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Abstract. We establish conditions when a certain type of the Riesz Decom-

position Property (RDP) holds in the lexicographic product of two po-groups.
It is well known that the resulting product is an ℓ-group if and only if the first
one is linearly ordered and the second one is an ℓ-group. This can be equiv-
alently studied as po-groups with a special type of the RDP. In the paper we
study three different types of RDP’s. RDP’s of the lexicographic products are
important for the study of pseudo effect algebras where infinitesimal elements
play an important role both for algebras as well as for the first order logic of
valid but not provable formulas.

1. Introduction

It is well known that there is a very close connection between some algebraic
structures and ℓ-groups or partially ordered groups (= po-groups). A typical case
is a result of Mundici, see e.g. [CDM], saying that every MV-algebra is an interval
in an Abelian unital ℓ-group. This result was extended for pseudo MV-algebras,
a non-commutative generalization of MV-algebras in the sense of [GeIo, Rac], in
[Dvu1], where a categorical equivalence of the category of pseudo MV-algebras and
the category of unital ℓ-groups (not necessarily Abelian) was established. More
about a relation between other algebraic structures like BL-algebras or pseudo BL-
algebras and ℓ-groups was presented in [Dvu3].

There are also partial algebraic structures generalizing MV-algebras or pseudo
MV-algebras which are connected with unital po-groups. Typical examples are
effect algebras, see [FoBe], or pseudo effect algebras, see [DvVe1, DvVe2], with a
basic operation +, addition, where a + b denotes the disjunction of two mutually
excluding events a and b. Such structures are important for quantum structures
which model events in quantum mechanical measurement, see e.g. [DvPu]. For
effect algebras and pseudo effect algebras, a crucial property is the so-called the
Riesz Decomposition Property (RDP for short), which denotes a property that every
two decompositions of the same element have a joint refinement decomposition. In
[Rav], there was shown that every effect algebra with RDP is an interval in an
Abelian unital po-group with RDP. This result was extended in [DvVe1, DvVe2]
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2 RDP’S AND THE LEXICOGRAPHIC PRODUCT

for pseudo effect algebras with some kind of RDP, called RDP1. In addition, MV-
algebras or pseudo MV-algebras can be studied also in the realm of pseudo effect
algebras as those with RDP2, another type of RDP.

We recall that not every effect algebra admits RDP. A typical example is the
the effect algebra E(H), which is the set of Hermitian operators between the zero
operator and the identity operator of a complex separable Hilbert space H . This
algebra is crucial for the study of the so-called Hilbert space quantum mechanics.
Nevertheless RDP fails in E(H), it can be covered by a family of effect algebras
with RDP, for more details see [Pul]. Thus for E(H), RDP holds only locally and
not globally.

A special class of ℓ-groups or po-groups consists of groups of the form G1
−→
× G2,

lexicographic product of two po-groups G1 and G2. The first algebraic model which
uses the lexicographic product of Z, the group of integers, with some Abelian ℓ-
group G, is a perfect MV-algebra studied in [DiLe]. In perfect effect MV-algebras
every element is either an infinitesimal or a co-infinitesimal. The logic of perfect
pseudo MV-algebras has a counterpart in the Lindenbaum algebra of the first order
 Lukasiewicz logic which is not semisimple, because the valid but unprovable for-
mulas are precisely the formulas that correspond to co-infinitesimal elements of the
Lindenbaum algebra, see e.g. [DiGr]. In [DiLe], there was established that every

perfect MV-algebra is an interval in the lexicographic product Z
−→
× G, where G is

an Abelian ℓ-group.
An analogous result for perfect effect algebras with RDP was established in

[Dvu2] and extended in [Dvu4]. Lexicographic MV-algebras which are an interval in

the lexicographic product G1
−→
× G2, where G1 is an Abelian linearly ordered group

and G2 is an Abelian ℓ-group, were studied in [DFL]. The role of the lexicographic
product of two po-groups was studied also in [DvKr, DvKo], where some conditions
when the lexicographic product has RDP, RDP1 or RDP2 in special cases of G1

and G2 were established.
As we see, there is a growing interest to algebraic structures which can be repre-

sented by the lexicographic product of two po-groups with some type of the RDP’s.
Therefore, in the present paper we establish conditions when the lexicographic

product G1
−→
× G2 has some kind of RDP. We present conditions when G1

−→
× G2 has

RDP1 if G1 is a linearly ordered po-group, and when G1
−→
× G2 has RDP if G1 is an

antilattice po-group with RDP, see Section 3. Another group construction closely
connected with the lexicographic product is a wreath product and the left and right
wreath products. For them we also establish conditions when wreath products have
RDP, RDP1 or RDP2, see Sections 4 and 5.

2. Pseudo Effect Algebras and po-groups

The main object of our study is a po-group. This means that an algebraic
structure (G; +,−, 0,≤) is a po-group (= partially ordered group) if (G; +,−, 0)
is a group written in an additive way endowed with a partial order ≤ such that
if a ≤ b, a, b ∈ G, then x + a + y ≤ x + b + y for all x, y ∈ G. We denote by
G+ := {g ∈ G : g ≥ 0} and G− := {g ∈ G : g ≤ 0} the positive cone and the
negative cone of G. If, in addition, G is a lattice under ≤, we call it an ℓ-group
(= lattice ordered group). An element u ∈ G+ is said to be a strong unit (or an
order unit) if, given g ∈ G, there is an integer n ≥ 1 such that g ≤ nu. The pair
(G, u), where u is a fixed strong unit of G, is said to be a unital po-group. We recall
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that the lexicographic product of two po-groups G1 and G2, written G1
−→
× G2, is

the group G1×G2, where the group operations are defined by coordinates, and the
lexicographic ordering ≤ on G1 × G2 is defined as follows: For (g1, h1), (g2, h2) ∈
G1 ×G2, we have (g1, h1) ≤ (g2, h2) whenever g1 < g2 or g1 = g2 and h1 ≤ h2.

A po-group G is said to be directed if, given g1, g2 ∈ G, there is an element g ∈ G

such that g1, g2 ≤ g. Equivalently, G is directed iff every element g ∈ G can be
expressed as a difference of two positive elements of G. For example, every ℓ-group
or every po-group with strong unit is directed. For more information on po-groups
and ℓ-groups we recommend the books [Dar, Fuc, Gla].

A poset (E;≤) is an antilattice if only comparable elements a, b ∈ E have a joint
or meet in E. A directed po-group G is an antilattice iff a∧ b = 0 implies a = 0 or
b = 0.

We say that an additively written po-group (G; +,−, 0,≤) satisfies

(i) the Riesz Interpolation Property (RIP for short) if, for a1, a2, b1, b2 ∈ G,

a1, a2 ≤ b1, b2 implies there exists an element c ∈ G such that a1, a2 ≤ c ≤
b1, b2;

(ii) RDP0 if, for a, b, c ∈ G+, a ≤ b + c, there exist b1, c1 ∈ G+, such that
b1 ≤ b, c1 ≤ c and a = b1 + c1;

(iii) RDP if, for all a1, a2, b1, b2 ∈ G+ such that a1 + a2 = b1 + b2, there are
four elements c11, c12, c21, c22 ∈ G+ such that a1 = c11 + c12, a2 = c21 + c22,

b1 = c11 + c21 and b2 = c12 + c22;
(iv) RDP1 if, for all a1, a2, b1, b2 ∈ G+ such that a1 + a2 = b1 + b2, there are

four elements c11, c12, c21, c22 ∈ G+ such that a1 = c11 + c12, a2 = c21 + c22,

b1 = c11 + c21 and b2 = c12 + c22, and 0 ≤ x ≤ c12 and 0 ≤ y ≤ c21 imply
x + y = y + x;

(v) RDP2 if, for all a1, a2, b1, b2 ∈ G+ such that a1 + a2 = b1 + b2, there are
four elements c11, c12, c21, c22 ∈ G+ such that a1 = c11 + c12, a2 = c21 + c22,

b1 = c11 + c21 and b2 = c12 + c22, and c12 ∧ c21 = 0.

If, for a, b ∈ G+, we have for all 0 ≤ x ≤ a and 0 ≤ y ≤ b, x + y = y + x, we
denote this property by a com b.

The RDP will be denoted by the following table:

a1 c11 c12
a2 c21 c22

b1 b2

.

For Abelian po-groups, RDP, RDP1, RDP0 and RIP are equivalent.
By [DvVe1, Prop 4.2] for directed po-groups, we have

RDP2 ⇒ RDP1 ⇒ RDP ⇒ RDP0 ⇔ RIP,

but the converse implications do not hold, in general. A directed po-group G

satisfies RDP2 iff G is an ℓ-group, [DvVe1, Prop 4.2(ii)].
RDP’s are important for the study of algebraic structures like pseudo effect

algebras or pseudo MV-algebras which are a non-commutative generalization of
effect algebras and MV-algebras, respectively.

According to [DvVe1, DvVe2], we say that a pseudo effect algebra is a partial
algebra E = (E; +, 0, 1), where + is a partial binary operation and 0 and 1 are
constants such that, for all a, b, c ∈ E, the following properties hold
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(i) a + b and (a + b) + c exist if and only if b + c and a + (b + c) exist, and in
this case (a + b) + c = a + (b + c);

(ii) there is exactly one d ∈ E and exactly one e ∈ E such that a+d = e+a = 1;
(iii) if a + b exists, there are elements d, e ∈ E such that a + b = d + a = b + e;
(iv) if 1 + a or a + 1 exists, then a = 0.

If we define a ≤ b if and only if there exists an element c ∈ E such that a+c = b,

then ≤ is a partial ordering on E such that 0 ≤ a ≤ 1 for any a ∈ E. It is possible
to show that a ≤ b if and only if b = a + c = d + a for some c, d ∈ E. We write
c = a / b and d = b \ a. Then

(b \ a) + a = a + (a / b) = b,

and we write a− = 1 \ a and a∼ = a / 1 for any a ∈ E. Then a− + a = 1 = a + a∼

and a−∼ = a = a∼− for any a ∈ E.

For basic properties of pseudo effect algebras see [DvVe1, DvVe2]. We note that
a pseudo effect algebra is an effect algebra iff + is commutative, compare with
[FoBe].

A mapping h from a pseudo effect algebra E into another one F is said to be
a homomorphism if (i) h(1) = 1, and (ii) if a + b is defined in E, so is defined
h(a) + h(b) and h(a + b) = h(a) + h(b). A homomorphism h is an isomorphism if h
is injective and surjective and also h−1 is a homomorphism.

Now let G be a po-group and fix u ∈ G+. If we set Γ(G, u) := [0, u] = {g ∈ G :
0 ≤ g ≤ u}, then ΓE(G, u) = (Γ(G, u); +, 0, u) is a pseudo effect algebra, where +
is the restriction of the group addition + to [0, u], i.e. a + b is defined in Γ(G, u)
for a, b ∈ Γ(G, u) iff a + b ∈ Γ(G, u). Then a− = u − a and a∼ = −a + u for any
a ∈ Γ(G, u). A pseudo effect algebra which is isomorphic to some ΓE(G, u) for some
po-group G with u > 0 is said to be an interval pseudo effect algebra.

We say that some type of the Riesz decomposition properties (i)–(v) holds in a
pseudo effect algebra E if G or G+ is changed to E.

The importance of RDP1 for pseudo effect algebras was established in [DvVe1,
DvVe2]:

Theorem 2.1. For every pseudo effect algebra E = (E; +, 0, 1) with RDP1, there
is a unique (up to isomorphism of unital po-groups) unital po-group (G, u) with
RDP1 such that (E; +, 0, 1) ∼= ΓE(G, u) = (Γ(G, u); +, 0, u).

In addition, ΓE defines a categorical equivalence between the category of pseudo
effect algebras with RDP1 and the category of unital po-groups with RDP1.

The representation theorem for effect algebras with RDP was established in
[Rav]. In addition, by [DvVe1, DvVe2], a pseudo effect algebra has RDP2 iff it is
an interval in a unital ℓ-group.

Another non-commutative structure is a pseudo MV-algebra. According to
[GeIo], a pseudo MV-algebra is an algebra M = (M ;⊕,− ,∼ , 0, 1) of type (2, 1, 1,
0, 0) such that the following axioms hold for all x, y, z ∈ M with an additional
binary operation ⊙ defined via

y ⊙ x = (x− ⊕ y−)∼

(A1) x⊕ (y ⊕ z) = (x⊕ y)⊕ z;
(A2) x⊕ 0 = 0⊕ x = x;
(A3) x⊕ 1 = 1⊕ x = 1;
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(A4) 1∼ = 0; 1− = 0;
(A5) (x− ⊕ y−)∼ = (x∼ ⊕ y∼)−;
(A6) x⊕ (x∼ ⊙ y) = y ⊕ (y∼ ⊙ x) = (x⊙ y−)⊕ y = (y ⊙ x−)⊕ x;
(A7) x⊙ (x− ⊕ y) = (x⊕ y∼)⊙ y;
(A8) (x−)∼ = x.

A pseudo MV-algebra M is an MV-algebra iff a⊕ b = b⊕ a, a, b ∈M.

For example, if u is a strong unit of a (not necessarily Abelian) ℓ-group G,

Γ(G, u) := [0, u]

and

x⊕ y := (x + y) ∧ u,

x− := u− x,

x∼ := −x + u,

x⊙ y := (x− u + y) ∨ 0,

then ΓM (G, u) = (Γ(G, u);⊕,− ,∼ , 0, u) is a pseudo MV-algebra.
The basic result on theory of pseudo MV-algebras [Dvu1] is the following repre-

sentation theorem.

Theorem 2.2. Every pseudo MV-algebra is an interval Γ(G, u) in a unique (up to
isomorphism) unital ℓ-group (G, u).

In addition, the functor ΓM : (G, u) 7→ ΓM (G, u) defines a categorical equivalence
between the variety of pseudo MV-algebras and the category of unital ℓ-groups.

An important note is that every pseudo MV-algebra can be studied also in the
realm of pseudo effect algebras with RDP2. Indeed, if M = (M ;⊕,− ,∼ , 0, 1) is a
pseudo effect algebra, we define a partial operation + as follows a + b is defined in
M iff a ⊙ b = 0 and in such a case, a + b := a ⊕ b. Then (M ; +, 0, 1) is a pseudo
effect algebra with RDP2, see [DvVe2, Thm 8.3, 8.4]. Conversely, if (E; +, 0, 1) is
a pseudo effect algebra with RDP2, then E is a lattice, and by [DvVe2, Thm 8.8],
(E;⊕,− ,∼ , 0, 1), where

a⊕ b := (b− \ (a ∧ b−))∼, a, b ∈ E,

is a pseudo MV-algebra.

3. Riesz Decomposition Properties of Lexicographic Product

In the section, we establish Riesz decomposition properties of the lexicographic
product G1

−→
× G2 of two po-groups. We concentrate to two cases: (i) G1 is a linearly

ordered po-group and we establish each type of RDP, RDP1, and RDP2, (ii) G1 is
an antilattice and we determine only RDP of the lexicographic product.

We note that the lexicographic product G1
−→
× G2, where G1 is a po-group and

G2 is a directed po-group, has RDP2 (equivalently, it is an ℓ-group) iff (i) if G2

is non-trivial, then G1 is linearly ordered and G2 satisfies RDP2 (use [Fuc, p. 26

(d)]), or (ii) G2 = {e} is trivial, then G1
∼= G1

−→
× G2, and G1 has to satisfy RDP2.

The following result was proved in [DvKo, Thm 3.2] for the lexicographic product

G1
−→
× G2, where G1 is a linearly ordered po-group and G2 is a directed Abelian

po-group with RDP. In what follows, we prove it for any type of RDP and for
non-Abelian po-groups.
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Theorem 3.1. Let G1 be a linearly ordered po-group and G2 be a directed po-group.
Then the lexicographic product G1

−→
× G2 satisfies RDP (RDP1, RDP2) if and only

if G2 satisfies RDP (RDP1, RDP2).

Proof. Let G1
−→
× G2 satisfy some type of RDP and let a1a2 = b1b2. Then from

(0, a1) + (0, a2) = (0, b1) + (0, b2) we have that G2 has the same type of RDP’s.
Now we assume the converse. If G2 is a trivial group, i.e., G2 = {e}, then

G1
−→
× G2 = G1

−→
× {e} ∼= G1 which implies that G1

−→
× G2 is linearly ordered, so that

it satisfies all RDP, RDP1 and RDP2.
Let us assume that G is non-trivial. First we prove the case for RDP1, the case

for RDP is analogous. We will assume that G1 = (G1; +,−, 0,≤) is written in the
additive way and G2 = (G2; ·,−1 , e,≤) in the multiplicative way, respectively, and

the group operation in G1
−→
× G2 is assumed in the additive way.

Let G2 be a directed po-group with RDP1. The positive cone (G1
−→
× G2)+ is of

the form {(0, a) : a ∈ G+
2 } ∪ {(n, a) : n ∈ G+

1 \ {0}, a ∈ G2}. Assume that

(m1, a1) + (m2, a2) = (n1, b1) + (n2, b2)

holds in (G1
−→
× G2)+.

(i) Let (0, a1) + (0, a2) = (0, b1) + (0, b2). Then a1, a2, b1, b2 ∈ G+
2 and RDP1 for

this case follows from RDP1 for G2.

(ii) (0, a1) + (n, a2) = (0, b1) + (n, b2) for a1, b1 ≥ e, a2, b2 ∈ G2 for each n ∈
G+

1 \ {0}. Then a1a2 = b1b2. While G2 is directed, there is an element d ∈ G2

such that a2, b2 ≥ d. Then a1a2d
−1 = b1b2d

−1 and for them we have the RDP1

decomposition

a1 c11 c12
a2d

−1 c21 c22
b1 b2d

−1
,

where c12 com c21. Then

a1 c11 c12
a2 c21 c22d

b1 b2

and
(0, a1) (0, c11) (0, c12)
(n, a2) (0, c21) (n, c22d)

(0, b1) (n, b2)

is an RDP1 decomposition for (ii) in the po-group G1
−→
× G2.

(iii) (n, a1) + (0, a2) = (n, b1) + (0, b2) for a2, b2 ≥ e, a1, b1 ∈ G2 for n ∈ G+
1 \

{0}. The directness of G2 implies, there is d ∈ G2 such that d ≤ a1, a2, b1, b2.
Equality (iii) can be rewritten in the equivalent form (n, d−1a1) + (0, a2d

−1) =
(n, d−1b1) + (0, b2d

−1) which yields d−1a1a2d
−1 = d−1b1b2d

−1. It entails an RDP1

decomposition in the po-group G2

d−1a1 c11 c12
a2d

−1 c21 c22
d−1b1 b2d

−1
,
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consequently,
a1 dc11 c12
a2 c21 c22d

b1 b2

,

and it gives an RDP1 decomposition of (iii) in the po-group G1
−→
× G2

(n, a1) (n, dc11) (0, c12)
(0, b1) (0, c21) (0, c22d)

(n, b1) (0, b2)
.

(iv) (n, a1)+(0, a2) = (0, b1)+(n, b2) for a1, b2 ∈ G2, a2, b1 ≥ e for n ∈ G+
1 \{0}.

Then a1a2 = b1b2 which implies b−1
1 a1 = b2a

−1
2 . If we use the decomposition

(n, a1) (0, b1) (n, b−1
1 a1)

(0, a2) (0, e) (0, a2)
(0, b1) (n, b2)

,

we see that it gives an RDP1 decomposition for (iv); trivially (0, e) com (n, b−1
1 a1).

(v) (n, a1) + (0, a2) = (m1, b1) + (m2, b2) for a1, b1, b2 ∈ G2, a2 ≥ e, where
m1,m2 ∈ G+

1 \ {0} and m1 + m2 = n. Then a1a2 = b1b2. Hence, the following
table gives an RDP1 decomposition for (v)

(n, a1) (m1, b1) (m2, b
−1
1 a1)

(0, a2) (0, e) (0, a2)
(m1, b1) (m2, b2)

.

(vi) (0, a1) + (n, a2) = (m1, b1) + (m2, b2) for a2, b1, b2 ∈ G2, a1 ≥ e, where
m1,m2 ∈ G+

1 \ {0} and m1 +m2 = n. Then we have b1b2 = a1a2 and the following
RDP1 decomposition

(0, a1) (0, a1) (0, e)
(n, a2) (m1, a

−1
1 b1) (m2, b2)

(m1, b1) (m2, b2)
.

(vii) (n1, a1) + (n2, a2) = (m1, b1) + (m2, b2) for a1, a2, b1, b2 ∈ G2, where n1, n2,

m1,m2 ∈ G+
1 \ {0}, n1 + n2 = n = m1 + m2 and m1 > n1. Then a1a2 = b1b2, and

since −n1 + n = n2, (vii) has the following RDP1 decomposition

(m1, b1) (n1, a1) (−n1 + m1, a
−1
1 b1)

(m2, b2) (0, e) (m2, b2)
(n1, a1) (n2, a2)

if m1 > n1

is an RDP1 decomposition.
(viii) (n1, a1) + (n2, a2) = (m1, b1) + (m2, b2) for a1, a2, b1, b2 ∈ G2, where

n1, n2,m1,m2 ∈ G+
1 \{0}, n1+n2 = n = m1+m2 and n1 > m1. Then a1a2 = b1b2.

Hence, the following table

(n1, a1) (m1, b1) (−m1 + n1, b
−1
1 a1)

(n2, a2) (0, e) (n2, a2)
(m1, b1) (m2, b2)

if n1 > m1

gives an RDP1 decomposition for (viii). By a way, (viii) follows also from (vii) when
we rewrite (viii) in the equivalent form (m1, b1) + (m2, b2) = (n1, a1) + (n2, a2).
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(ix) (n1, a1)+(n2, a2) = (m1, b1)+(m2, b2) for a1, a2, b1, b2 ∈ G2, where n1, n2,m1,

m2 ∈ G+
1 \ {0}, n1 + n2 = n = m1 + m2 and n1 = m1. Then a1a2 = b1b2. The

directness of G2 entails that there is d ∈ G2 such that a1, a2, b1, b2 ≥ d. Hence,
d−1a1a2d

−1 = d−1b1b2d
−1. The RDP1 holding in G2 entails the following RDP1

table

d−1a1 c11 c12
a2d

−1 c21 c22
d−1b1 b2d

−1
,

so that

a1 dc11 c12
a2 c21 c22d

b1 b2

.

It gives an RDP1 decomposition of (ix)

(n1, a1) (n1, dc11) (0, c12)
(n2, a2) (0, c21) (n2, c22d)

(n1, b1) (n2, b2)
.

Now let G2 satisfy RDP2. By [DvVe1, Prop 4.2(ii)], a directed po-group G2

satisfies RDP2 iff G2 is an ℓ-group. Then by [Fuc, p. 26 (d)], the lexicographic
product is an ℓ-group, so that again by [DvVe1, Prop 4.2(ii)], the lexicographic

product G1
−→
× G2 satisfies RDP2.

Another proof of this implication follows all previous steps (i)–(ix) for RDP2

assumptions which prove that the po-group G1
−→
× G2 has RDP2. �

Remark 3.2. We note that in [Go, Cor 2.12], there are presented conditions when
the lexicographic product of two Abelian po-groups has the interpolation property,
which means when the lexicographic product satisfies RDP, equivalently, RDP1. By
Theorem 3.1, we know conditions for non-Abelian po-groups only if G1 is linearly
ordered, and the proof of cases (vii)–(ix) strongly used this fact. Therefore, we
suggest to find a proof of Theorem 3.1 without the assumption that G1 is linearly
ordered, simply assuming that G1 satisfies RDP or RDP1, respectively, or to find a
counterexample. We underline that the proof of the validity of RDP2 has assumed
G1 is linearly ordered as it follows from the last line of the proof of the latter
theorem.

A partial answer to the problem from Remark 3.2 is the following result con-
cerning RDP.

Theorem 3.3. Let G1 be an antilattice po-group and G2 be a directed po-group.
Then G1

−→
× G2 satisfies RDP if and only if both G1 and G2 satisfy RDP.

Proof. The implication “if G1
−→
× G2 has RDP, then both G1 and G2 have RDP”

follows from the beginning of the proof od Theorem 3.1.
The converse implication. We will assume that (G1; +,−, 0,≤) is written in

an additive way, (G2; ·,−1 , e,≤) is in a multiplicative way and the lexicographic

product G1
−→
× G2 is written in an additive way.

The steps (i)–(vi) from the proof of Theorem 3.1 remain. It is necessary to
exhibit the case (n1, a1) + (n2, a2) = (m1, b1) + (m2, b2) for a1, a2, b1, b2 ∈ G2,
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where n1, n2, m1,m2 ∈ G+
1 \ {0}, n1 + n2 = n = m1 + m2. Then a1a2 = b1b2, and

−n1 + n = n2.
If n1 and m2 are comparable, we use one of the cases (vii)–(ix) of Theorem

3.1 and we are ready. Thus we suppose that n1 and m1 are not comparable,
consequently, n2 and m2 are also not comparable. Since there exists no greatest
lower bound of n1 and m1, there is n0 ∈ G1 such that 0 < n0 < n1,m1. Due to
the same reason, there is m0 ∈ G1 such that 0 < m0 < n2,m2. Hence, we have
(−n0 + n1) + (n2 −m0) = (−n0 + m1) + (m2 −m0) where all elements in brackets
are strictly positive. Using RDP for G1, we have the decomposition

−n0 + n1 n11 n12

n2 −m0 n21 n22

−n0 + m1 m2 −m0

which yields

n1 n0 + n11 n12

n2 n21 n22 + m0

m1 m2 −m0

,

where the elements in the upper left-side corner and in the lower right-side corner
are strictly positive.

Therefore, we can always find an RDP decomposition table

n1 n11 n12

n2 n21 n22

m1 m2

,

where n11 > 0 and n22 > 0. In addition, if n12 = 0, then n1 = n11 ≤ m1 which is
impossible, and also n12 > 0. Similarly, n21 > 0.

From the directness of G2, there is d ≤ a1, a2, b1, b2, such that from d−1a1a2d
−1 =

d−1b1b2d
−1 we have the RDP table in G2

a1 dc11 c12
a2 c21 c22d

b1 b2

.

Therefore, we have a final RDP-decomposition for our case

(n1, a1) (n11, dc11) (n12, c12)
(n2, a2) (n21, c21) (n22, c22d)

(m1, b1) (m2, b2)
.

�

4. Wreath Product and RDP’s

In the section we establish Riesz decomposition properties of the wreath product.
Such a kind of product was used for study of n-perfect kite pseudo effect algebras
in [BoDv].

Now let (A; ·,−1 , 0,≤) be a linearly ordered po-group and (G; ·,−1 , e,≤) be a po-

group. Let W = A
−→
⋉ GA be the semidirect product, i.e., the elements of W are of

the form (n, 〈ga : a ∈ A〉), where n ∈ A, ga ∈ G for each a ∈ A. The multiplication
∗ on W is defined as follows
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(n, 〈ga : a ∈ A〉) ∗ (m, 〈ha : a ∈ A〉) := (nm, 〈gahan : a ∈ A〉), (4.1)

with the neutral element (0, eA) where eA = 〈ea : ea = e, a ∈ A〉, the inverse of an
element (n, 〈ga : a ∈ A〉) is the element

(n, 〈ga : a ∈ A〉)−1 := (n−1, 〈g−1
an−1 : a ∈ A〉),

and the ordering is defined by (n, 〈ga : a ∈ A〉) ≤ (m, 〈ha : a ∈ A〉) iff n < m

or n = m and ga ≤ ha for each a ∈ A. Then (W ; ∗,−1 , (0, eA),≤) is a po-group
called the (unrestricted) Wreath product of A and G; we write also W = A Wr G,
see [Gla, Ex 1.3.27]. If G is an ℓ-group, so is the Wreath product. If G is trivial,
then the Wreath product is isomorphic to A.

The subgroup of all elements (n, 〈ga : a ∈ A〉), where ga = e for all but a finite
number of a ∈ A, is said to be the restricted Wreath product of A and G; we write
A wr G. It is a po-group. If G is a trivial po-group, then the restricted Wreath
product is isomorphic to A.

Besides these restricted Wreath products we introduce according to [Gla, Ex
1.3.28] two its special kinds: The subgroup of W = Z⋉GZ consisting of all elements
of the form (n, 〈gi : i ∈ Z〉), where gi = e for all but finitely many i ∈ Z, can be
ordered in two ways: an element (n, 〈gi : i ∈ Z〉) ∈ W is positive if either n > 0 or
n = 0 and gj > e where j is the greatest integer i such that gi 6= e. We call W the
right wreath product of Z and G, and we writeW = Z−→wrG.

The second ordering of W is as follows: An element (n, 〈gi : i ∈ Z〉) ∈ W is
positive iff either n > 0 or n = 0 and gj > e where j is the least integer i such that
gi 6= e. We call W the left wreath product of Z, and we write W = Z←−wrG.

Both products are po-groups, and if G is a linearly ordered group so are both
ones. We note that according to [Dar, Cor 61.17], in such a case both products
generate different varieties of ℓ-groups. If, in addition, G is a trivial po-group, then
both wreath products are isomorphic to the po-group Z.

Similarly as for the lexicographic product we exhibit when the Wreath product
has RDP or RDP1. We note that for its proof we use the methods inspired by the
proof of Theorem 3.1.

Theorem 4.1. Let A be a linearly ordered po-group and G be a directed po-group.
Then the Wreath product AWr G satisfies RDP (RDP1, RDP2, respectively) if and
only if G satisfies RDP (RDP1, RDP2, respectively).

Proof. If G is trivial, then A
−→
⋉ GA ∼= A, and it satisfies RDP, RDP1 and RDP2,

because A is linearly ordered.
Thus let G be non-trivial. The positive cone of the Wreath product A

−→
⋉ GA is

the set {(e, 〈ga : a ∈ A〉) : ga ≥ e for each a ∈ A} ∪
⋃

n>1{(n, 〈ga : a ∈ A〉), ga ∈
G for each a ∈ A}.

In what follows, we will deal only with the case RDP1; the case of RDP is similar.
Let the Wreath product A

−→
⋉ GA satisfy RDP1 and assume that g1g2 = h1h2 for

g1, g2, h1, h2 ∈ G+. Fix an element a0 ∈ A and for j = 1, 2, let us define Aj =
(0, 〈f j

a : a ∈ A〉) by f j
a = aj if a = a0 and f j

a = e otherwise, Bj = (0, 〈gja : a ∈ A〉)
by gja = bj if a = a0 and gja = e otherwise. Then A1 ∗ A2 = B1 ∗ B2 so that there
are E11 = (0, 〈e11a : a ∈ A〉), E12 = (0, 〈e12a : a ∈ A〉), E21 = (0, 〈e21a : a ∈ A〉), and
E22 = (0, 〈e22a : a ∈ A〉), such that A1 = E11 ∗E12, A2 = E21 ∗E22, B1 = E11 ∗E21,

and B2 = E12 ∗ E22. Hence, we see that G satisfies RDP1.
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Conversely, let G satisfy RDP1. To be more compact, we will write (n, 〈ga〉)
instead of (n, 〈ga : a ∈ A〉). We have the following cases.

(i) (0, 〈ga〉) ∗ (0, 〈ha〉) = (0, 〈ua〉) ∗ (0, 〈va〉) for ga, ha, ua, va ≥ e for each i ∈ I.
The proof of this case trivial.

(ii) (0, 〈ga〉) ∗ (n, 〈ha〉) = (0, 〈ua〉) ∗ (n, 〈va〉) for ga, ua ≥ e, ha, va ∈ G for each
a ∈ A, and n > 0. Then gaha = uava for each a ∈ A. Since G is directed, for any
a ∈ A, there is an element da ∈ G such that ha, va ≥ da. Then gahad

−1
a = uavad

−1
a

and for them we have the RDP1 decomposition

ga c11a c12a
had

−1
a c21a c22a

ua vad
−1
a

,

where c12a com c21a . Then

ga c11a c12a
ha c21a c22a da

ua va

and

(0, 〈ga〉) (0, 〈c11a 〉) (0, 〈c12a 〉)
(n, 〈ha〉) (0, 〈c21a 〉) (n, 〈c22a da〉)

(0, 〈ua〉) (n, 〈va〉)

is an RDP1 decomposition for (ii) in the po-group A
−→
⋉ GA.

(iii) (n, 〈ga〉) ∗ (0, 〈ha〉) = (n, 〈ua〉) ∗ (0, 〈va〉) for ha, va ≥ e, ga, ua ∈ G for
each a ∈ A, and n > 0. The directness of G implies, for each a ∈ A, there
is da ∈ G such that da ≤ ga, ha, ua, va. Equality (iii) can be rewritten in the
equivalent form (n, 〈d−1

a ga〉)∗ (0, 〈had
−1
a 〉) = (n, 〈d−1

a ua〉)∗ (0, 〈vad
−1
a 〉) which yields

d−1
a gahand

−1
an = d−1

a uavand
−1
an . It entails an RDP1 decomposition in the po-group

G

d−1
a ga c11a c12a

hand
−1
an c21a c22a

d−1
a ua vand

−1
an

,

consequently,

ga dac
11
a c12a

han c21a c22a dan
ua van

,

and it gives an RDP1 decomposition of (iii) in the Wreath product A
−→
⋉ GI

(n, 〈ga〉) (n, 〈dac
11
a 〉) (0, 〈c12

an−1〉)
(0, 〈ha〉) (0, 〈c21

an−1〉) (0, 〈c22
an−1da〉)

(n, 〈ua〉) (0, 〈va〉)
.

(iv) (n, 〈ga〉) ∗ (0, 〈ha〉) = (0, 〈ua〉) ∗ (n, 〈va〉) for ga, va ∈ G, ha, ua ≥ e for each
a ∈ A, n > 0.

Then gahan = uava for each a ∈ A, which implies u−1
a ga = vah

−1
an . If we use the

decomposition
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(n, 〈ga〉) (0, 〈ua〉) (n, 〈u−1
a ga〉)

(0, 〈ha〉) (0, eA) (0, 〈ha〉)
(0, 〈ua〉) (n, 〈va〉)

,

then it gets an RDP1 decomposition for (iv); trivially (0, eA) com (n, 〈u−1
a ga〉).

(v) (n, 〈ga〉) ∗ (0, 〈ha〉) = (m1, 〈ua〉) ∗ (m2, 〈va〉) for ga, ua, va ∈ G, ha ≥ e for
each a ∈ A, where m1,m2 > 0 and m1m2 = n. Then gahan = uavam1

for each
a ∈ A. Hence, the following table gives an RDP1 decomposition for (v)

(n, 〈ga〉) (m1, 〈ua〉) (m2, 〈u
−1

am
−1

1

gam−1

1

〉)

(0, 〈ha〉) (0, eA) (0, 〈ha〉)
(m1, 〈ua〉) (m2, 〈va〉)

.

(vi) (0, 〈ga〉) ∗ (n, 〈ha〉) = (m1, 〈ua〉) ∗ (m2, 〈va〉) for ha, ua, va ∈ G, ga ≥ e for
each a ∈ A, where m1,m2 > 0 and m1m2 = n. For it we have uavam1

= gaha for
each a ∈ A and the following RDP1 decomposition

(0, 〈ga〉) (0, 〈ga〉) (0, eA)
(n, 〈ha〉) (m1, 〈g

−1
a ua〉) (m2, 〈va〉)

(m1, 〈ua〉) (m2, 〈va〉)
.

(vii) (n1, 〈ga〉) ∗ (n2, 〈ha〉) = (m1, 〈ua〉) ∗ (m2, 〈va〉) for ga, ha, ua, va ∈ G, for
each a ∈ A, where n1, n2,m1,m2 > 0, n1n2 = n = m1m2 and m1 > n1. Then
gahan1

= uavam1
for each a ∈ A, and using the equality n−1

1 = n2n
−1, case (vii)

has the following RDP1 decomposition

(m1, 〈ua〉) (n1, 〈ga〉) (n−1
1 m1, 〈g

−1
an1

−1uan
−1

1

〉)

(m2, 〈va〉) (0, eA) (m2, 〈va〉)
(n1, 〈ga〉) (n2, 〈ha〉)

if m1 > n1

is an RDP1 decomposition.
(viii) (n1, 〈ga〉) ∗ (n2, 〈ha〉) = (m1, 〈ua〉) ∗ (m2, 〈va〉) for ga, ha, ua, va ∈ G, for

each a ∈ A, where n1, n2,m1,m2 > 0, n1n2 = n = m1m2 and n1 > m1. Then
gahan1

= uavam1
for each a ∈ A. Hence, the following table

(n1, 〈ga〉) (m1, 〈ua〉) (m−1
1 n1, 〈u

−1

am
−1

1

gam−1

1

〉)

(n2, 〈ha〉) (0, eA) (n2, 〈ha〉)
(m1, 〈ua〉) (m2, 〈va〉)

if n1 > m1

gives an RDP1 decomposition for (viii).
(ix) (n1, 〈ga〉) ∗ (n2, 〈ha〉) = (m1, 〈ua〉) ∗ (m2, 〈va〉) for ga, ha, ua, va ∈ G, for

each a ∈ A, where n1, n2,m1,m2 > 0, n1n2 = n = m1m2 and n1 = m1. Then
gahan1

= uavan1
. The directness of G entails that, for every a ∈ A, there is da ∈ G

such that ga, ha, ua, va ≥ da. Hence, d−1
a gahan1

d−1
an1

= d−1
a uavan1

d−1
an1

. The RDP1

holding in G gives the following RDP1 table

d−1
a ga c11a c12a

han1
d−1
an1

c21a c22a
d−1
a ua van1

d−1
an1

,

so that
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ga dac
11
a c12a

han1
c21a c22a dan1

ua van1

.

It gives the RDP1 decomposition of (ix)

(n1, 〈ga〉) (n1, 〈dac
11
a 〉) (0, 〈c12

an
−1

1

〉)

(n2, 〈ha〉) (0, 〈c21
an

−1

1

〉) (n2, 〈c
22
an

−1

1

dan−1

1

〉)

(n1, 〈ua〉) (n2, 〈va〉)

.

Now assume that G2 satisfy RDP2. By [DvVe1, Prop 4.2(ii)], a directed po-
group G satisfies RDP2 iff G is an ℓ-group. It is easy to verify that if G is an
ℓ-group, so is A

−→
⋉ GA. �

Corollary 4.2. Let A be a linearly ordered po-group and G be a directed po-group.
The restricted Wreath product Awr G satisfies RDP (RDP1, RDP2, respectively)
if and only if G satisfies RDP (RDP1, RDP2, respectively).

Proof. It is identical to the proof of Theorem 4.1. �

5. Right and Left Wreath Products and RDP’s

In this section we exhibit conditions when a kind of RDP holds in the right and
left wreath products.

We note that for a = (n, 〈xi : i ∈ Z〉) and b = (m, 〈yi : i ∈ Z〉) from the right
wreath product we have a ≤ b iff (i) n < m or (ii) n = m and xi0 < yi0 , where
i0 := max{i ∈ Z : xi 6= yi}. Dually for a, b from the left wreath product. That is,
a ≤ b iff (i) n < m or (ii) xi0 < yi0 , where i0 := min{i ∈ Z : xi 6= yi}.

Proposition 5.1. Let G be a directed po-group. The following statements are
equivalent

(i) Z−→wrG satisfies RDP2.
(ii) Z←−wrG satisfies RDP2.

(iii) G is a linearly ordered group.

In any such case, the right and left wreath products are linearly ordered groups.

Proof. (i)⇒ (ii),(iii). If G is linearly ordered, by [Gla, Ex 1.3.28], the right and left
wreath products are linearly ordered groups. By [DvVe1, Prop 4.2(ii)], a directed
po-group satisfies RDP2 iff G is an ℓ-group, so that the both wreath products satisfy
RDP2.

(ii) ⇒ (i). If G is trivial, i.e. G = {e}, the statement is trivial. Thus we assume
that G is non-trivial and let Z−→wrG satisfy RDP2. Then the right wreath product
is an ℓ-group. We claim that G is linearly ordered. If not, let a, b > e be two non-
comparable elements such that there is an element c ∈ G with e < c < a, b. Define
two elements x = (0, 〈xi : i ∈ Z〉) and y = (0, 〈yi : i ∈ Z〉), where x0 = a, y0 = b

and xi = yi = e for each i ∈ Z \ {0}. Let z = (0, 〈zi : i ∈ Z〉) = x ∧ y ∈ Z−→wrG. We
assert that every zi = e for each integer i > 0. If not, take the largest index i0 > 0
such that zi0 6= e. Then zi0 > e because z is a positive element in Z−→wrG, and
on the other hand, zi0 < e because z ≤ a which is a contradiction. Consequently,
zi = e for each i > 0.

Now define an element z′′ = (0, 〈z′′i : i ∈ Z〉) ∈ Z−→wrG in the following way:
z′′0 = z0, z

′′

i = e for each i > 0, z′′
−1 = z−1c, and z′′i = zi for i < −1. Then z′′ is
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a lower bound for x and y, so that z′′ ≤ z = x ∧ y. But on the other hand, by
construction of z′′, we have z < z′′ which is absurd. Hence, G is linearly ordered.

The case (iii) ⇒ (i) is dually to the previous implication. �

Proposition 5.2. Let G be a directed po-group. If Z−→wrG (Z←−wrG) satisfies RDP1

(RDP), then so satisfies G.

Proof. If G is trivial, the statement of evident. So, we suppose that G is non-trivial.
Assume the right wreath product satisfies RDP1 (the case of RDP is analogous)

and let in G, we have a1a2 = b1b2 for a1, a2, b1, b2 ∈ G+. Without loss of generality
we can assume that a1, a2, b1, b2 > e. We define the following elements in Z−→wrG:
xj = (0, 〈xj

i : j ∈ Z〉) and yj = (0, 〈yji : j ∈ Z〉) for j = 1, 2, where x
j
0 = aj , y

j
0 = bj

and x
j
i = e = y

j
i for i 6= 0 and j = 1, 2. Then we have the following RDP1 table

(0, 〈x1
i 〉) (0, 〈c11i 〉) (0, 〈c12i 〉)

(0, 〈x2
i 〉) (0, 〈c21i 〉) (0, 〈c22i 〉)

(0, 〈y1i 〉) (0, 〈y2i 〉)
,

where (0, 〈c12i 〉) com (0, 〈c21i 〉). We assert that for each i > 0, c
jk
i = e, where

j, k = 1, 2. Indeed, let i0 be the largest index i > 0 such that ci0 6= e. Then
ci0 > e and from x1

i0
= e = c11i0 c

12
i0

we conclude c12i0 < e. Hence, there is another

integer j0 > i0 such that c12j0 > e, otherwise (0, 〈c12i 〉) < 0. Hence, c11j0 < e which

is impossible. Hence, c11i = e for each integer i > 0. In the similar way we prove

that all cjki = e for i > 0 and j, k = 1, 2. In particular, we have the following RDP1

table in G

a1 c110 c120
a2 c210 c220

b1 b2

and c120 com c210 . �

Now we present some results concerning the right and left wreath products and
RDP’s.

For any element x = (n, 〈xi〉) ∈ Z−→wrG we denote by supp(x) := {i ∈ Z : xi 6= e}.

Proposition 5.3. Let G be a directed po-group. Then the following statements are
equivalent:

(i) G satisfies RIP.
(ii) Z−→wrG satisfies RIP.

(iii) Z←−wrG satisfies RIP.

Proof. For G the statement is evident, so let us assume G is non-trivial.
(ii) ⇒ (i). Let a1, a2 ≤ b1, b2 hold in G. To show RIP in G, it is enough to

assume that a1 6= a2 and b1 6= b2. As in the proof of Proposition 5.2, we define four
elements x1 = (0, 〈x1

i : i ∈ Z〉), x2 = (0, 〈x2
i : i ∈ Z〉), y1 = (0, 〈y1i : i ∈ Z〉), and

y2 = (0, 〈y2i : i ∈ Z〉). Then x1, x2 ≤ y1, y2 in the right wreath product. Hence,
there is an element z = (0, 〈zi : i ∈ Z〉) ∈ Z−→wrG such that x1, x2 ≤ z ≤ y1, y2.
We assert that zi = e for any i > 0. Indeed, let i0 = max{i > 0 : zi 6= e}.

Then e < zi0 < e which is impossible. Now let i0(xj) = max{i ∈ Z : x
j
i 6= zi}

and i0(yj) = max{i ∈ Z : yji 6= zi}. Then x
j

i0(xj)
< zi0(xj) and zi0(yj) < y

j

i0(xj)
for
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j = 1, 2. If i0(xj) = 0, then aj < z0. If i0(xj) < 0, then aj = z0, so that a1, a2 ≤ z0.
Dually we show that z0 ≤ b1, b2.

In the analogous dual way we prove that (iii) implies (i).
(i) ⇒ (ii). Let for a1 = (n1, 〈a

1
i : i ∈ Z〉), a2 = (n2, 〈a

2
i : i ∈ Z〉), b1 = (m1, 〈b

1
i :

i ∈ Z〉), and b2 = (m2, 〈b
2
i : i ∈ Z〉) we have a1, a2 ≤ b1, b2. Without loss of

generality, we can assume that n1 ≤ n2 ≤ m1 ≤ m2. We have the following cases:
(a) n2 < m1. If n1 < n2, then (n1, 〈a

1
i : i ∈ Z〉), (n2, 〈a

2
i : i ∈ Z〉) ≤ (n2, 〈a

2
i : i ∈

Z〉) ≤ (m1, 〈b
1
i : i ∈ Z〉), (m2, 〈b

2
i : i ∈ Z〉). If n1 = n2, directness of G implies that,

for each i ∈ supp(a1) ∪ supp(a2), there is di ∈ G such that a1i , a
2
i < di. We define

c = (n1, 〈ci : i ∈ Z〉), where ci = di whenever i ∈ supp(a1) ∪ supp(a2) and ci = e

otherwise. Then a1, a2 ≤ c ≤ b1, b2. (b) n2 = m1. If n1 < n2, then a1 < a2, so
that a1, a2 ≤ a2 ≤ b1, b2. Now let n1 = n2. If m1 < m2, then b1 < b2 so that
a1, a2 ≤ b1 ≤ b1, b2. Finally, let m1 = m2, i.e. n := n1 = n2 = m1 = m2. If four, or
three or two elements from {a1, a2, b1, b2} coincide, the RIP holds trivially. Hence,
we assume that a1, a2 < b1, b2, and in addition, a1 6= a2 and b1 6= b2.

We define i0(j, k) := max{i : a
j
i 6= bki } for j, k = 1, 2; then a

j

i0(j,k)
< bki0(j,k).

Assume i0(1, 1) ≤ i0(2, 1). Then b1
i0(1,1)

> a1
i0(1,1)

and b1i = a1i if i > i0(1, 1), and

b1i0(2,1) > a2i0(2,1) and b1i = a2i = a1i for i > i0(2, 1). Similarly, let i0(1, 2) ≤ i0(2, 2).

Then b2i0(1,2) > a1i0(1,2) and b2i = a1i if i > i0(1, 2), and b2i0(2,2) > a2i0(2,2) and

b2i = a2i = a1i for i > i0(2, 2). It is sufficient to exhibit the following 18 cases:
(1) Let i0 := i0(1, 2) = i0(2, 2) = i0(1, 1) = i0(2, 1). Then a1i0 , a

2
i0

< b1i0 , b
2
i0

. By

RIP holding in G, there is an element c′ ∈ G such that a1i0 , a
2
i0
≤ c′ ≤ b1i0 , b

2
i0

. If

a1i0 , a
2
i0

< c′ < b1i0 , b
2
i0

, then the element c = (n, 〈ci : i ∈ Z〉), where ci = e if i < i0,

ci0 = c′, and ci = a1i (a1i = a2i = b1i = b2i ) for i > i0. Then a1, a2 < c < b1, b2.
If c′ coincides with one of {a1i0 , a

2
i0
, b1i0 , b

2
i0
}, say a1i0 , then we have two subcases:

(i) a2i0 < a1i0 and (ii) a2i0 = a1i0 . In the subcase (i) the element c = a1, we have

a1, a2 ≤ c ≤ b1, b2. In the subcase (ii), there is d ∈ G such that d > a1i0−1, a
2
i0−1.

If we define ci = e if i < i0 − 1, ci0−1 = d and ci = a1i if i > i0. Then the element
c = (n, 〈ci : i ∈ Z〉) satisfies a1, a2 ≤ c ≤ b1, b2. In a similar way we proceed with
the case when c′ coincides with b1i0 or b2i0 .

(2) Let i0(1, 2) < i0(2, 2) ≤ i0(1, 1) < i0(2, 1). Then for i0 = i0(2, 1), we have
a1i0 = b2i0 = a2i0 , a1i0 = b1i0 , and a2i0 < b1i0 which implies b2i0 < b1i0 and b2i0 = b1i0 , an
absurd.

The same is true if we assume i0(1, 2), i0(2, 2), i0(1, 1) < i0(2, 1) for arbitrary
i0(1, 2), i0(2, 2), i0(1, 1).

(3) Let i0(1, 2) ≤ i0(2, 2) < i0(1, 1) = i0(2, 1). Then for i0 = i0(2, 1), we have
a1i0 = b2i0 , a2i0 = b2i0 , a1i0 < b1i0 , and a2i0 < b1i0 , which yields a1i0 = b2i0 = a2i0 and

a1i0 < b1i0 , b2i0 < b1i0 . For i > i0, we have a1i = a2i = b1i = b2i . Hence, the element
c = b2 is an in-between element.

(4) Let i0(1, 2) < i0(2, 2) = i0(1, 1) = i0(2, 1). Then for i0 = i0(2, 2), we have
a1i0 = b2i0 , a2i0 < b2i0 , a1i0 < b1i0 , and a2i0 < b1i0 . Then b2i0 < b1i0 and the element c = b2
is an in-between element.

(5) Let i0(1, 2) = i0(2, 2) < i0(1, 1) < i0(2, 1). Then for i0 = i0(2, 1), we have
a1i0 = b2i0 , a2i0 = b2i0 , a1i0 = b1i0 , and a2i0 < b1i0 , which yields b2i0 = b1i0 and b2i0 < b1i0 , an
absurd; see also the end of (2).
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(6) Let i0(1, 2) = i0(2, 2) = i0(1, 1) < i0(2, 1). Then for i0 = i0(2, 1), we have
a1i0 = b2i0 , a2i0 = b2i0 , a1i0 = b1i0 , and a2i0 < b1i0 , which yields b2i0 = b1i0 and b2i0 < b1i0 , an
absurd; see also the end of (2).

Now let us assume that i0(2, 2) is in the interval [i0(1, 1), i0(2, 1)].
(7) Let i0(1, 2) < i0(1, 1) ≤ i0(2, 2) < i0(2, 1). Then for i0 = i0(2, 1), we have

a1i0 = b2i0 , a1i0 = b1i0 , a2i0 = b2i0 and a2i0 < b1i0 which implies a2i0 = a2i0 and a2i0 < a1i0 ,
an absurd; see also the end of (2).

(8) Let i0(1, 2) < i0(1, 1) < i0(2, 2) = i0(2, 1). Then for i0 = i0(2, 1), we have
a1i0 = b2i0 , a1i0 = b1i0 , a2i0 < b2i0 and a2i0 < b1i0 which implies a2i0 < a1i0 = b1i0 = b2i0 .
Hence, the element c = a1 is an in-between element.

(9) Let i0(1, 2) < i0(1, 1) = i0(2, 2) = i0(2, 1). Then for i0 = i0(2, 1), we have
a1i0 = b2i0 , a1i0 < b1i0 , a2i0 < b2i0 and a2i0 < b1i0 which implies a2i0 < a1i0 = b2i0 < b1i0 .
Hence, the element c = a1 is an in-between element.

Now let us assume that i0(1, 2) and i0(2, 2) are in the interval [i0(1, 1), i0(2, 1)].
(10) Let i0(1, 1) ≤ i0(1, 2) < i0(2, 2) = i0(2, 1). Then for i0 = i0(2, 1), we have

a1i0 = b1i0 , a1i0 = b2i0 , a2i0 < b2i0 and a2i0 < b1i0 which implies a2i0 < a1i0 = b1i0 = b2i0 .
Hence, the element c = a1 is an in-between element.

(11) Let i0(1, 1) < i0(1, 2) = i0(2, 2) = i0(2, 1). Then for i0 = i0(2, 1), we have
a1i0 = b1i0 , a1i0 < b2i0 , a2i0 < b2i0 and a2i0 < b1i0 which implies a2i0 < a1i0 = b1i0 . Hence,
the element c = a1 is an in-between element.

Finally, we assume i0(2, 2) ≤ i0(1, 2),
(12) Let i0(2, 2) ≤ i0(1, 2) < i0(1, 1) = i0(2, 1). Then for i0 = i0(2, 1), we have

a2i0 = b2i0 , a1i0 = b2i0 , a1i0 < b1i0 and a2i0 < b1i0 , which implies a1i0 = a2i0 = b2i0 < b1i0 .
Hence, the element c = b2 is an in-between element.

(13) Let i0(2, 2) < i0(1, 2) = i0(1, 1) = i0(2, 1). Then for i0 = i0(2, 1), we have
a2i0 = b2i0 , a1i0 < b2i0 , a1i0 < b1i0 and a2i0 < b1i0 , which implies a1i0 < b1i0 , b

2
i0

and

a2i0 = b2i0 < b1i0 . Hence, the element c = b2 is an in-between element.
(14) Let i0(2, 2) ≤ i0(1, 2) < i0(1, 1) = i0(2, 1). Then for i0 = i0(2, 1), we have

a2i0 = b2i0 , a1i0 = b2i0 , a1i0 < b1i0 and a2i0 < b1i0 , which implies a1i0 = b2i0 < b1i0 and

a2i0 = b2i0 < b1i0 . Hence, the element c = b2 is an in-between element.
(15) Let i0(2, 2) ≤ i0(1, 1) < i0(1, 2) = i0(2, 1). Then for i0 = i0(2, 1), we have

a2i0 = b2i0 , a1i0 = b1i0 , a1i0 < b2i0 and a2i0 < b1i0 , which implies a1i0 = b1i0 < b2i0 and

a2i0 = b2i0 < b1i0 . Consequently, b1 < b2 and b2 < b1 which is impossible.
(16) Let i0(2, 2) < i0(1, 1) = i0(1, 2) = i0(2, 1). Then for i0 = i0(2, 1), we have

a2i0 = b2i0 , a1i0 < b1i0 , a1i0 < b2i0 and a2i0 < b1i0 , which implies a1i0 < b1i0 , b
2
i0

and

a2i0 = b2i0 < b1i0 . Hence, the element c = b2 is an in-between element.
(17) Let i0(1, 1) ≤ i0(2, 2) < i0(1, 2) = i0(2, 1). Then for i0 = i0(2, 1), we have

a1i0 = b1i0 , a2i0 = b2i0 , a1i0 < b2i0 and a2i0 < b1i0 , which implies a1i0 = b1i0 < b2i0 and

a2i0 = b2i0 < b1i0 which is impossible.
(18) Let i0(1, 1) < i0(2, 2) = i0(1, 2) = i0(2, 1). Then for i0 = i0(2, 1), we have

a1i0 = b1i0 , a2i0 < b2i0 , a1i0 < b2i0 and a2i0 < b1i0 , which implies a1i0 = b1i0 < b2i0 and

a2i0 < b2i0 , b
1
i0

. Hence, the element c = b1 is an in-between element.
Summarizing all cases (1)–(18), we see that RIP holds for the right wreath

product. In a dual way, we prove the validity of RIP for the left wreath product. �

Now we present a strengthening of Proposition 5.1.

Proposition 5.4. Let G be a non-commutative directed po-group. The following
statements are equivalent
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(i) Z−→wrG satisfies RDP1.
(ii) Z←−wrG satisfies RDP1.

(iii) G is a linearly ordered group.

In any such case, the right and left wreath products are linearly ordered groups.

Proof. (i) ⇒ (ii), (iii). If G is a trivial group, the statement is trivial. Thus we
assume that G is non-trivial. Suppose the converse of (iii), i.e., let G be non-
linearly ordered. Due to directness of G, there are two non-comparable elements
a and b in G such that there are c, d ∈ G with 0 < c < a, b < d. We define two
additional non-comparable elements a′ = a−1d and b′ = b−1d, and four positive
elements in the right wreath product aj = (0, 〈aji : i ∈ Z〉), bj = (0, 〈bji : i ∈ Z〉),

j = 1, 2, where a
j
i = e = b

j
i for j 6= 0, and a10 = a, a20 = a′, b10 = b, b20 = b′. Then

a1a2 = b1b2, and by the assumption, there are four positive elements cjk = (0, 〈cjki :
i ∈ Z〉), j, k = 1, 2, such that for them RDP1 decomposition holds. In addition,

c12 com c21. We claim that c
jk
i = e for each i > 0 (j, k = 1, 2). Indeed, if, e.g.

i0 = i110 := max{i > 0 : c11i 6= e}, then c11i0 > e which yields that c12i0 < e. Then

there is an integer i1 > i0 such that c12i1 > e which yields c11i1 < e, a contradiction.
We assert that c12 and c21 are strictly positive elements in the right wreath

product, that is c120 , c210 > e holds in G. Indeed, if c120 = e, then c110 = a and
c210 ≥ e. Indeed, either c210 = e, or c210 6= e. In the first case we get a10 = a = b10 = b

which is impossible. In the second one, c210 6= e, so that c210 > e. In any rate, we
have b = ac210 implying a ≤ b, a contradiction, therefore c120 > e. In the same way
we prove that also c210 > e.

Since G is non-trivial, there are two elements x, y > e in G such that xy 6= yx.
Define two positive elements x′ = (0, 〈xi :∈ Z〉) and y′ = (0, 〈yi :∈ Z〉) such that
xi = e = yi for i 6= −2,−1, and x−2 = x, x−1 = y and y−2 = y, y−1 = x.
Then (0, 〈e〉) ≤ x′ ≤ c12 and (0, 〈e〉) ≤ y′ ≤ c21 which means x′y′ = y′x′ which is
impossible while xy 6= yx.

Hence, our assumption that RDP1 holds in the right wreath product for non-
linear G was false, whence, G has to be linearly ordered.

In the same but dual way we proceed for the left right wreath product.
(iii) ⇒ (i). If G is linearly ordered, then the right and left wreath product is an

ℓ-group, so that it satisfies RDP2 (see Proposition 5.1), and finally, RDP1 holds,
too. �

Problem. If a directed po-group G satisfies RDP, does also the right (left)
wreath product satisfy it?

A po-group G is said to be non-atomistic if, for any g > e, there is a g′ > e such
that g > g′ > e.

Proposition 5.5. Let G be a directed non-atomistic Abelian po-group. Then the
following statements are equivalent

(i) Z−→wrG satisfies RDP.
(ii) Z←−wrG satisfies RDP.

(iii) G satisfies RDP.

Proof. Again it is enough to assume that G is non-trivial.
(i) ⇒ (iii). It follows from Proposition 5.2.
(iii) ⇒ (i). To exhibit RDP, it is enough to assume that in the equality xy = uv

all elements are strictly positive.
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As usually, we will write (n, 〈gi〉) instead of (n, 〈gi : i ∈ Z〉).
The positive cone of Z−→wrG is the set of the following elements {(0, 〈xi〉) : xj > e

where j is the greatest index i such that gi 6= e} ∪ {(n, 〈xi〉) : n > 0}.
For x = (n, 〈xi〉) we denote by supp(x) := {i ∈ Z : xi 6= e}, and i0(x) := max{i :

i ∈ supp(x)}.
We have the following cases:
(1) (0, 〈xi〉) ∗ (0, 〈yi〉) = (0, 〈ui〉) ∗ (0, 〈vi〉) for xi, yi, ui, vi ∈ G for each i ∈ I.
Assume x = (0, 〈xi〉), y = (0, 〈yi〉), u = (0, 〈ui〉) and v = (0, 〈xi〉), and we can

assume that x, y, u, v are strictly positive.
Then xiyi = uivi for each i ∈ Z and max{i0(x), i0(y)} = max{i0(u), i0(v)}. If

i0 := i0(x) = i0(y) = i0(u) = i0(v), then using the RDP of G, we have the following
decomposition table

xi0 c11i0 c12i0
yi0 c21i0 c22i0

ui0 vi0

.

where all cjki0 ≥ e, j, k = 1, 2.

We assert that there are positive elements cjk = (0, 〈c′jki 〉) for j, k = 1, 2 that

form an RDP decomposition. Indeed, if i < i1 or i > i0, we set c′jki = e. Let i = i0.

If all cjki0 > e, we are ready and we put c′jki0
= c

jk
i0

. Of course, at least two c
jk
i0

’s have

to strictly positive. Now assume that, say c12i0 = e. Then c11i0 > e and c22i0 > e. Then

c11 and c22 can be chosen to be positive. If also c21i0 > e, then c21 can be chosen to

be positive. If c21i0 = e, due to directness of G, there is d ∈ G such that d > c
jk
i0−1

for j, k = 1, 2. Then

xi0−1 c11i0−1 c12i0−1

yi0−1 c21i0−1 c22i0−1

ui0−1 vi0−1

=:
xi0−1 d−1c11i0−1 dc12i0−1

yi0−1 dc21i0−1 d−1c22i0−1

ui0−1 vi0−1

(A).

Here the elements in the second table have the property dc12i0−1 > e and dc21i0−1 > e.
From this table we can determine c12 > e and c21 > e.

Now assume that e.g. i0(x) < i0(y) := i0. Then we have the following simple
decomposition table

xi0 e e

yi0 c21i0 c22i0
ui0 vi0

.

If i0(u) = i0(v), then c21i0 , c
21
i0

> e, and if i0(u) < i0(v), then c21i0 = e and

c22i0 = v21i0 > e.
In the first case, for each i such that i0(x) < i < i0(y), we have the decomposition

c11i = c12i = e and c21i = ui, c
22
i = vi. For i = i0(x) using directness of G, we have

the following table

xi dic
11
i c12i

yi c21i c22i di
ui vi

.

If c12i = e, then dic
11
i > e and using non-atomicity of G, we can assume without

loss of generality c12i > e and dic
11
i > e. If c12i > e, then
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xi dic
11
i c12i e

yi (c12i )−1c21i c12i c22i di
ui vi

(B)

and using again non-atomicity of G, we can assume that the elements in the first
row are strictly positive. Hence, we can already construct elements cjk in the right
wreath product to be strictly positive, see (A).

Now assume the second case, i.e. i0(u) < i0(v). For i0 = i0(v), we have
the decomposition c11i0 = c12i0 = c21i0 = e and c22i0 = vi0 > e. For i such that

max{i0(x), i0(u)} < i < i0, we have the table c11i = c12i = c21i = e and c22i = vi. If
i = i0(x) = i0(u), using directness of G, we have the decomposition

xi dic
11
i c12i

yi c21i c22i di
ui vi

.

Using non-atomicity of G, if necessary, we can assume that the all elements in
the left column are strictly positive.

If e.g. i0(x) < i0(u), we have, for i = i0(u), a decomposition c11i = c12i = e and
c21i = ui > 0, c22i = vi. For i such that i0(x) < i < i0(u), we have decomposition
c11i = c21i = e, c21i = ui, and c22i = vi. For i = i0(x), we have the table

xi dic
11
i c12i

yi c21i c22i di
ui vi

.

If c12i = e, then dic
11
i > e and using non-atomicity, we can assume that both

elements in the first row are strictly positive. If c12i > e, we proceed as in table (B).
Hence, we can construct strictly positive elements cjk in the right wreath product,
compare with (A).

All other possibilities in case (1) can be proved analogously. Hence, (1) is proved
completely.

(2) (0, 〈xi〉)∗(n, 〈yi〉) = (0, 〈yi〉)∗(n, 〈vi〉), n > 0. Then xi0(x) > e, ui0(y) > e, and
xiyi = uivi for i ∈ Z. Let i0 = max{i : i0(x), i0(y), i0(u), i0(v)}. If i0(x) < i0(u),
then for i = i0(u), we have the decomposition c11i = c12i = e, c21i = ui > e and
c22i = vi. For i > i0(u) or for i0(x) < i < i0(u), we have the decomposition
c11i = c12i = e, c21i = ui and c22i = vi. For i = i0(x), we use directness of G and the
table

xi dic
11
i c12i

yi c21i c22i di
ui vi

(C).

If c12i = e, then dic
11
i > e and using non-atomicity of G, without loss of generality,

we can assume that all elements in the first row and the first column of (C) are
strictly positive. If c12i > e, we take table

xi dic
11
i c12i e

yi (c12i )−1c21i c12i c22i di
ui vi

(D),
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where dic
11
i c12i > e, and using non-atomicity of G, we can again assume that all

elements of the first row and the first column of table (C) are strictly positive.
The case i0(x) > i0(u) can be treated in a similar way.
If i0(x) = i0(u), for i > i0(u), then we have the decomposition c11i = c12i = c21i =

e and c22i = vi. For i = i0(u), we have xi, ui > e. Using directness of G, for every
i ∈ Z, there is di ≤ yi, vi. Then xiyid

−1
i = uivid

−1
i , and we have the following RDP

table

xi c11i c12i
yi c21i c22i di

ui vi

(E).

If c21i = e, then c11i > e and using non-atomicity of G, we can assume that all
elements in the first raw and in the first column of (E) are strictly positive. The
same is true if c12i = e. Now let c12i > e and c21i > e. If c11i > e, then we have that
all elements in the first raw and in the first column of (E) are strictly positive. If
c11i = e, (∗), we check elements of RDP decomposition for i = i0(u)− 1. For it we
have the table (C). It can be rewritten in the form

xi c c−1dic
11
i c12i

yi c−1dic
11
i c21i c(dic

11
i )−1c22i di

ui vi

,

where c is an arbitrary strictly positive element of G.
Now let i1 be an integer such that, for each i ≤ i1, xi, yi, ui, vi = e. Then for i

such that i1 ≤ i < i0(u) [i1 ≤ i < i0(u)− 1 in case (∗)], we take table (C), and for

i < i1, we set c
jk
i = e, j, k = 1, 2.

Hence, for (2), we have the following RDP table

(0, 〈xi〉) (0, 〈c11i 〉) (0, 〈c12i 〉)
(n, 〈yi〉) (0, 〈c21i 〉) (n, 〈c22i 〉)

(0, 〈ui〉) (n, 〈vi〉)
.

(3) (n, 〈xi〉) ∗ (0, 〈yi〉) = (n, 〈ui〉) ∗ (0, 〈vi〉), n > 0. Then yi0(y) > e, vi0(v) > e,
and xiyi+n = uivi+n for i ∈ Z. To exhibit cases i0(y) < i0(v), i0(y) < i0(v), and
i0(y) = i0(v), we follow methods of the proof of (2), concentrating to elements of
RDP table in the second row and the second column.

Hence, for (3), we have the following RDP table

xi dic
11
i c12i e

yi c21i (c12i )−1 c22i c12i di
ui vi+n

,

(n, 〈xi〉) (n, 〈c11i 〉) (0, 〈c12i−n〉)
(0, 〈yi〉) (0, 〈c21i−n〉) (0, 〈c22i−n〉)

(n, 〈ui〉) (0, 〈vi〉)
.

(4) (0, 〈xi〉) ∗ (n, 〈yi〉) = (n, 〈ui〉) ∗ (0, 〈vi〉), n > 0. Then xi0(x) > e, vi0(v) > e,
and xiyi = uivi+n for i ∈ Z. Assume i0(x) < i0(v) − n. If i > i0(v) − n, we put
c11i = c12i = c22i = e and c21i = ui. If i = i0(v) − n, then we put c11i = c12i = e,
c21i = ui, c

22
i = vi+n > e. If i = i0(x), then
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xi xi e

yi x−1
i ui vi+n

ui vi+n

,

but xi > e, so by non-atomicity of G, we have for any e < c < xi a table

xi xic
−1 c

yi x−1
i uic c−1vi+n

ui vi+n

(F ),

where the first row has strictly positive elements.
If i satisfies i0(x) < i < i0(v)− n, we take c11i = c12i = e, c21i = ui, c

22
i = vi+n.

If i1 ≤ i < i0(x), where i1 is an integer such that if i < i1, then xi, yi, ui, vi = e,

we use directness, and for i < i1, we set c
jk
i = e, j, k = 1, 2.

Now let i0(x) = i0(v) − n. If i > i0(v) − n, we put c11i = c12i = c22i = e and
c21i = ui. If i = i0(v)−n, by directness, for each i ∈ Z, there is di ≤ xi, yi, ui, vi+n.
Hence, we have a table

xi dic
11
i c12i e

yi c21i (c12i )−1 c22i c12i di
ui vi+n

,

where dic
11
i c12i and c22i c12i di are strictly positive. For i = i0(v)−n, we use directness,

and we always can guarantee to be c12i > e. For the rest of this paragraph, we
continue in the same way as in the previous one.

Now for the case i0(v)−n ≤ i0(x), we proceed in the same way as for i0(v)−n ≥
i0(x). Finally, we have RDP table for (4)

(0, 〈xi〉) (0, 〈c11i 〉) (0, 〈c12i−n〉)
(n, 〈yi〉) (n, 〈c21i−n〉) (0, 〈c22i−n〉)

(n, 〈ui〉) (0, 〈vi〉)
.

(5) (n, 〈xi〉) ∗ (0, 〈yi〉) = (m1, 〈ui〉) ∗ (m2, 〈vi〉), where m1,m2 > 0, n = m1 +m2.
This yields xiyi+n = uivi+m1

, and therefore, we have the following RDP table

(n, 〈xi〉) (m1, 〈ui〉) (m2, 〈u
−1
i−m1

xi−m1
〉)

(0, 〈yi〉) (0, 〈e〉) (0, 〈yi〉)
(m1, 〈ui〉) (m2, 〈vi〉)

.

(6) (0, 〈xi〉) ∗ (n, 〈yi〉) = (m1, 〈ui〉) ∗ (m2, 〈vi〉), where m1,m2 > 0, n = m1 +m2.
We rewrite it in the form (m1, 〈ui〉) ∗ (m2, 〈vi〉) = (0, 〈xi〉) ∗ (n, 〈yi〉), and for it we
have uivi+m1

= xiyi. For it, we have RDP table

(m1, 〈ui〉) (0, 〈xi〉) (m1, 〈x
−1
i ui〉)

(m2, 〈vi〉) (0, 〈e〉) (m2, 〈vi〉)
(0, 〈xi〉) (n, 〈yi〉)

.

(7) (n1, 〈xi〉) ∗ (n2, 〈yi〉) = (m1, 〈ui〉) ∗ (m2, 〈vi〉), where n1, n2,m1,m2 > 0,
n1 + n2 = n = m1 + m2, and m1 > n1. Then xiyi+n1

= uivi+m1
, and we use the

following RDP table
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(m1, 〈ui〉) (n1, 〈xi〉) (m1 − n1, 〈x
−1
i−n1

ui−n1
〉)

(m2, 〈vi〉) (0, 〈e〉) (m2, 〈vi〉)
(n1, 〈xi〉) (n2, 〈yi〉)

if m1 > n1.

(8) (n1, 〈xi〉) ∗ (n2, 〈yi〉) = (m1, 〈ui〉) ∗ (m2, 〈vi〉), where n1, n2,m1,m2 > 0,
n1 + n2 = n = m1 + m2, and n1 > m1. Then xiyi+n1

= uivi+m1
, and we use the

following RDP table

(n1, 〈xi〉) (m1, 〈ui〉) (n1 −m1, 〈u
−1
i−m1

xi−m1
〉)

(n2, 〈yi〉) (0, 〈e〉) (n2, 〈yi〉)
(m1, 〈ui〉) (m2, 〈vi〉)

if n1 > m1.

(9) (n1, 〈xi〉) ∗ (n2, 〈yi〉) = (m1, 〈ui〉) ∗ (m2, 〈vi〉), where n1, n2,m1,m2 > 0,
n1+n2 = n = m1+m2, and n1 = m1. Then xiyi+n1

= uivi+n1
. Let i1 be an integer

such that xi, yi, ui, vi = e if each i < i1 and similarly, let i0 be another integer such
that xi, yi, ui, vi = e for each i > i0. For those i, we set c11i , c12i , c21i , c22i = e and for
i with i1 ≤ i ≤ i0, we apply directness of G, there is di ≤ xi, yi, ui, vi, so we have
d−1
i xiyi+n1

d−1
i+n1

= d−1
i uivi+n1

d−1
i+n1

, and we obtain table

xi dic
11
i c12i

yi+n1
c21i c22i di+n1

ui vi+n1

.

Without loss of generality, we can assume that c12i > e, if not, we take an arbitrary
c > e so that in the table

xi dic
11
i c−1 c

yi+n1
c21i c c−1c22i di+n1

ui vi+n1

,

the elements in the right-up-hand and left-down-hand are strictly positive.
Then we have an RDP table for (9)

(n1, 〈xi〉) (n1, 〈dic
11
i 〉) (0, 〈c12i−n1

〉)
(n2, 〈yi〉) (0, 〈c21i−n1

〉) (n2, 〈c
22
i−n1
〉)

(n1, 〈ui〉) (n2, 〈vi〉)
.

Dually we prove the equivalence (ii) ⇔ (iii). �

6. Conclusion

We have established conditions when the lexicographic product G = G1
−→
× G2

has some kind of RDP’s where G1 is a po-group and G2 is a directed po-group.
Theorem 3.1 gives an answer when G has RDP, RDP1 or RDP2, under the condition
G1 is a linearly ordered group. Theorem 3.3 gives an answer that G has RDP if G1

is an antilattice. We note that we do not know any relevant answer for a question
when G has RDP1. Theorem 4.1 answers when Wreath product AWr G has RDP,
RDP1 and RDP2. In Section 5, we have established conditions when the right and
left wreath products have RDP’s.

Applications of these results are important for the representation of effect alge-
bras, pseudo effect algebras, MV-algebras and pseudo MV-algebras by an interval
in the lexicographic product or in the wreath product, or for kite n-perfect pseudo
effect algebras, see [BoDv].
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