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Abstract

We present a Carlson type inequality for the generalized Sugeno integral

and a much wider class of functions than the comonotone functions. We

also provide three Carlson type inequalities for the Choquet integral. Our

inequalities generalize many known results.

Keywords: Choquet integral; Sugeno integral; Capacity; Semicopula; Carlson

inequality.

1 Introduction

The pioneering concept of the fuzzy integral was introduced by Sugeno [31] as

a tool for modelling non-deterministic problems. Theoretical investigations of the

integral and its generalizations have been pursued by many researchers. Wang and

Klir [34] presented an excellent general overview on fuzzy integration theory. On

the other hand, fuzzy integrals have also been successfully applied to various fields

(see, e.g., [14, 22]).

The study of inequalities for Sugeno integral was initiated by Román-Flores et

al. [27]. Since then, the fuzzy integral counterparts of several classical inequalities,
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including Chebyshev’s, Jensen’s, Minkowski’s and Hölder’s inequalities, are given

by Flores-Franulič and Román-Flores [9], Agahi et al. [2], L. Wu et al. [35]

and others. Furthermore many researchers started to study inequalities for the

seminormed Sugeno integral [1, 16, 17, 24].

The Carlson inequality for the Lebesgue integral is of the form

∞
∫

0

f(x) dx 6
√
π

(

∞
∫

0

f 2(x) dx

)

1
4
(

∞
∫

0

x2f 2(x) dx

)

1
4

, (1)

where f is any non-negative, measurable function such that the integrals on the

right-hand side converge. The equality in (1) is attained iff f(x) =
α

β + x2
for

some constants α > 0, β > 0. The modified versions of the Carlson inequality can

be found in [3] and [20].

The purpose of this paper is to study the Carlson inequality for the generalized

Sugeno as well the Choquet integrals. In Section 2, we provide inequalities for the

generalized Sugeno integral. The results are obtained for a rich class of functions,

including the comonotone functions as a special case. In Section 3 we present the

corresponding results for the Choquet integral.

2 Carlson’s type inequalities for Sugeno integral

Let (X,F) be a measurable space and µ : F → Y be a monotone measure, i.e.,

µ(∅) = 0, µ(X) > 0 and µ(A) 6 µ(B) whenever A ⊂ B. Throughout the paper

Y = [0, 1] or Y = [0,∞]. Suppose ◦ : Y ×Y → Y is a non-decreasing operator, i.e.

a ◦ c > b ◦ d for a > b and c > d. An example of non-decreasing operators is a t-

seminorm, also called a semicopula [8, 24]. There are three important t-seminorms:

M, Π and ◦L, where M(a, b) = a ∧ b, Π(a, b) = ab and ◦L(a, b) = (a + b − 1) ∨ 0

usually called the Łukasiewicz t-norm [18]. Hereafter, a∨b = max(a, b) and a∧b =
min(a, b).

For a measurable function h : X → Y, we define the generalized Sugeno integral

of h on a set A ∈ F with respect to µ and a non-decreasing operator ◦ : Y ×Y → Y

2



as
∫

A

h ◦ µ = sup
α∈Y

{

α ◦ µ
(

A ∩ {h > α}
)}

, (2)

where {h > a} stands for {x ∈ X : h(x) > a}. For ◦ = M, we get the Sugeno

integral [31]. If ◦ = Π, then (2) is called the Shilkret integral [28]. We denote

the Sugeno and the Shilkret integral as (S)
∫

A

f dµ and (N)

∫

A

f dµ, respectively.

Moreover, we obtain the seminormed fuzzy integral if ◦ is a semicopula [30].

Let f, g : X → Y be measurable functions and A,B ∈ F . The functions f|A

and g|B are positively dependent with respect to µ and an operator △ : Y ×Y → Y

if for any a, b ∈ Y

µ
(

{

f|A > a
}

∩
{

g|B > b
}

)

> µ
(

{

f|A > a
}

)

△ µ
(

{

g|B > b
}

)

, (3)

where h|C denotes the restriction of the function h : X → Y to a set C ⊂ X. Ob-

viously,
{

h|C > a
}

= {x ∈ C : h(x) > a} = C ∩{h > a} . Taking a △ b = a∧ b and

a △ b = ab, we recover two important examples of positively dependent functions,

namely comonotone functions and independent random variables. Recall that f

and g are comonotone if (f(x) − f(y))(g(x) − g(y)) > 0 for all x, y ∈ X. More

examples of positively dependent functions can be found in [16].

Suppose ⋆,� : Y × Y → Y are non-decreasing operators. Let ♦ : Y × Y → Y

be a non-decreasing and left-continuous operator, i.e. lim
n→∞

(xn ◦ yn) = x ◦ y for all

xn ր x and yn ր y, where an ր a means that lim
n→∞

an = a and an < an+1 for all

n. Assume △ : Y ×Y → Y is an arbitrary operator and f, fi, g : X → Y, i = 1, 2, 3,

are measurable functions.

We recall two inequalities for generalized Sugeno integral.

Theorem 2.1 ([17]). For s > 1 and A ∈ F , the Jensen type inequality

∫

A

f s ◦ µ >

(
∫

A

f ◦ µ
)s

(4)

holds if as ◦ b > (a ◦ b)s for all a, b ∈ Y.
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Remark 1. If ◦ = ∧, then (4) is satisfied provided (S)

∫

A

f dµ 6 1 (see [36] and

[16], Theorem 3.1).

Theorem 2.2 ([16]). The Chebyshev type inequality of the form

∫

A∩B

(

f1� f2
)

◦ µ >

(
∫

A

f1 ◦ µ
)

♦

(
∫

B

f2 ◦ µ
)

(5)

holds for all positively dependent functions f1|A, f2|B and A,B ∈ F if
(

a� b
)

◦
(

c △

d
)

>
(

a ◦ c
)

♦
(

b ◦ d
)

for all a, b, c, d ∈ Y.

Now we are ready to derive a Carlson-type inequality for the generalized Sugeno

integral.

Theorem 2.3. Suppose p, q > 1 and r, s > 0. Then for arbitrary pairs of positively

dependent functions f|A, g|B and f|A, h|B, the following inequality

(

(

∫

A

f ◦ µ
)

♦

(

∫

B

g ◦ µ
)

)r

⋆

(

(

∫

A

f ◦ µ
)

♦

(

∫

B

h ◦ µ
)

)s

(6)

6

(
∫

A∩B

(

f � g
)p ◦ µ

)

r
p

⋆

(
∫

A∩B

(

f �h
)q ◦ µ

)

s
q

is satisfied if for all a, b, c, d ∈ Y and s > 1,

as ◦ b >
(

a ◦ b
)s
,

(

a� b) ◦
(

c △ d
)

>
(

a ◦ c
)

♦
(

b ◦ d
)

. (7)

Proof. Observe that all integrals in (6) are elements of Y . From the Jensen in-

equality (4), it follows that

∫

A∩B

(

f � g
)

◦ µ 6

(
∫

A∩B

(

f � g
)p ◦ µ

)

1
p

, (8)

∫

A∩B

(

f �h
)

◦ µ 6

(
∫

A∩B

(

f �h
)q ◦ µ

)

1
q

. (9)
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The operator ⋆ is non-decreasing, so by (8) and (9),
(

∫

A∩B

(

f � g
)

◦ µ
)r

⋆

(
∫

A∩B

(

f �h
)

◦ µ
)s

6

(
∫

A∩B

(

f � g
)p ◦ µ

)

r
p

⋆

(
∫

A∩B

(

f1�h
)q ◦ µ

)

s
q

. (10)

From (5) we get
∫

A∩B

(

f �ψ
)

◦ µ >

(
∫

A

f ◦ µ
)

♦

(
∫

B

ψ ◦ µ
)

for ψ = g, h. (11)

To complete the proof, it is enough to apply (11) to (10).

Theorem 2.3 extends all known (obtained by different methods) Carlson type

inequalities for the Sugeno integral. In order to see this, we first put A = B,

△= ◦ = ∧ and � = ⋆ = ♦ = · in Theorem 2.3. Putting further g = 1, h = x,

p = q = 2, r = s = 1 and A = [0, 1] yields the result of Caballero et al. [4]. If µ is

the Lebesgue measure then

(S)

∫

A

f dµ 6
√
2

(

(S)

∫

A

f dµ

)

1
4
(

(S)

∫

A

x2f 2 dµ

)

1
4

,

since (S)

∫

[0,1]

x dµ = 0.5 and if f and g are comonotone, then f|A and g|A are

positively dependent with respect to the operator ∧ (see Example 2.1 in [16]).

Setting r = s = 1, we obtain Theorem 3.1 of Xu and Ouyang [36]

(S)

∫

A

f dµ 6
1√
C

(

(S)

∫

A

f pgp dµ

)

1
2p
(

(S)

∫

A

f qhq dµ

)

1
2q

,

where C =
(

(S)

∫

A

g dµ
)(

(S)

∫

A

h dµ
)

(see Remark 1). Taking r = p/(p+ q) and

s = 1− r, we get Theorem 2.7 from [33]

(S)

∫

A

f dµ 6
1

K

(

(S)

∫

A

f pgp dµ

)

1
p+q

(

(S)

∫

A

f qhq dµ

)

1
p+q

,
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where

K =

(

(S)

∫

A

g dµ

)

p
p+q

(

(S)

∫

A

h dµ

)

q
p+q

.

Combining the above results with other inequalities for comonotone functions one

can also derive (similarly as in [6]) some related Carlson type inequalities for the

Sugeno integral.

From Theorem 2.3 one can obtain many other Carlson type inequalities since

the conditions (7) are fulfilled by many systems of operators. Examples are:

1. △= ∧ and � = ♦ = ◦, where ◦ is any t-norm satysfying the condition

(as ◦ b) > (a◦ b)s for s > 1 since a◦ b 6 a∧ b and any t-norm is an associative

and commutative operator [18];

2. △= � = ◦ = ♦ = · on Y = [0, 1];

3. △= � = ♦ = · and ◦ = ∧ with Y = [0, 1];

4. △= � = ♦ , ◦ = ∧ and Y = [0, 1];

5. △= � = ♦ = ◦, where ◦ is any t-norm satysfying the condition (as ◦ b) >
(a ◦ b)s for s > 1, e.g. the Dombi t-norm a ◦ b = ab/(a+ b− ab);

6. � = ♦ , △ is any operator, a ◦ b = a for all a, b ∈ Y and Y = [0, 1] or

Y = [0,∞].

Example 2.1. The following inequality for the Shilkret integral of a non-decreasing

function f is valid:

(N)

∫

A

f dµ 6
1√
K

·
(

(N)

∫

A

f 2 dµ

)

1
4
(

(N)

∫

A

x2f 2 dµ

)

1
4

,

where K = µ(A) ·
(

(N)

∫

A

x dµ
)

; to see this put △= ∧ or △= · , g = 1, h = x,

♦ = ⋆ = � = ◦ = ·, p = q = 2, r = s = 1 and A = B in Theorem 2.3.

Example 2.2. Let (X,F ,P) be a probability space. Put Y = [0, 1], r = s = 1, g =

1, A = B = X, f = φ
(

U) and h = 1−ψ(U), where U has the uniform distribution

6



on [0, 1] and φ, ψ : [0, 1] → [0, 1] are increasing functions. The functions f and h

are not comonotone but

P
(

f > a, h > b
)

=
(

ψ−1(1− b)− φ−1(a))+ = P
(

f > a
)

◦L P
(

h > b
)

,

so f and h are positively dependent with respect to P and ◦L. The conditions (7)

are satisfied for △= � = ♦ = ◦L and ⋆ = ◦ = · (see [16], formula (40)), thus the

corresponding Carlson inequality takes the form

(

N(f) ◦L 1
)

·
(

N(f) ◦L N(h)
)

6
(

N(f p)
)

1
p

(

N
(

(f ◦L h)q
)

)

1
q
,

where N(f) = (N)

∫

X

f dP.

3 Carlson’s type inequality for Choquet integral

In this section, µ : F → [0,∞] is a monotone measure. Denote by M the set of

monotone measures on (X,F). The Choquet integral of f : X → [0,∞) on A ∈ F
is defined as

∫

A

f dµ =

∞
∫

0

µ
(

A ∩ {f > t}
)

dt,

where the integral on the right-hand side is the improper Riemann integral. A func-

tion f is said to be integrable on a measurable set A if
∫

A

f dµ < ∞. The impor-

tance of the Choquet integral still increases due to many applications in mathe-

matics and economics, see for instance [5, 7, 12, 13, 15].

First, we show that it does not exist a functional c : M → [0,∞] such that for

any monotone measure µ and any integrable function f

∫

X

f dµ 6 c(µ)

(
∫

X

gf 2 dµ

)
1

4
(
∫

X

hf 2 dµ

)
1

4

(12)

provided inf
x∈X

(g(x)h(x)) = 0. Indeed, put µ(A) = 1 for all A 6= ∅, f(x) = 1 for x = t

and f(x) = 0 otherwise, where t is any fixed point of X. Since
∫

X

ψ dµ = sup
x∈X

ψ(x),

7



from (12) we have 1 6 c(µ)(g(t)h(t))1/4, a contradiction with inf
x∈X

(g(x)h(x)) = 0

and c(µ) < ∞. Therefore, some extra conditions should be imposed on f, g, h or

µ.

Now, we present the Carlson type inequality for the Choquet integral of comono-

tone functions.

Theorem 3.1. Let p, q > 1 and r, s > 0. Suppose f, g : X → [0,∞) and f, h : X →
[0,∞) are pairs of comonotone functions. If f is integrable on A, then

∫

A

f dµ 6 K
(

µ(A)
)d
(
∫

A

f pgp dµ

)

r
p(r+s)

(
∫

A

f qhq dµ

)

s
q(r+s)

, (13)

where K =
(

∫

A

g dµ
)−

r
r+s

(

∫

A

h dµ
)−

s
r+s

and d = 2− 1
r+s

(

r
p
+ s

q

)

.

Proof. Without loss of generality, we assume that 0 < µ(A) < ∞. Put m(B) =

µ(A∩B)/µ(A) for B ∈ F . For a given c > 1, the following Jensen type inequality
(
∫

f dm

)c

6

∫

f c dm (14)

is satisfied [11, 19, 38]. Hereafter, we write
∫

f dm instead of
∫

A

f dm. From

(14), we have

(
∫

fg dm

)r(∫

fh dm

)s

6

(
∫

f pgp dm

)
r

p

(
∫

f qhq dm

)
s

q

. (15)

Since f, g are comonotone functions, the following Chebyshev inequality
∫

fg dm >

∫

f dm

∫

g dm

holds (see [10]). The functions f, h are also comonotone, so from (15) we get

(
∫

f dm

)r+s(∫

g dm

)r(∫

h dm

)s

6

(
∫

f pgp dm

)
r

p

(
∫

f qhq dm

)
s

q

.

Combining this with the equality
∫

φ dm =
(

µ(A)
)−1

∫

A

φ dµ, completes the

proof.

8



Putting g = 1 and r = s in Theorem 3.1, we have

(
∫

A

f dµ

)2

6
µ(A)

3−
(

1
p
+
1
q

)

∫

A

h dµ

(
∫

A

f p dµ

)

1
p
(
∫

A

f qhq dµ

)

1
q

,

since
∫

A

1 dµ = µ(A). This result was obtained by Ouyang for p, q > 1 as a con-

sequence of Hölder’s inequality for the Choquet integral of comonotone functions

f, h and Chebyshev’s inequality [25, 37].

The inequality (13) is sharp. In fact, if µ(B) = 1 forB 6= ∅, then
∫

A

φ dµ = s(φ),

where s(φ) denotes the supremum of φ on A, so the inequality (13) takes the form

s(f) 6 s(g)−
r

r+ss(h)−
s

r+s

(

s(fg)
)

r

r+s

(

s(fh)
)

s

r+s . (16)

Since s(φψ) = s(φ)s(ψ) for comonotone functions φ, ψ (see [21]), the equality in

(16) is attained.

Now, we provide the Carlson type inequality for the Choquet integral with

respect to a submodular monotone measure µ. Recall that µ is submodular if

µ(A ∩ B) + µ(A ∪ B) 6 µ(A) + µ(B)

for A,B ∈ F . The Choquet integral is subadditive for all measurable functions

f, g iff µ is submodular (see [26], Theorem 7.7). Define

Hpq(a, b) = (ab)
1
p

(
∫

A

1

(bg + ah)q−1
dµ

)

1
q
. (17)

Theorem 3.2. If µ is submodular, f : X → [0,∞) and A ∈ F , then

∫

A

f dµ 6 21/pHpq

(
∫

A

gf p dµ,

∫

A

hf p dµ

)

, (18)

where p > 1 and 1/p+ 1/q = 1. The equality in (18) is attained if

(

g

∫

A

hf p dµ+

h

∫

A

gf p dµ

)q

f p = γ for some γ > 0 provided µ is modular or gf p and hf p are

comonotone functions.

9



Proof. Since µ is submodular, the following Hölder inequality

∫

A

φψ dµ 6

(
∫

A

φp dµ

)

1
p
(
∫

A

ψq dµ

)

1
q

(19)

is valid, where φ, ψ > 0 (see [32], Theorem 3.5). The equality in (19) holds if

αφp = βψq for α, β > 0, α + β > 0 [23]. By (19) and the subadditivity and

positively homogeneity of the Choquet integral, we get
∫

A

f dµ =

∫

A

(bg + ah)1/pf
1

(bg + ah)1/p
dµ

6

(
∫

A

(bg + ah)f p dµ

)

1
p
(
∫

A

1

(bg + ah)q/p
dµ

)

1
q

6

(

b

∫

A

gf p dµ+ a

∫

A

hf p dµ

)

1
p
(
∫

A

1

(bg + ah)q−1
dµ

)

1
q

. (20)

Putting a =

∫

A

gf p dµ and b =
∫

A

hf p dµ, we obtain (18). Note that if µ is modular

then from Theorem 7.7 of [26] it follows that
∫

A

(bgf p + ahf p) dµ =

∫

A

bgf p dµ+

∫

A

ahf p dµ.

If µ is the Lebesgue measure, g(x) = 1, h(x) = x2, p = q = 2 and A = [0,∞],

we obtain the classical Carlson inequality (1).

Next, we present the Carlson type inequality for the Choquet integral with

respect to a subadditive monotone measure µ.

Theorem 3.3. Suppose f : X → [0,∞), A ⊂ [0,∞] and µ ∈ M such that µ(A ∪
B) 6 µ(A) + µ(B) for A,B ∈ F . Then

∫

A

f dµ 6 41/p
(

1√
p
+

1√
q

)2

Hpq

(
∫

A

gf p dµ,

∫

A

hf p dµ

)

,

where Hpq(a, b) is given by (17), p > 1 and 1/p+ 1/q = 1.

10



Proof. The proof is similar to that of Theorem 3.2, but we use the following in-

equalities (see [29])

∫

A

fg dµ 6

(

1√
p
+

1√
q

)2(∫

A

f p dµ

)

1
p
(
∫

A

gq dµ

)

1
q

,

∫

A

(f + g) dµ 6 2

(
∫

A

f dµ+

∫

A

g dµ

)

.

instead of those in (20). Since (1/
√
p+1/

√
q)2 6 2, the bounds obtained are better

than the bounds of [5].

References

[1] H. Agahi, M.A. Yaghoobi, General Hardy type inequality for seminormed

fuzzy integrals, Applied Mathematics and Computation 216 (2010) 1972–

1977.

[2] H. Agahi, R. Mesiar, Y. Ouyang, On some advanced type inequalities for

Sugeno integral and T-(S-)evaluators, Information Sciences 190 (2012) 64–75.

[3] S. Barza, J. Peoari, L.-E. Persson, Carlson type inequalities, Journal of In-

equalities and Applications (1998) 121–135.

[4] J. Caballero, K. Sadarangani, Fritz Carlson’s inequality for fuzzy integrals,

Computers and Mathematics with Applications 59 (2010) 2763–2767.

[5] J. Cerdà, J. Martín, P. Silvestre, Capacitary function spaces, Collectanea

Mathematica 62 (2011) 95–118.

[6] B. Daraby, L. Arabi, Related Fritz Carlson type inequalities for Sugeno inte-

grals, Soft Computing 17 (2013) 1745–1750.

[7] D. Denneberg, Non-additive measure and integral, Kluwer Academic Publish-

ers, Dordrecht, 1994.

11



[8] F. Durante, C. Sempi, Semicopulae, Kybernetika 41 (2005) 315–328.

[9] A. Flores-Franulič, H. Román-Flores, A Chebyshev type inequality for fuzzy

integrals, Applied Mathematics and Computation 190 (2007) 1178–1184.

[10] B. Girotto, S. Holzer, Chebyshev type inequality for Choquet integral and

comonotonicity, International Journal of Approximative Reasoning 52 (2011)

1118–1123.

[11] B. Girotto, S. Holzer, Chebyshev and Jensen inequalities for Choquet integral,

Mathematica Pannonica 23 (2012) 267–275.

[12] M. Grabisch, Ch. Labreuche, A decade of application of the Choquet and

Sugeno integrals in multi-criteria decision aid, Annals of Operations Research

175 (1) (2010) 247–286.

[13] S. Heilpern, A rank-dependent generalization of zero utility principle, Insur-

ance: Mathematics and Economics 33 (2003) 67–73.

[14] Y. Hu, Fuzzy integral-based perceptron for two-class pattern classification

problems, Information Sciences 177 (2007) 1673–1686.

[15] M. Kaluszka, M. Krzeszowiec, Pricing insurance contracts under Cumulative

Prospect Theory, Insurance: Mathematics and Economics 50 (2012) 159–166.

[16] M. Kaluszka, A. Okolewski, M. Boczek, On Chebyshev type inequalities for

generalized Sugeno integrals, Fuzzy Sets and Systems 244 (2014) 51–62.

[17] M. Kaluszka, A. Okolewski, M. Boczek, On the Jensen type inequality for

generalized Sugeno integral, Information Sciences 266 (2014) 140–147.

[18] E.P. Klement, R. Mesiar, E. Pap, Triangular Norms, Kluwer Academic Pub-

lishers, Dordrecht, 2000.

[19] R. Mesiar, J. Li, E. Pap, The Choquet integral as Lebesgue integral and

related inequalities, Kybernetika 46 (2010) 1098–1107.

12



[20] D.S. Mitrinović, J.E. Pečarić, A.M. Fink, Inequalities Involving Functions and

Their Integrals and Derivatives, Kluwer, Dordrecht, 1991.

[21] T. Murofushi, M. Sugeno, A theory of fuzzy measures: Representations, the

Choquet integral and null sets, Journal of Mathematical Analysis and Appli-

cation 159 (1991) 532–549.

[22] Y. Narukawa, V. Torra, Fuzzy measures and integrals in evaluation of strate-

gies, Information Sciences 177 (2007) 4686–4695.

[23] C. Niculescu, L.-E. Persson, Convex Functions and Their Applications.

A Contemporary Approach, Springer, New York, 2006.

[24] Y. Ouyang, R. Mesiar, On the Chebyshev type inequality for seminormed

fuzzy integral, Applied Mathematics Letters 22 (2009) 1810–1815.

[25] Y. Ouyang, On Carlson inequality for the Choquet integral. Personal commu-

nication.

[26] E. Pap, Null-Additive Set Functions, Kluwer, Dordrecht, 1995.

[27] H. Román-Flores, A. Flores-Franulič, Y. Chalco-Cano, A Jensen type inequal-

ity for fuzzy integrals, Information Sciences 177 (2007) 3192–3201.

[28] N. Shilkret, Maxitive measure and integration, Indagationes Mathematicae

33 (1971) 109–116.

[29] S. Shirali, Analog of Lp with a subadditive measure, Ricerche di Matematica

57 (2008) 43–54.

[30] F. Suárez García, P. Gil Álvarez, Two families of fuzzy integrals, Fuzzy Sets

and Systems 18 (1986) 67–81.

[31] M. Sugeno, Theory of Fuzzy Integrals and its Applications, Ph.D. Disserta-

tion, Tokyo Institute of Technology, 1974.

[32] R.-S. Wang, Some inequalities and convergence theorems for Choquet inte-

grals, Journal of Applied Mathematics and Computing 35 (2011) 305–321.

13



[33] X. Wang, C. Bai, General Fritz Carlson’s type inequality for Sugeno inte-

grals, Hindawi Publishing Corporation Journal of Inequalities ad Applications

(2011) Article ID 761430, 9 pages.

[34] Z. Wang, G. Klir, Generalized Measure Theory, Springer, New York, 2009.

[35] L. Wu, J. Sun, X. Ye, L. Zhu, Hölder type inequality for Sugeno integral,

Fuzzy Sets and Systems 161 (2010) 2337–2347.

[36] Q. Xu, Y. Ouyang, A note on a Carlson-type inequality for the Sugeno inte-

gral, Applied Mathematics Letters 25 (2012) 619–623.

[37] T. Yong-Liang, Y. Ouyang, On the Carlson inequality for the Choquet inte-

gral, Journal of Huzhou Teachers College (2012) 21–25.

[38] X. Zhao, Q. Zhang, Hölder type inequality and Jensen type inequality for

Choquet integral. In Knowledge Engineering and Management, Y. Wang and

T. Li (Eds.), AISC 123, (2011) 219–224.

14


	1 Introduction
	2 Carlson's type inequalities for Sugeno integral
	3 Carlson's type inequality for Choquet integral
	Literatura

