n {T_i } }}+\left( 1-\tilde{\gamma }_{k+1}^L \right) ^{\frac{T_{k+1} }{\sum \nolimits _{i=1}^n {T_i } }}}, \right. \right. \right. \nonumber \\&\quad \left. \left. \left. \frac{\left( 1+\tilde{\gamma }_{k+1}^U \right) ^{\frac{T_{k+1} }{\sum \nolimits _{i=1}^n {T_i } }}-\left( 1-\tilde{\gamma }_{k+1}^U \right) ^{\frac{T_{k+1} }{\sum \nolimits _{i=1}^n {T_i } }}}{\left( 1+\tilde{\gamma }_{k+1}^U \right) ^{\frac{T_{k+1} }{\sum \nolimits _{i=1}^n {T_i } }}+\left( 1-\tilde{\gamma }_{k+1}^U \right) ^{\frac{T_{k+1} }{\sum \nolimits _{i=1}^n {T_i } }}} \right] \right| \right. \nonumber \\&\quad \left. \tilde{\gamma }_{k+1} \in \tilde{h}_{k+1} \right\} \end{aligned}$$
$$\begin{aligned}&\quad =\left\{ \left[ \frac{\frac{\prod \nolimits _{j=1}^k {\left( 1+\tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} -\prod \nolimits _{j=1}^k {\left( 1-\tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }{\prod \nolimits _{j=1}^k {\left( 1+\tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} +\prod \nolimits _{j=1}^k {\left( 1-\tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }+\frac{\left( 1+\tilde{\gamma }_{k+1}^L \right) ^{\frac{T_{k+1} }{\sum \nolimits _{i=1}^n {T_i } }}-(1-\tilde{\gamma }_{k+1}^L )^{\frac{T_{k+1} }{\sum \nolimits _{i=1}^n {T_i } }}}{\left( 1+\tilde{\gamma }_{k+1}^L \right) ^{\frac{T_{k+1} }{\sum \nolimits _{i=1}^n {T_i } }}+\left( 1-\tilde{\gamma }_{k+1}^L \right) ^{\frac{T_{k+1} }{\sum \nolimits _{i=1}^n {T_i } }}}}{1+\frac{\prod \nolimits _{j=1}^k {\left( 1+\tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} -\prod \nolimits _{j=1}^k {\left( 1-\tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }{\prod \nolimits _{j=1}^k {\left( 1+\tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} +\prod \nolimits _{j=1}^k {\left( 1-\tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }\cdot \frac{\left( 1+\tilde{\gamma }_{k+1}^L \right) ^{\frac{T_{k+1} }{\sum \nolimits _{i=1}^n {T_i } }}-\left( 1-\tilde{\gamma }_{k+1}^L \right) ^{\frac{T_{k+1} }{\sum \nolimits _{i=1}^n {T_i } }}}{\left( 1+\tilde{\gamma }_{k+1}^L \right) ^{\frac{T_{k+1} }{\sum \nolimits _{i=1}^n {T_i } }}+\left( 1-\tilde{\gamma }_{k+1}^L \right) ^{\frac{T_{k+1} }{\sum \nolimits _{i=1}^n {T_i } }}}}, \right. \right. \nonumber \\&\quad \left. \left. \left. \frac{\frac{\prod \nolimits _{j=1}^k {\left( 1+\tilde{\gamma }_j^U \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} -\prod \nolimits _{j=1}^k {\left( 1-\tilde{\gamma }_j^U \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }{\prod \nolimits _{j=1}^k {\left( 1+\tilde{\gamma }_j^U \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} +\prod \nolimits _{j=1}^k {\left( 1-\tilde{\gamma }_j^U \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }+\frac{\left( 1+\tilde{\gamma }_{k+1}^U \right) ^{\frac{T_{k+1} }{\sum \nolimits _{i=1}^n {T_i } }}-\left( 1-\tilde{\gamma }_{k+1}^U \right) ^{\frac{T_{k+1} }{\sum \nolimits _{i=1}^n {T_i } }}}{\left( 1+\tilde{\gamma }_{k+1}^U \right) ^{\frac{T_{k+1} }{\sum \nolimits _{i=1}^n {T_i } }}+\left( 1-\tilde{\gamma }_{k+1}^U \right) ^{\frac{T_{k+1} }{\sum \nolimits _{i=1}^n {T_i } }}}}{1+\frac{\prod \nolimits _{j=1}^k {\left( 1+\tilde{\gamma }_j^U \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} -\prod \nolimits _{j=1}^k {\left( 1-\tilde{\gamma }_j^U \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }{\prod \nolimits _{j=1}^k {\left( 1+\tilde{\gamma }_j^U \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} +\prod \nolimits _{j=1}^k {\left( 1-\tilde{\gamma }_j^U \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }\cdot \frac{(1+\tilde{\gamma }_{k+1}^U )^{\frac{T_{k+1} }{\sum \nolimits _{i=1}^n {T_i } }}-(1-\tilde{\gamma }_{k+1}^U )^{\frac{T_{k+1} }{\sum \nolimits _{i=1}^n {T_i } }}}{\left( 1+\tilde{\gamma }_{k+1}^U \right) ^{\frac{T_{k+1} }{\sum \nolimits _{i=1}^n {T_i } }}+\left( 1-\tilde{\gamma }_{k+1}^U \right) ^{\frac{T_{k+1} }{\sum \nolimits _{i=1}^n {T_i } }}}} \right] \right| \right. \nonumber \\&\quad \left. \begin{array}{*{20}c} {\tilde{\gamma }_1 \in \tilde{h}_1,\tilde{\gamma }_2 \in \tilde{h}_2 ,} \\ {\ldots ,\tilde{\gamma }_{k+1} \in \tilde{h}_{k+1} } \\ \end{array} \right\} \end{aligned}$$
$$\begin{aligned}&\quad =\left\{ \left[ \frac{\prod \nolimits _{j=1}^{k+1} {\left( 1+\tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} -\prod \nolimits _{j=1}^{k+1} {\left( 1-\tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }{\prod \nolimits _{j=1}^{k+1} {\left( 1+\tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} +\prod \nolimits _{j=1}^{k+1} {\left( 1-\tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }, \right. \right. \nonumber \\&\quad \left. \left. \frac{\prod \nolimits _{j=1}^{k+1} {\left( 1+\tilde{\gamma }_j^U \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} -\prod \nolimits _{j=1}^{k+1} {\left( 1-\tilde{\gamma }_j^U \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }{\prod \nolimits _{j=1}^{k+1} {\left( 1+\tilde{\gamma }_j^U \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} +\prod \nolimits _{j=1}^{k+1} {\left( 1-\tilde{\gamma }_j^U \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} } \right] \right| \nonumber \\&\quad \left. \begin{array}{*{20}c} {\tilde{\gamma }_1 \in \tilde{h}_1,\tilde{\gamma }_2 \in \tilde{h}_2 ,} \\ {\ldots ,\tilde{\gamma }_{k+1} \in \tilde{h}_{k+1} } \end{array} \right\} , \end{aligned}$$
(36)

i.e., Eq. (8) holds for \(n=k+1\). Thus, Eq. (8) holds for all n. So, we complete the proof of Theorem 3.   \(\square \)

Proof

Since \(\tilde{a}_j^L =\mathop {\min }\limits _k \tilde{\gamma }_{jk}^L \le \tilde{\gamma }_j^L \le \mathop {\max }\limits _k \tilde{\gamma }_{jk}^L =\tilde{b}_j^L \), \(\tilde{a}_j^U =\mathop {\min }\limits _k \tilde{\gamma }_{jk}^U \le \tilde{\gamma }_j^U \le \mathop {\max }\limits _k \tilde{\gamma }_{jk}^U =\tilde{b}_j^U \), for all j, then

$$\begin{aligned}&\prod \limits _{j=1}^n {\left( {\frac{1+\tilde{a}_j^L }{1-\tilde{a}_j^L }}\right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} \nonumber \\&\quad \le \prod \limits _{j=1}^n {\left( {\frac{1+\tilde{\gamma }_j^L }{1-\tilde{\gamma }_j^L }}\right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} \nonumber \\&\quad \le \prod \limits _{j=1}^n {\left( {\frac{1+\tilde{b}_j^L }{1-\tilde{b}_j^L }}\right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}},\end{aligned}$$
(37)
$$\begin{aligned}&\quad \quad \prod \limits _{j=1}^n {\left( {\frac{1+\tilde{a}_j^U }{1-\tilde{a}_j^U }}\right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} \le \prod \limits _{j=1}^n {\left( {\frac{1+\tilde{\gamma }_j^U }{1-\tilde{\gamma }_j^U }}\right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}}\nonumber \\&\quad \le \prod \limits _{j=1}^n {\left( {\frac{1+\tilde{b}_j^U }{1-\tilde{b}_j^U }}\right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}}, \end{aligned}$$
(38)

and then

$$\begin{aligned}&1-\frac{2}{\prod \limits _{j=1}^n {\left( {\frac{1+\tilde{a}_j^L }{1-\tilde{a}_j^L }}\right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} +1}\nonumber \\&\quad \le 1-\frac{2}{\prod \limits _{j=1}^n {\left( {\frac{1+\tilde{\gamma }_j^L }{1-\tilde{\gamma }_j^L }}\right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} +1}\nonumber \\&\quad \le 1-\frac{2}{\prod \limits _{j=1}^n {\left( {\frac{1+\tilde{b}_j^L }{1-\tilde{b}_j^L }}\right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} +1},\end{aligned}$$
(39)
$$\begin{aligned}&1-\frac{2}{\prod \limits _{j=1}^n {\left( {\frac{1+\tilde{a}_j^U }{1-\tilde{a}_j^U }}\right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} +1}\nonumber \\&\quad \le 1-\frac{2}{\prod \limits _{j=1}^n {\left( {\frac{1+\tilde{\gamma }_j^U }{1-\tilde{\gamma }_j^U }}\right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} +1}\nonumber \\&\quad \le 1-\frac{2}{\prod \limits _{j=1}^n {\left( {\frac{1+\tilde{b}_j^U }{1-\tilde{b}_j^U }}\right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} +1}, \end{aligned}$$
(40)

which means that

$$\begin{aligned}&\frac{\prod \nolimits _{j=1}^n {(1+\tilde{a}_j^L )^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} -\prod \nolimits _{j=1}^n {(1-\tilde{a}_j^L )^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }{\prod \nolimits _{j=1}^n {(1+\tilde{a}_j^L )^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} +\prod \nolimits _{j=1}^n {(1-\tilde{a}_j^L )^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }\nonumber \\&\quad \le \frac{\prod \nolimits _{j=1}^n {\left( 1+\tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} -\prod \nolimits _{j=1}^n {\left( 1-\tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }{\prod \nolimits _{j=1}^n {\left( 1+\tilde{\gamma }_j^L\right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} +\prod \nolimits _{j=1}^n {\left( 1-\tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }\nonumber \\&\quad \le \frac{\prod \nolimits _{j=1}^n {(1+\tilde{b}_j^L )^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} -\prod \nolimits _{j=1}^n {(1-\tilde{b}_j^L )^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }{\prod \nolimits _{j=1}^n {(1+\tilde{b}_j^L )^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} +\prod \nolimits _{j=1}^n {(1-\tilde{b}_j^L )^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }, \end{aligned}$$
(41)
$$\begin{aligned}&\frac{\prod \nolimits _{j=1}^n {(1+\tilde{a}_j^U )^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} -\prod \nolimits _{j=1}^n {(1-\tilde{a}_j^U )^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }{\prod \nolimits _{j=1}^n {(1+\tilde{a}_j^U )^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} +\prod \nolimits _{j=1}^n {(1-\tilde{a}_j^U )^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }\nonumber \\&\quad \le \frac{\prod \nolimits _{j=1}^n {\left( 1+\tilde{\gamma }_j^U \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} -\prod \nolimits _{j=1}^n {\left( 1-\tilde{\gamma }_j^U \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }{\prod \nolimits _{j=1}^n {\left( 1+\tilde{\gamma }_j^U \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} +\prod \nolimits _{j=1}^n {\left( 1-\tilde{\gamma }_j^U \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }\nonumber \\&\quad \le \frac{\prod \nolimits _{j=1}^n {(1+\tilde{b}_j^U )^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} -\prod \nolimits _{j=1}^n {(1-\tilde{b}_j^U )^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }{\prod \nolimits _{j=1}^n {(1+\tilde{b}_j^U )^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} +\prod \nolimits _{j=1}^n {(1-\tilde{b}_j^U )^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }. \end{aligned}$$
(42)

According to the Definitions 4 and 5, we obtain that \(s\le \mathrm{IVHFEPWA}\left( \tilde{h}_1,\tilde{h}_2,\ldots ,\tilde{h}_n \right) \le t\), which completes the proof.   \(\square \)

Proof

For any \(\tilde{\gamma }_1 \in \tilde{h}_1,\tilde{\gamma }_2 \in \tilde{h}_2,\ldots ,\tilde{\gamma }_n \in \tilde{h}_n \), using the Lemma 1, we have

$$\begin{aligned}&\frac{\prod \nolimits _{j=1}^n {\left( 1+\tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} -\prod \nolimits _{j=1}^n {\left( 1-\tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }{\prod \nolimits _{j=1}^n {\left( 1+\tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} +\prod \nolimits _{j=1}^n {\left( 1-\tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }\nonumber \\&\quad = 1-\frac{2\prod \nolimits _{j=1}^n {\left( 1-\tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }{\prod \nolimits _{j=1}^n {\left( 1+\tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} +\prod \nolimits _{j=1}^n {\left( 1-\tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }\nonumber \\&\quad \le 1-\frac{2\prod \nolimits _{j=1}^n {(1-\tilde{\gamma }_j^L )^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }{\sum \nolimits _{j=1}^n {\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }\left( 1+\tilde{\gamma }_j^L \right) } +\sum \nolimits _{j=1}^n {\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }\left( 1-\tilde{\gamma }_j^L \right) } }\nonumber \\&\quad = 1-\prod \nolimits _{j=1}^n {\left( 1-\tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}}, \end{aligned}$$
(43)

where the equality holds if and only if \(\tilde{\gamma }_1^L =\tilde{\gamma }_2^L =\cdots =\tilde{\gamma }_n^L \).

Similarly, we have

$$\begin{aligned}&\frac{\prod \nolimits _{j=1}^n {\left( 1+\tilde{\gamma }_j^U \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} -\prod \nolimits _{j=1}^n {\left( 1-\tilde{\gamma }_j^U \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }{\prod \nolimits _{j=1}^n {\left( 1+\tilde{\gamma }_j^U \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} +\prod \nolimits _{j=1}^n {\left( 1-\tilde{\gamma }_j^U \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }\nonumber \\&\quad \le 1-\prod \limits _{j=1}^n {\left( 1-\tilde{\gamma }_j^U \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}}, \end{aligned}$$
(44)

where the equality holds if and only if \(\tilde{\gamma }_1^U =\tilde{\gamma }_2^U =\cdots =\tilde{\gamma }_n^U \).

Then by Definition 4 and Definition 5, we know that the score function of \(\mathrm{IVHFEPWA}\left( \tilde{h}_1,\tilde{h}_2,\ldots ,\tilde{h}_n\right) \) is less than the score function of \(\mathrm{HIVFPWA}(\tilde{h}_1 ,\tilde{h}_2,\ldots ,\tilde{h}_n )\), i.e.,

$$\begin{aligned}&s\left( \mathrm{IVHFEPWA}\left( \tilde{h}_1,\tilde{h}_2,\ldots ,\tilde{h}_n \right) \right) \nonumber \\&\le s\left( \mathrm{HIVFPWA}\left( \tilde{h}_1,\tilde{h}_2,\ldots ,\tilde{h}_n \right) \right) , \end{aligned}$$

it follows that

$$\begin{aligned} \mathrm{IVHFEPWA}\left( \tilde{h}_1,\tilde{h}_2,\ldots ,\tilde{h}_n \right) \le \mathrm{HIVFPWA}(\tilde{h}_1,\tilde{h}_2,\ldots ,\tilde{h}_n ), \end{aligned}$$

where the equality holds if and only if \(\tilde{h}_1 =\tilde{h}_2 =\cdots =\tilde{h}_n \), which completes the proof.   \(\square \)

Proof

For any \(\tilde{\gamma }_1 \in \tilde{h}_1,\tilde{\gamma }_2 \in \tilde{h}_2,\ldots ,\tilde{\gamma }_n \in \tilde{h}_n \), using the Lemma 1, we have

$$\begin{aligned}&\frac{2\prod \nolimits _{j=1}^n {\left( \tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }{\prod \nolimits _{j=1}^n {\left( 2-\tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} +\prod \nolimits _{j=1}^n {\left( \tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }\nonumber \\&\quad \ge \frac{2\prod \nolimits _{j=1}^n {\left( \tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }{\sum \nolimits _{j=1}^n {\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }\left( 2-\tilde{\gamma }_j^L \right) } +\sum \nolimits _{j=1}^n {\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }\tilde{\gamma }_j^L } }\nonumber \\&\quad =\prod \limits _{j=1}^n {\left( \tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}}, \end{aligned}$$
(45)

where the equality holds if and only if \(\tilde{\gamma }_1^L =\tilde{\gamma }_2^L =\cdots =\tilde{\gamma }_n^L \).

Similarly, we have

$$\begin{aligned}&\frac{2\prod \nolimits _{j=1}^n {\left( \tilde{\gamma }_j^U \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }{\prod \nolimits _{j=1}^n {\left( 2-\tilde{\gamma }_j^U \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} +\prod \nolimits _{j=1}^n {\left( \tilde{\gamma }_j^U \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }\nonumber \\&\quad \ge \prod \limits _{j=1}^n {\left( \tilde{\gamma }_j^U \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}}, \end{aligned}$$
(46)

where the equality holds if and only if \(\tilde{\gamma }_1^U =\tilde{\gamma }_2^U =\cdots =\tilde{\gamma }_n^U \).

Then by Definition 4 and Definition 5, we know that the score function of \(\mathrm{HIVFPWG}(\tilde{h}_1,\tilde{h}_2,\ldots ,\tilde{h}_n )\) is less than the score function of \(\mathrm{HIVFPWG}(\tilde{h}_1 ,\tilde{h}_2,\ldots ,\tilde{h}_n )\), i.e.,

$$\begin{aligned}&s\left( \mathrm{HIVFPWG}\left( \tilde{h}_1,\tilde{h}_2,\ldots ,\tilde{h}_n\right) \right) \nonumber \\&\le s\left( \mathrm{IVHFEPWG}\left( \tilde{h}_1,\tilde{h}_2,\ldots ,\tilde{h}_n\right) \right) , \end{aligned}$$

it follows that

$$\begin{aligned}&\mathrm{HIVFPWG}\left( \tilde{h}_1,\tilde{h}_2,\ldots ,\tilde{h}_n \right) \\&\le \mathrm{IVHFEPWG}\left( \tilde{h}_1,\tilde{h}_2,\ldots ,\tilde{h}_n \right) , \end{aligned}$$

where the equality holds if and only if \(\tilde{h}_1 =\tilde{h}_2 =\cdots =\tilde{h}_n \). This completes the proof of Theorem 8.   \(\square \)

Proof

For any \(\tilde{\gamma }_1 \in \tilde{h}_1,\tilde{\gamma }_2 \in \tilde{h}_2,\ldots ,\tilde{\gamma }_n \in \tilde{h}_n \), then

$$\begin{aligned}&\frac{\prod \nolimits _{j=1}^n {\left( 1+\tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} -\prod \nolimits _{j=1}^n {\left( 1-\tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }{\prod \nolimits _{j=1}^n {\left( 1+\tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} +\prod \nolimits _{j=1}^n {\left( 1-\tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }- \frac{2\prod \nolimits _{j=1}^n {\left( \tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }{\prod \nolimits _{j=1}^n {\left( 2-\tilde{\gamma }_j^L\right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} +\prod \nolimits _{j=1}^n {\left( \tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }\\&\quad =\frac{\prod \nolimits _{j=1}^n {\left( 2+\tilde{\gamma }_j^L -\left( \tilde{\gamma }_j^L \right) ^2\right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} -\prod \nolimits _{j=1}^n {\left( 2-3\tilde{\gamma }_j^L +\left( \tilde{\gamma }_j^L \right) ^2\right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} -\prod \nolimits _{j=1}^n {\left( \tilde{\gamma }_j^L +\left( \tilde{\gamma }_j^L \right) ^2\right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} -\prod \nolimits _{j=1}^n {\left( \root n \of {3}\tilde{\gamma }_j^L -\root n \of {3}\left( \tilde{\gamma }_j^L \right) ^2\right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }{\left( {\prod \nolimits _{j=1}^n {\left( 1+\tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} +\prod \nolimits _{j=1}^n {\left( 1-\tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }\right) \cdot \left( {\prod \nolimits _{j=1}^n {\left( 2-\tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} +\prod \nolimits _{j=1}^n {\left( \tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }\right) }. \end{aligned}$$

Since \(0\le \tilde{\gamma }_j^L \le \tilde{\gamma }_j^U \le 1\) for all j, then we have

$$\begin{aligned}&2+\tilde{\gamma }_j^L -\left( \tilde{\gamma }_j^L \right) ^2\ge 0,2-3\tilde{\gamma }_j^L +\left( \tilde{\gamma }_j^L \right) ^2\nonumber \\&\quad \ge 0,\tilde{\gamma }_j^L +\left( \tilde{\gamma }_j^L \right) ^2\ge 0,\root n \of {3}\tilde{\gamma }_j^L -\root n \of {3}\left( \tilde{\gamma }_j^L \right) ^2\ge 0,\\&\quad j=1,2,\ldots ,n. \end{aligned}$$

And note that

$$\begin{aligned}&\left( 2+\tilde{\gamma }_j^L -\left( \tilde{\gamma }_j^L \right) ^2\right) -\left( 2-3\tilde{\gamma }_j^L +\left( \tilde{\gamma }_j^L \right) ^2\right) \\&\quad \;-\left( \tilde{\gamma }_j^L +\left( \tilde{\gamma }_j^L \right) ^2\right) - \left( \root n \of {3}\tilde{\gamma }_j^L -\root n \of {3}\left( \tilde{\gamma }_j^L \right) ^2\right) \\&\quad =\left( 3-\root n \of {3}\right) \tilde{\gamma }_j^L +\left( \root n \of {3}-3\right) \left( \tilde{\gamma }_j^L \right) ^2\\&\quad =\tilde{\gamma }_j^L \left( 3-\root n \of {3}\right) \left( 1-\tilde{\gamma }_j^L \right) \ge 0,\\&\quad j=1,2,\ldots ,n. \end{aligned}$$

Using the Lemma 2, we have

$$\begin{aligned}&\prod \nolimits _{j=1}^n {\left( 2+\tilde{\gamma }_j^L -\left( \tilde{\gamma }_j^L \right) ^2\right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} \nonumber \\&\quad -\prod \nolimits _{j=1}^n {\left( 2-3\tilde{\gamma }_j^L +\left( \tilde{\gamma }_j^L \right) ^2\right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}}\nonumber \\&\quad -\prod \nolimits _{j=1}^n {\left( \tilde{\gamma }_j^L +\left( \tilde{\gamma }_j^L \right) ^2\right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}}\nonumber \\&\quad -\prod \nolimits _{j=1}^n {\left( \root n \of {3}\tilde{\gamma }_j^L -\root n \of {3}\left( \tilde{\gamma }_j^L \right) ^2\right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} \ge 0,\quad (70) \end{aligned}$$

and then

$$\begin{aligned}&\frac{\prod \nolimits _{j=1}^n {\left( 1+\tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} -\prod \nolimits _{j=1}^n {\left( 1-\tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }{\prod \nolimits _{j=1}^n {\left( 1+\tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} +\prod \nolimits _{j=1}^n {\left( 1-\tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }\nonumber \\&\quad - \frac{2\prod \nolimits _{j=1}^n {\left( \tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }{\prod \nolimits _{j=1}^n {\left( 2-\tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} +\prod \nolimits _{j=1}^n {\left( \tilde{\gamma }_j^L \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }\ge 0.\nonumber \\ \end{aligned}$$
(47)

Similarly, we have

$$\begin{aligned}&\frac{\prod \nolimits _{j=1}^n {\left( 1+\tilde{\gamma }_j^U \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} -\prod \nolimits _{j=1}^n {\left( 1-\tilde{\gamma }_j^U \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }{\prod \nolimits _{j=1}^n {\left( 1+\tilde{\gamma }_j^U \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} +\prod \nolimits _{j=1}^n {\left( 1-\tilde{\gamma }_j^U \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }\nonumber \\&\quad -\frac{2\prod \nolimits _{j=1}^n {\left( \tilde{\gamma }_j^U \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }{\prod \nolimits _{j=1}^n {\left( 2-\tilde{\gamma }_j^U \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} +\prod \nolimits _{j=1}^n {\left( \tilde{\gamma }_j^U \right) ^{\frac{T_j }{\sum \nolimits _{i=1}^n {T_i } }}} }\ge 0.\nonumber \\ \end{aligned}$$
(48)

According to Definition 4 and Definition 5, we know that the score value of \(\mathrm{IVHFEPWA}(\tilde{h}_1,\tilde{h}_2,\ldots ,\tilde{h}_n )\) is less than the score value of \(\mathrm{IVHFEPWG}(\tilde{h}_1,\tilde{h}_2,\ldots ,\tilde{h}_n )\), i.e.,

$$\begin{aligned}&s\left( \mathrm{IVHFEPWA}\left( \tilde{h}_1,\tilde{h}_2,\ldots ,\tilde{h}_n \right) \right) \\&\ge s\left( \mathrm{IVHFEPWG}\left( \tilde{h}_1,\tilde{h}_2,\ldots ,\tilde{h}_n\right) \right) , \end{aligned}$$

then, it follows that

$$\begin{aligned}&\mathrm{IVHFEPWA}\left( \tilde{h}_1,\tilde{h}_2,\ldots ,\tilde{h}_n \right) \nonumber \\&\ge \mathrm{IVHFEPWG}\left( \tilde{h}_1,\tilde{h}_2,\ldots ,\tilde{h}_n \right) . \end{aligned}$$

So, we complete the proof of Theorem 9.    \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, F., Ni, Z. & Chen, H. Interval-valued hesitant fuzzy Einstein prioritized aggregation operators and their applications to multi-attribute group decision making. Soft Comput 20, 1863–1878 (2016). https://doi.org/10.1007/s00500-015-1887-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-015-1887-y

Keywords

Navigation