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Abstract The most challenging problem in develop-

ing fuzzy rule-based classification systems is the con-

struction of a fuzzy rule base for the target problem.

In many practical applications, fuzzy sets that are of

particular linguistic meanings, are often predefined by

domain experts and required to be maintained in order

to ensure interpretability of any subsequent inference

results. However, learning fuzzy rules using fixed fuzzy

quantity space without any qualification will restrict

the accuracy of the resulting rules. Fortunately, adjust-

ing the weights of fuzzy rules can help improve classi-

fication accuracy without degrading the interpretabil-

ity. There have been different proposals for fuzzy rule

weight tuning through the use of various heuristics with

limited success. This paper proposes an alternative ap-

proach using Particle Swarm Optimisation in the search
of a set of optimal rule weights, entailing high classi-

fication accuracy. Systematic experimental studies are

carried out using common benchmark data sets, in com-

parison to popular rule based learning classifiers. The

results demonstrate that the proposed approach can

boost classification performance, especially when the

size of initially built rule base is relatively small, and is

competitive to popular rule based learning classifiers.
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1 Introduction

Fuzzy rule induction forms a major approach to learn-

ing robust transparent classification models. The use

of such learning algorithms allows for enhanced trans-

parency in both the learned models themselves and the

inferences performed with the resulting learning classi-

fiers. A fuzzy rule-based classification system (FRBCS)

is a special case of fuzzy modelling where the output of

the system is crisp and discrete. Many approaches have

been proposed for generating and learning fuzzy if-then

rules from numerical data to model the input-output
behaviour of a certain problem. These include a variety

of Genetic Algorithm based methods, with Michigan-

style representation [1,2] that denotes a single fuzzy rule

as an individual chromosome, and Pittsburgh-style rep-

resentation [3,4] that expresses the entire rule base as an

individual. Other popular fuzzy rule induction methods

include fuzzy association rule mining [5], neuro-fuzzy

techniques [6], rough-fuzzy or fuzzy-rough based meth-

ods [7–9], and linguistic semantics-preserving modelling

[10,11].

The techniques developed in the literature have had

success in their carefully selected applications. How-

ever, a major challenge in learning FRBCSs remains

for situations where the membership functions defining

the antecedent fuzzy sets are prefixed, with each hav-

ing a specific linguistic meaning pre-specified by domain

experts (and typically also known to the user). Due to

the need of maintaining the interpretability of a learned

model, any learned fuzzy classification rule is required

to use these fuzzy sets to specify the values of the at-
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tributes. Yet, using a fixed quantity space consisting of

such given fuzzy sets limits the accuracy of the learnt

rules. Fortunately, this problem can be tackled by mod-

ifying the weights associated with the individual rules.

Rule weights intuitively reveal the relative impor-

tance amongst all the rules in a given rule base. The

greater the rule weight of a fuzzy if-then rule, the more

likely it will be chosen to classify an unseen pattern

amongst all the fuzzy rules that cover the subspace of

that pattern. The modification of a rule’s weight is in

effect equivalent to the adjustment of the membership

functions of those antecedent fuzzy sets in the rule [12].

Interestingly, the adjustment of rule weights is much

easier than directly modifying the antecedent fuzzy sets

(which would involve the learning of a number of pa-

rameters for each membership function), since there is

only one single parameter (namely, the weight itself)

per rule to learn [13]. It is therefore desirable to im-

prove the performance of a given rule base by carefully

adjusting the rule weights, instead of learning a set of

dynamic membership functions.

In [14], a seminal method of leaning rule weights is

proposed by the use of an error correction-based learn-

ing procedure with post-learning pruning, through a

“Reward and Punishment” scheme. It works by increas-

ing the weight when a pattern is correctly classified by

the current rule, and decreasing the rule weight other-

wise. Another weighting approach is reported in [15], by

dividing the covering subspace of each fuzzy rule into

two subdivisions based on a given threshold. The asso-

ciation degree of any pattern with a so-called compati-

bility grade above the threshold is enhanced by increas-

ing the weight. The splitting threshold for each rule is

found by exploiting the distribution of patterns in the

subspace covered by that rule. Other rule weight learn-

ing methods for building FRBCSs include [13] and [16].

The importance and effects of learning rule weights in

FRBCSs have been discussed and highlighted in [17],

and a number of heuristic methods for fuzzy rule weight

specifications can also be found in [18].

The performance of a particular fuzzy rule may be

improved by directly adjusting its rule weight. However,

the performance of its neighbouring fuzzy rules (i.e.,

those that also cover the same given pattern) may be

deteriorated or even become useless due to the propa-

gation of such modifications to the rest of the rule base.

The overall consequence is thus unpredictable when all

the rule weights are changing successively. Instead of

solely using heuristic weighting functions to tune fuzzy

if-then rule weights, based on the preliminary inves-

tigation that was reported in [19], this paper describes

the development of an evolutionary algorithm-based ap-

proach to modifying rule weights in FRBCSs. This is

inspired by the observeation that evolutionary algo-

rithms often perform well in globally approximating op-

timal solutions to various types of problem [20–24]. In

particular, Particle Swarm Optimisation (PSO) [25] is

employed as the evolutionary algorithm to evolve rule

weights in order to improve the classification accuracy.

In this work, to take a data-driven approach, the

generation of an initial rule base is done by straight-

forward fuzzy grid partitioning for each input dimen-

sion. Each partition of the input space is identified by

a fuzzy rule if there is at least one training pattern in

that subspace [26]. However, in general, if domain ex-

pertise is available, expert-provided rules may be used

as the initial rule base. The proposed method encodes

fuzzy rule weights as particle dimensions with the ini-

tial population consisting of heuristically created rule

weights [27], covering each class of the given problem

and using predefined partitions for all linguistic vari-

ables. Classification accuracy is set as the fitness evalu-

ation required. The strategy of “single winner rule” [28]

(i.e., the rule that leads to the highest classification

accuracy) is adopted to choose which rule to perform

classification, due to its simplicity and intuitive appeal.

A dozen of benchmark UCI data sets are employed to

examine the performance of the proposed approach, in

comparison with popular rule based learning classifier

algorithms, including C4.5 decision tree [29], top-down

fuzzy pattern trees [30], and fuzzy subsethood-based

rule models with quantifiers [31]. Analysis of the pro-

posed approach in terms of overfitting is made with

respect to both the size of the initial rule base and the

convergence time of the learning process.

The reminder of this paper is organised as follows.

Section II describes the heuristic methods adopted for

the generation of an initial fuzzy rule set and for the

specification of rules weights. For completeness it also

introduces the reasoning method used for performing

classification of new patterns, together with an out-

line of particle swarm optimisation. Section III demon-

strates how the rule weights may affect the classifica-

tion boundaries, and how PSO is employed to evolve

rule weights in order to obtain an optimal solution, in-

cluding a complexity analysis of the proposed approach.

Section IV presents and discusses the experimental re-

sults. Section V concludes the paper and points out

ideas for further development.

2 Preliminaries

This section first describes the heuristic methods adopted

for the generation of an initial fuzzy rule set as well

as the specification of initially generated rules weights.
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The reasoning method employed for classification by fir-

ing learnt fuzzy rules is also briefly explained, followed

by a brief introduction to particle swarm optimisation.

2.1 Fuzzy Rule Learning

The task of learning from or generalising a given prob-

lem description, by the use of fuzzy logic and fuzzy sets,

is to find a finite set of fuzzy if-then rules capable of

reproducing the input-output behaviour of a given sys-

tem (or process). Without losing generality, the system

to be learnt is herein assumed to be a multiple-input-

single-output, containing n inputs and one output and

involving m patterns for an M -class problem. A fuzzy

if-then rule Rj , j = 1, 2, ..., N , for such a system is rep-

resented as follows:

If x1 is Aj1 and ... and xn is Ajn then class is Ch with wj

(1)

where x1, x2, ..., xn are the underlying linguistic vari-

ables, jointly defining an n-dimensional pattern space;

Aji, i ∈ {1, 2, ..., n}, is the fuzzy value of the corre-

sponding antecedent xi; Ch, h ∈ {1, 2, ...,M}, is the

consequent class for the M class problem; and wj is

the rule weight of fuzzy rule Rj indicating the strength

that any input pattern Xp = [xp1, xp2, ..., xpn], p ∈
{1, 2, ...,m} within the fuzzy subspace delimited by the

given antecedent values is deemed to belong to the con-

sequent class Ch.

In order to obtain an initial set of fuzzy if-then

rules, the domain of each attribute is partitioned into K

(K ≥ 2) subsets {AK
1 , A

K
2 , ..., A

K
K}. Practically speak-

ing, partitioning the input space and defining the cor-

responding fuzzy sets are typically done by the domain

experts (even though such specification may reflect a

certain biased view of particular individuals). Of course,

the performance of a resulting learnt classifier may vary

in relation to the variation of the partition of the input

space, especially regarding the number of the partitions

made. When the fuzzy partition is too coarse in the

sense that the number of generated fuzzy subspaces is

too small, the testing data may not be covered by the

resulting rules. On the other hand, if the partitioning of

the fuzzy subspace is too fine such that the number of

generated fuzzy subspaces is too large, there may not be

sufficient data points to support the training [26]. More-

over, the finer the partition is, the more likely that more

rules will be generated in the initial rule base, which will

in turn lead to more complex computation in achieving

the classification task using the resultant rules. The im-

pact of the size of a rule base upon the performance of

a learning classifier will be further investigated later by

examining the effects of using different partitions of a

given problem domain.

In this work, for simplicity and also for having an

unbiased, common footing to perform subsequent com-

parative studies, the following assumption is made: The

two domain-delimiting values of each dimension are de-

fined as rectangular triangular fuzzy sets, and the rest

of the dimension is divided equally into (K − 2) fuzzy

regions, with the corresponding fuzzy membership val-

ues represented by the symmetric triangular functions

as shown in Fig. 1. Note however, that this assumption

is not necessary in applying the underlying techniques

proposed here as any given initial fuzzy petition may be

used to form the initial rule base. In Fig. 1, a and b rep-

resent the minimum and maximum value of xpi taken

from the training examples, respectively. The vertex lo-

cation of a symmetric triangular is calculated according

to its position within the (K − 2) partitions. Member-

ship values of xpi in a new pattern below a or above

b are set to 1. Following the general principle of data-

driven learning, each partition is identified by a fuzzy

rule if there is at least one training pattern in that pat-

tern subspace [26]. That is, given an input partitioning

of pattern space, a fuzzy rule will be generated only if

there is a training pattern covered by this rule. Thus,

for a problem with m training patterns, at most m rules

may be generated.

Fig. 1 Partitioning of each pattern space dimension

There are a number of different approaches to speci-

fying fuzzy rule weights [18]. This work adopts the clas-

sical method of [27] owing to its maturity. Following

this approach, the consequent class Ch of fuzzy rule Rj

and the corresponding rule weight wj are determined

by the following procedure, where rule generation is a

direct by-product:

1. Calculate the matching degree for each class Ch with

respect to the possible antecedents, which is defined

by

βCh
=

∑
Xp∈Ch

n∏
i=1

µAji(xpi) (2)
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where Xp are the training patterns defined on the

corresponding n-dimensional fuzzy subspace Aj =

Aj1×Aj2×· · ·×Ajn, and µAji
(·) is the membership

function of the antecedent fuzzy set Aji.

2. Find βCT
, T = 1, 2, ...,M, such that

βCT
= max{βC1

, βC2
, ...βCM

} (3)

where CT is the class of the maximum matching de-

gree with regard to the antecedent fuzzy sets, form-

ing a candidate if-then rule relating the antecedents

and the class.

3. Set the rule weight wj to a candidate rule with the

following value if its class CT is the unique one that

takes the maximum matching degree in Eqn. (3):

wj = (βCT
− β)/

M∑
h=1

βCh
(4)

β =
∑

Ch 6=CT

βCh
/(M − 1) (5)

where β is the sum of the matching degrees for all

training patterns belonging to the same fuzzy sub-

space, except those covered by CT . Otherwise, dis-

card the corresponding candidate rule when two or

more classes take the maximum value in Eqn. (3) or

all the βCT
are zero, since it cannot be uniquely de-

termined or there is no training pattern in support

of this rule.

4. Promote all remaining candidate rules as the mem-

bers of the learnt rule base, with their corresponding

rule weights assigned.

Note that the above method for rule generation and

rule weight specification is straightforward when a two-

class problem is considered. For instance, assuming that

βC1
> βC2

, the consequent class is determined to be

Class 1 and its weight will be (βC1
−βC2

)/(βC1
+βC2

).

Interestingly, suppose that there are only very few Class

2 patterns in the training data set, the result will be

βC1
>> βC2

≈ 0 and wj ≈ 1. If however, the total

matching degrees of patterns for Class 1 and Class 2

are very similar to each other βC1
≈ βC2

, then wj ≈ 0.

2.2 Fuzzy Rule Firing

A popular and easy to understand, and perhaps also

the simplest method for classifying a new pattern is

based on the strategy of “single winner rule” or “win-

ner taking all” [32]. This is employed in this work (but

if preferred, others can be used alternatively which can

be found in [33]). The class CXp of pattern Xp is deter-

mined by

CXp
= arg max

Ch,h=1,2,...M
αCh

(6)

where αCh
is

αCh
= max{(

n∏
i=1

µAji
(xpi))wj |wj is associated with Rj ,

Rj is associated with Ch, j = 1, 2, ..., N}
(7)

The inferred class is the consequent of the fuzzy rule

that has the maximum value of antecedent matching

degree by the corresponding rule weight. If two or more

classes take the maximum value in Eqn. (6) or the

matching degree is zero at Xp, then the pattern can-

not be uniquely classified. To force a classification (if

desired), such a pattern may be assigned with a default

class label that is associated with the most training in-

stances.

2.3 Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) was first introduced

in [25], and was intended for simulating the flocking

and schooling patterns of birds and fish. PSO is a meta-

heuristic population-based algorithm, and has been suc-

cessfully applied to various applications (e.g., [20, 22]).

PSO optimises a problem with a population of particles

representing candidate solutions. These candidate solu-

tions are updated stochastically with a guide towards

the previously best known positions in the search space.

Two primary operations are involved in particular,

for the update of PSO processes: velocity update and

position update. During each updating iteration, termed

generation, every particle’s movement is influenced by

its local position as well as by the currently known best

global position in the search space. A new velocity vec-

tor is then computed for each particle based on its cur-

rent velocity, the distance from its previous best posi-

tion, and the distance from the global best position so

far. The new velocity is in turn used to calculate the

next position for each particle in the search space.

More formally, the velocity update for each genera-

tion is implemented through the following assignment:

vx = wvx + c1r1(xgBest − x) + c2r2(xpBest − x) (8)

where w is the so-called inertia weight that affects the

trade-off between convergence and exploration-exploitation

in the PSO updating process; c1 and c2 are two posi-

tive constants, termed social and cognitive scaling pa-

rameter in the literature, respectively; r1 and r2 are
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two random numbers within the range [0, 1], introduc-

ing the stochastic nature during the update; x is the

position of a certain particle dimension (or the fitness

of the rule weight of a certain rule that leads to the

current classification accuracy, in terms of the present

application problem); xgBest is the global best position

of all particles (namely the fitness of the rule weights

currently capable of achieving the highest classification

accuracy overall); and xpBest is the best individual po-

sition where the particular particle p achieves the cur-

rent best position. The position is itself updated by the

assignment:

x = x+ εvx (9)

where ε is a further real-valued parameter that is used

to control the evolving speed. The interaction between

PSO positions and PSO velocities is illustrated in Fig.

2.

Fig. 2 Update of PSO velocity and position

Both the global best position and the best individ-

ual position are used during the update process, with

the swarm collectively moving towards the overall best

position. The process is iterated for a set of times or un-

til a minimal error is achieved. The overall PSO process

is summarised as shown in Algorithm 1.

3 Rule Weight Refinement with PSO

This section first illustrates how the classification bound-

ary may be affected with a set of rule weights taking

different values, reinforcing the need for the develop-

ment of the current work. It then introduces how PSO

is employed to refine rule weights for FRBCSs, followed

by a description of the general structure of the present

work, including a brief analysis of the algorithm com-

plexity.

Algorithm 1 PSO update process
1: for each particle do
2: Initialising particle
3: end for
4: while maximum iteration or minimum error not attained

do
5: for each particle do
6: Calculating fitness value
7: if fitness value is better than pBest then
8: Set pBest = current fitness value
9: end if

10: if pBest is better than gBest then
11: Set gBest = pBest
12: end if
13: end for
14: for each particle do
15: Calculating particle velocity according to velocity

update equation (8)
16: Calculating particle position according to position

update equation (9)
17: end for
18: end while

3.1 Influence of Rule Weights upon Classification

Boundaries

A simple example will help demonstrate the effects of

adjusting rules weights on the accuracy of the result-

ing classification. Consider the following case with a

two-dimensional input space. For each of the two input

variables, xp1 and xp2, suppose that three descriptive

fuzzy sets are defined such that xp1 may take a value on

either A11 = Small, A12 = Medium, or A13 = Large,

and xp2 on either A21 = Short, A22 = Medium, or A23

= Long. The two-dimensional pattern space is then di-

vided into 32 = 9 fuzzy subspaces, as shown in Fig. 3.

Each input subspace forms a possible fuzzy if-then rule.

The dotted lines in Fig. 3 also show the classification

boundaries.

Fig. 3 Fuzzy subspace of a two-dimensional pattern space

A newly collected pattern Xp is classified by first

fuzzifying the attribute values using the given prede-



6 Tianhua Chen et al.

fined membership functions, and then checking if there

is any match between the fuzzified value and the an-

tecedent of each given rule. Following the “single winner

rule” strategy, the pattern is deemed to be of the class

that is associated with the rule which has the following

maximum matching degree:

CXp = arg max
Ch,h=1,2,...M

γCh
(10)

where γCh
is of the same value as αCh

that is obtained

from Eqn. 7 when the value of every rule weight is set

to 1. This is generally depicted in Fig. 4 (adapted from

[21]), where α(Xp, Rhj) stands for the matching degree

of the pattern Xp and the subspace of which is covered

by those rules whose consequent is Ch.

Fig. 4 Single winner rule

When there are patterns misclassified, classification

boundaries could be adjusted to recover the classifier

performance by modifying the membership functions

of the linguistic values. Figure 5 shows a case where

the classification boundary is adjusted by modifying

the membership functions of fuzzy sets on x1 axis. Al-

though modifying potential membership functions can

adjust the classification boundary and improve the per-

formance of a fuzzy rule-based system [10], it may de-

stroy the potential linguistic meanings given by the

domain experts and hence, the interpretability of the

learnt model.

According to Eqn. (7), the class label for a new pat-

tern Xp is determined by both the matching degree of

its fuzzified value with the antecedent of a rule and its

corresponding rule weight. It is possible for a pattern

to be misclassified. This is because a pattern may fall

into one of the different neighbouring classes implied by

several adjacent fuzzy rules, as shown in Fig. 3 where

Fig. 5 Modification of classification boundary on member-
ship functions

the black dot is on the edge of two fuzzy subspaces.

For a two-dimensional problem, for instance, the equa-

tion µAj (Xp)wj = µAj′ (Xp)wj′ holds while deciding on

which class a given pattern may belong to. This ob-

servation indicates that the classification boundary can

be determined by the ratio of wj and wj′ only. Con-

sequently, the areas dictated by any two neighbouring

classification rules may be linearly expanded or nar-

rowed by the ratio of their rule weights. Consider rules

Rj1, Rj2, and Rj3 as an example in Fig. 6. Instead

of modifying membership functions, keeping the rule

weights of wj1, wj3 unchanged but reducing the value

of wj2, the areas covered by Rj2’s neighbouring rules

Rj1 and Rj3 will be expanded while the area covered

by Rj2 is contracted.

Fig. 6 Modification of classification boundary by adjusting
rule weights

Rule weights dictate the exact decision areas orig-

inally depicted by the predefined fuzzy sets [27]. Fur-

thermore, the closer the value of a rule weight is to 1,

the more reliable or more significant the rule is. With

“single winner rule” as the reasoning strategy, any mod-

ification of rule weights, through increasing or reducing

the weight value, is in fact equivalent to adjusting the
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reliability of the relevant individual rules. This is in

turn equivalent to reshaping the overall classification

boundaries. The adjustment of any two neighbouring

rule weights is linear in determining new classification

boundaries, but the situation will become much more

complicated if the modification of all rule weights is

performed simultaneously. Figure 7 shows an example

of one possible irregular classification boundary which

involves various rules weights [17].

Fig. 7 Classification boundary of an irregular shape

In order to obtain a higher classification accuracy

the rule weight associated with the (desirable) wining

rule may need to be increased. However, adjusting the

rule weight for any individual rule also affects the clas-

sification boundaries of its neighbouring rules. That is,

whilst the performance of a certain fuzzy rule may be

improved by directly changing its rule weight, the per-

formance of its neighbouring fuzzy rules may be dete-

riorated as a consequence. The overall consequence is

thus unpredictable when all the fuzzy rules are chang-

ing successively. A method is therefore required to deal

with all existing rule weights in a synchronised manner

to achieve overall optimal classification performance.

Broadly speaking, the process of finding an optimal

combination of a full set of rule weights appears similar

to the behaviour of a particle swarm going towards the

best solution with each particle’s movement influenced

by both its local best position and the currently best

known position amongst all rules, as with typical ap-

plications of Particle Swarm Optimisation (PSO) [25].

Inspired by this observation and the success of PSO in

obtaining optimal solutions in multi-dimensional search

space, PSO is employed below to evolve the weights as-

sociated with a set of fuzzy rules.

3.2 Rule Weight Refinement with PSO

Further to the power of searching for optimal solu-

tions in a discrete search space, PSO can also deal with

real numbers directly (and hence the term optimisation

rather than search is used). In particular, through en-

coding rule weights with real numbers, the mechanisms

of updating particle velocities and positions, which are

inherent to PSO (as reflected by Eqn’s. 8 and 9), help

make straightforward modifications on the rule weights.

The dimensionality that each particle can have is herein

set to be the same as the number of the input variables

considered in the problem. In utilising PSO for tun-

ing the rule weights, the PSO only needs to maintain

a single static population whose members are modified

in response to new discoveries about the search space.

Each particle typically starts at a random location [34],

and is accelerated during the iterations towards the par-

ticles that have achieved the previous best position and

the global best position so far. The position of a parti-

cle corresponds to the fitness measure that determines

the quality of the emerging solution.

In the present work, an initial fuzzy if-then rule base

is firstly built with a number of predefined fuzzy sets,

each having a predefined meaning given by domain ex-

perts. This is done via the use of Eqn’s. (2) and (3) first,

in an effort to obtain a consequent class for a certain

rule and then, Eqn’s. (2), (4) and (5) are utilised to cre-

ate initial rule weights for the resulting rules. Tuning

the rule weights is regarded as an optimisation prob-

lem of concurrently finding the best combination of the

weights being amended.

To obtain an optimal set of rule weights with PSO,

the problem needs to be interpreted in terms of PSO

specification. In particular, each of the existing weights

is encoded as one particle dimension, and one particle

then represents the entire set of the rule weights asso-

ciated with the existing fuzzy if-then rules. Positions of

the particles in the first generation are initialised with

the rule weights obtained by the use of Eqn’s. (2), (4)

and (5). Particles are then iteratively modified towards

the best solution with regard to a given quality mea-

sure over the rule weights. The fitness function of each

particle is herein gauged by the classification accuracy

that is entailed by the renewed fuzzy if-then rules. In

summary, the algorithm using PSO to evolve the rule

weights of an existing fuzzy classification system is pre-

sented in Algorithm 2, supported by Algorithm 3.
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Algorithm 2 Fuzzy rule refinement
MAX IT : number of maximum iterations;
GOAL : desired fitness value.

1: Initialisation
2: repeat
3: for each particle i ∈ S do
4: if f(xi) < f(pBesti) then
5: pBesti = xi
6: end if
7: if f(pBesti) < f(gBest) then
8: gBest = pBesti
9: end if

10: end for
11: for each particle i ∈ S do
12: for each dimension d ∈ D do
13: vi,d = wvx +c1r1(xgBest−x)+c2r2(xpBest−x)
14: xi,d = x+ εvi,d
15: end for
16: end for
17: it++
18: until it > MAX IT or GOAL is achieved

Algorithm 3 Initialisation of fuzzy rule refinement
S : number of particles;
D : number of dimensions equal to number of rules;
rd : weight associated with rule d in rule base;
f() : fitness function used to evaluate particles.

1: for each particle i ∈ S do
2: for each dimension d ∈ D do
3: xi,d = rd
4: vi,d = Rnd(−vmax/3, vmax/3)
5: end for
6: pBesti = xi
7: if f(pBesti) < f(gBest) then
8: gBest = pBesti
9: end if

10: end for

3.3 Learning Classifiers with PSO Refined Rule

Weights

As a summary, Fig. 8 shows the general framework of

the proposed approach, for situations where the inter-

pretability of fuzzy sets pre-defined by domain experts

is required to remain unchanged. The initial rule base

can be obtained by simple fuzzy grid partitioning [26] or

other data-driven based methods [7,35]. Specification of

the initial rule weights can be obtained from a range of

methods [18]. PSO is then directed to modify the rule

weights, aiming at improving the overall performance

of the fuzzy classifier under consideration.

In terms of core algorithm complexity, during each

PSO iteration a given set of rules, each of which is asso-

ciated with an updated rule weight (which may remain

the same as its original), is re-evaluated with regard to a

global best set of weights achieved so far. Every training

data is checked against each fuzzy rule that is associated

Fig. 8 Framework of FRBCS with PSO refined rule weights

with the updated rule weight, in order to determine its

classification result by the use of single winning rule

strategy. The total computation effort required to ac-

complish re-evaluation is therefore in proportion to the

product of the number of training data by the number

of fuzzy rules, denoted as m and N respectively, namely

O(mN).

Obviously, in developing an FRBCS this way, a train-

ing data set is needed as input to the learning system,

for both the generation of the initial rule base and the

process of the rule weight refinement. For a given train-

ing set, the greater the number of initially built fuzzy

rules, the more computation is needed to complete a

PSO update process. The training of the FRBCS com-

pletes once the PSO-based refinement process termi-

nates. Unseen patterns can then be classified by the

trained classifier. Although the single winner rule strat-

egy is adopted to classify patterns here, other inference
methods (e.g., weighted vote) may also be employed

if preferred [33]. Note that if after a training process

is completed, a newly collected set of data becomes

available then this set can also be utilised to train the

classifier, with new rules integrated into the existing

rule base. The application of this idea would make the

resulting FRBCSs dynamically adaptive, but how this

may be implemented with minimal disruption of the

existing rule base remains as further work.

4 Experimental Results

To demonstrate the potential of the proposed approach,

a number of comparative experiments are carried out.

The results are reported and discussed here, in terms of

the effects of: (a) rule weighting schemes, (b) rule base

sizes, and (c) rule learning methods used.
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4.1 Experimental Setup

Experiments are performed on 12 real-valued UCI bench-

mark data sets [36]. A summary of the characteristics

of these data sets is given in Table 1. The PSO parame-

ters are empirically specified in Table 2. Note that sim-

ilar settings can be found in the relevant work existing

in the literature (e.g., [23]), supported by the insights

gained through a survey on PSO parameter selection as

reported in [37]. Note also that as the main aim of this

study is to examine the efficacy of applying PSO for

fuzzy rule refinement instead of that of PSO itself, only

the basic version of PSO is used in the experiments.

The parameter specification for PSO is not carefully

adjusted, therefore, simulation results could be further

improved where more sophisticated versions of PSO are

used with carefully modified parameters.

Table 1 Summary of data sets used

Data Set Attributes Classes Instances

ecoli 7 8 336

glass 9 7 214

haberman 3 2 306

image-segmentation (training) 19 7 210

iris 4 3 150

liver-disorders 6 2 345

new-thyroid 5 3 215

parkinsons 22 2 195

pima-diabetes 8 2 768

prnn-synth 2 2 250

seeds 7 3 210

yeast 8 10 1484

Initial rule weights are calculated via Eqn’s. (2), (4)

and (5), classification accuracies are computed with or

without any initial heuristically produced rule weights,

in order to show how the rule weight refinement may

affect the performance of the learned rules’ accuracy.

In Table 3, the abbreviations PSO-FR, FR, and H-

FR stand for the application of fuzzy rules with PSO-

refined rule weights, that of fuzzy rules without rule

weights, and that of fuzzy rules with heuristic rule weights

initially provided, respectively. The purpose of this ex-

perimental design is to test how additional rule weight

may affect the performance of a potential classifier, and

how the proposed method may help improve such per-

formance. Note that several popular rule-based learn-

ing classifiers are also selected to support the compara-

tive study. This is to demonstrate that simple FRBCSs

which employ a rule base whose individual rule weights

are modified with a PSO process are competitive in

Table 2 Empirical PSO parameter settings

w c1 c2 ε Max Generation Particle Numbers

0.8 2.0 2.0 1.0 200 30

their performance as with popular rule-based classifiers

available in the literature.

In an effort to examine the effect of using PSO-

refined rule weights upon the improvement of fuzzy par-

tition quality, four different fuzzy partitions are tested,

where each of the pattern spaces is divided into K

(K = 2, 3, 4, 5) triangular fuzzy subsets in the same

way as that shown in Fig. 1. This allows the perfor-

mance of the proposed method to be investigated for

fine fuzzy partitions as well as coarse fuzzy partitions.

In particular, the case of K = 2 represents a very rough

partition, while that of K = 5 represents a very detailed

partition. Similar partitions can be found in [13]. Note

that given a K, in theory, the total number of fuzzy if-

then rules for each fuzzy partition would be Kn, where

n stands for the number of input attributes, however a

fuzzy rule will only be generated when there is a train-

ing pattern covered by an emerging rule. So, the total

number of rules produced is typically much smaller.

Owing to a large amount of systematic experimental

investigation being carried out, only stratified twofold

cross-validation (2-CV) is employed for data validation

in this work. In 2-CV, a given data set is partitioned

into 2 subsets. One of the subsets is used to train a

fuzzy classifier, where the proposed approach is used

to refine corresponding fuzzy rule weights. Another di-

vided subset is retained as the testing data to produce

a single accuracy value. The process is then repeated 30

times by initialising different, randomly assigned seeds

to produce the final average outcomes. Pairwise t-tests

are run with p < 0.05. Results are thus measured in

terms of the significance of differences between different

learning classifiers, with the achieved accuracy of PSO-

FR as the reference in each experiment. Those results

that are significantly better, worse or of no difference

are marked with “(v)”, “(∗)”, or “(−)”, respectively.

4.2 Effect of Rule Weighting Scheme

As shown in Table 3, H-FR outperforms FR in terms of

average classification accuracy, regardless of the num-

ber of fuzzy partitions, for 7 out of 12 data sets (in-

cluding: ecoli, iris, image, liver-disorders, new-thyroid,

parkinsons, and prnn-synth). For the other 5 data sets,

the results of H-FR are competitive to those of FR.

This is not surprising since the rule weights used in H-

FR are heuristically initialised. This conforms to what
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is discussed in Section 3.1 regarding the influence of

rule weights upon classification boundaries.

Although H-FR generally achieves better results than

FR, the performance of H-FR is still far from ideal.

Fortunately, as illustrated in Table 3, the results of

PSO-FR are significantly better than those achievable

by H-FR for 33 times and worse for just once, with

14 ties. This superior performance of learnt fuzzy clas-

sifiers with PSO refined rule weights is reinforced by

Fig. 9, which systematically depicts the relation be-

tween the PSO iteration number and the accuracy of

a learnt classifier for each of the simulated data sets. In

this figure, 12 sets of plots are shown each representing

the results on one data set for both training and testing

performance using 4 different fuzzy partitions, namely

K = 2, 3, 4, 5. Generally, for both training and testing

data, each FRBCS with the current PSO-returned rule

weights starts from their initial performance, through

an oscillatory process, and then reaches a steady state

with a noticeable degree of improvement.

4.3 Effect of Rule Base Size

From Fig. 9, further observations can be obtained. For

better viewing, the accuracy of each classifier is dis-

played for every 3 iterations within a total of 100 it-

erations, each point is the average of the results from

30 runs of 2-CV. As can be seen, after an initial period

of oscillations, generally the trend of the training per-

formance for all FRBCSs tends to converge at around

40th-60th iteration regardless of the number of fuzzy

partitions. In terms of testing accuracies, the curves

are generally more oscillatory than the training ones.

Although the testing accuracies do not reach so high

as that is achievable over the training phase, they are

significantly improved over the original performance.

Examining these plots more carefully, it is interest-

ing to note that in general, fuzzy classifiers modelled

with a lower number of partitions tend to have a poor

performance at the beginning for both training and

testing, likely due to the coarse partitioning of the input

spaces. However, in terms of testing curves, although

coarse partitioned ones (e.g., K = 2) have a lower start,

their performance can outperform the finer partitioned

ones (e.g., K = 5), not just catching up with them, par-

ticularly for diabetes, glass, haberman, liver-disorders,

parkinsons, prnn-synth, seeds, and thyroids (8 out of 12

data sets). For finer partitions, which generally have a

better start in performance, the classification accuracy

does not improve so much as lower partitioned ones

when converged, and even underperformed than those

models with a lower number of partitions in 11 out of 12

data sets (including: diabetes, ecoli, glass, iris, image,

liver-disorders, parkinsons, prnn-synth, seeds, thyroid,

and yeast). Although a fuzzy classifier using a finer par-

tition and hence, with more initial rules is likely to have

a head start regarding classification performance, the

resulting more complicated search space may make final

solutions converge in a local minimal, thereby achiev-

ing worse results than those obtainable by the use of

coarsely partitioned ones. This hints that in practical

applications of the present work, not too large aK value

should be employed.

In generating the initial rule base by the use of fuzzy

grid partitioning, finer partitions of the input spaces

lead to more fuzzy rules, as clearly indicated from the

rule numbers in Table 3. The more fuzzy rules are gen-

erated initially, the more rule weights need to be modi-

fied. This implies that the search space becomes larger,

the PSO process involves higher computational com-

plexity and also, the classification results are less in-

terpretable. Besides, as observed above, a finer parti-

tioned fuzzy classifier normally achieves worse perfor-

mance. One possible reason for such seemingly unintu-

itive results is overfitting during the training. Therefore,

it would be worthwhile to consider the number of fuzzy

rules as part of the criteria in constructing the fitness

function, by penalising emerging models that consist of

more rules or by filtering poor quality individual rules

(e.g., low coverage or low performance). The implemen-

tation of such ideas remains as further research.

4.4 Effect of Rule Learning Method

Three classifier learning algorithms that generate mod-

els in the form of a rule set are chosen to perform clas-
sification tasks for comparison purpose. These are: the

popular C4.5 decision tree learner (J48) [29], the top-

down fuzzy pattern trees (PTTD) [30], and the fuzzy

subsethood-based rule models with quantifiers (QSBA)

[31].

Fuzzy pattern tree induction is recently introduced

as a novel machine learning method for classification

[38]. A pattern-tree classifier is composed of an ensem-

ble of pattern trees, each of which is of a hierarchi-

cal structure, whose inner nodes are marked with gen-

eralised (fuzzy) logical and arithmetic operators, and

whose leaf nodes are associated with fuzzy predicates

applied to the input variables [30]. In order to reduce

the runtime of PTTD and to have a fair comparison,

only the algebraic t-norm and maximum s-norm are

chosen as fuzzy operators in this work, which are similar

to the operators used in the proposed approach herein

(see Eqn’s. (6) and (7)). Fuzzy quantifier-based models

are generated using fuzzy quantification to replace crisp

weights in subsethood-based fuzzy rule models, which
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Fig. 9 Relation between PSO iteration number and classification performance
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Table 3 Comparison using 30 × 2 cross-validation with respect to classification accuracy (%), where v, − or ∗ indicate
statistically better, same or worse results, respectively, and bold figures signify overall best results for each data set with a
certain partition number.

Data Sets K Rule Number PSO-FR FR H-FR J48 PTTD QSBA

ecoli 2 25.97 78.28±1.97 72.83±1.29(*) 75.98±1.65(*) 74.97±1.29(*) 76.21±2.19(*) 23.29±6.54(*)

3 39.30 80.49±2.10 72.21±1.39(*) 74.99±1.49(*) 77.40±1.93(*) 76.24±1.48(*) 19.59±7.86(*)

4 56.58 81.53±1.75 80.78±1.86(*) 81.47±1.51(-) 75.34±2.40(*) 78.53±2.02(*) 58.64±3.09(*)

5 84.42 79.58±1.84 79.04±2.37(*) 79.65±2.18(-) 75.65±1.90(*) 77.97±1.92(*) 69.03±3.19(*)

glass 2 23.98 60.67±4.77 49.42±3.22(*) 52.23±4.11(*) 52.13±2.62(*) 59.14±2.88(*) 28.30±4.56(*)

3 31.48 61.12±2.50 57.90±2.40(*) 55.51±4.21(*) 59.03±3.11(*) 61.57±4.01(*) 36.08±3.88(*)

4 40.82 54.25±4.41 48.33±3.44(*) 49.10±3.37(*) 57.99±3.37(v) 59.31±4.00(v) 37.88±3.90(*)

5 56.70 58.07±3.03 54.31±2.95(*) 58.47±2.91(-) 57.54±3.89(-) 63.93±3.63(v) 45.83±4.34(*)

haberman 2 3.57 74.07±1.07 73.10±0.27(*) 73.27±0.43(*) 73.35±0.48(*) 72.41±1.63(*) 72.57±4.23(*)

3 6.50 74.02±1.47 73.28±1.05(*) 73.14±0.74(*) 73.33±0.67(*) 73.35±1.43(*) 74.32±1.16(-)

4 8.87 73.65±1.39 75.52±1.17(v) 74.18± 1.10(v) 73.24±0.67(-) 74.90±1.38(v) 73.77±2.87(-)

5 13.47 74.18±1.64 73.33±1.51(*) 73.77±1.39(*) 73.16±0.80(*) 73.81 ±1.08(-) 73.29±1.29(*)

image-segmentation 2 37.05 72.49±3.33 69.41±3.53(*) 70.37±3.23(*) 74.78±2.13(v) 64.98±3.92(*) 55.32±1.55(*)

3 65.15 74.68±2.38 70.86±2.59(*) 73.54±2.45(*) 76.49±2.70(v) 80.98±2.57(v) 59.14±6.81(*)

4 86.60 76.44±2.74 76.57±2.89 (-) 76.57±2.74(-) 82.70±2.28(v) 80.97±2.37(v) 72.09±7.56(*)

5 93.07 72.41±2.11 72.40±2.06(-) 72.51±2.11(-) 80.46 ±2.53(v) 83.68±2.15(v) 74.45±6.92(-)

iris 2 7.98 92.33±2.90 72.04±2.00(*) 84.58±2.64(*) 76.65±2.76(*) 77.49±2.27(*) 66.67±0.00(*)

3 14.75 95.16±1.60 91.56±1.37(*) 93.89±0.91(*) 95.33±1.19(-) 92.18±0.89(*) 62.11±1.63(*)

4 22.38 93.02±1.93 78.18±2.36(*) 85.60±2.75(*) 90.09±3.12(*) 90.78±3.80(*) 62.11±1.71(*)

5 30.60 93.09±1.66 93.00±1.33(-) 93.22±0.89(-) 91.53±2.37(*) 94.73 ±0.98(v) 94.91±0.93(v)

liver-disorders 2 13.97 58.45±2.07 56.10±1.40(*) 57.72±1.53(*) 56.98±1.62(*) 58.20±2.01(-) 47.18±3.03(*)

3 35.80 59.07±2.89 52.10±2.59(*) 56.45±2.41(*) 56.91±1.40(*) 59.71±3.16(-) 46.07±1.54(*)

4 56.53 59.52±3.08 54.64±2.93(*) 56.26±2.80(*) 56.25±2.26(*) 60.03±2.55(-) 53.07±3.22(*)

5 82.30 58.14±2.67 56.24±2.55(*) 56.75±1.91(*) 56.11±2.34(*) 63.51±2.78(-) 57.92±3.33(-)

new-thyroid 2 6.87 91.18±1.49 83.97±1.19(*) 85.13±1.26(*) 84.85±1.79(*) 83.71±0.68(*) 87.21±2.76(*)

3 16.88 91.13±2.31 88.34±1.40(*) 89.30±1.41(*) 86.25±1.62(*) 87.06±1.09(*) 89.71±2.61(*)

4 25.78 91.92±1.77 90.32±1.54 (*) 91.60±1.03(-) 88.50±2.41(*) 92.34±0.87(-) 93.38±0.70(v)

5 33.33 91.16±1.44 88.65±1.95(*) 91.09±1.34(-) 90.90±1.56 (-) 89.61±1.35(*) 92.67±0.80(v)

parkinsons 2 57.07 86.10±2.19 79.15±2.12(*) 83.85±2.29(*) 82.37±2.47(*) 86.19±1.35(-) 54.75±5.06(*)

3 79.67 81.47±2.45 79.83±2.11(*) 80.72±2.48(*) 86.61±2.01(v) 83.72±1.44(v) 77.09±0.86(*)

4 88.12 84.74±3.27 84.80±2.82(-) 84.86 ±2.92(-) 84.35±2.89(-) 85.39±1.87(-) 76.97±0.90(*)

5 93.38 84.78±3.77 84.71±3.80(-) 84.75±3.77(-) 84.48±2.02(-) 86.46±1.87(v) 77.88±1.74(*)

pima-diabetes 2 36.32 73.19±1.57 66.57±1.13(*) 69.34±0.92(*) 68.09±1.28(*) 69.65±1.40(*) 70.53±0.66(*)

3 84.08 70.30 ±1.38 70.72±1.56(-) 69.83±1.41(*) 72.70±1.00(v) 73.83±0.44(v) 61.52±1.60(*)

4 201.70 69.67±1.66 68.14±1.34(*) 69.51±1.60(-) 73.94±0.82(v) 71.85±1.66(v) 58.29±1.34(*)

5 269.70 67.59±1.86 66.65±1.85(*) 67.50±1.86(-) 74.40±1.04(v) 73.55±1.05(v) 69.05±0.71(*)

prnn-synth 2 4.00 83.67±1.83 80.97±0.20(*) 81.25±1.54(*) 81.83±1.12(*) 81.83±1.12(*) 51.68±1.99(*)

3 7.90 83.45±1.29 70.08±3.46(*) 80.47±1.13(*) 77.03±2.19(*) 72.04±2.47(*) 71.20±3.40(*)

4 12.52 83.32±2.21 82.28±0.91(*) 84.23±1.15 (v) 83.28±1.78(-) 84.24±1.21(v) 83.19±1.29(-)

5 16.52 82.65±1.63 79.36±2.35(*) 83.29±1.21(v) 82.76±1.52(-) 80.60±2.12(*) 83.52±1.04(v)

seeds 2 16.22 90.06±1.86 88.21±0.98(*) 86.49±1.26(*) 87.33±1.79(*) 92.16±1.34(v) 33.39±0.35(*)

3 41.92 89.98±1.83 79.67±1.55(*) 85.95±2.26(*) 84.44±2.06(*) 86.35±1.55(*) 41.13±1.27(*)

4 56.17 89.49±1.74 88.08±1.24(*) 88.95±1.38(*) 87.84±2.47(*) 88.35±1.55(*) 62.22±1.45(*)

5 75.57 88.70±1.61 87.89±1.71(*) 88.06±1.67(*) 86.94±1.56(*) 88.78±1.52(-) 73.08±1.61(*)

yeast 2 34.40 47.58±1.84 38.49±0.51(*) 38.79±2.53(*) 39.57±1.79(*) 50.78±0.92(v) 14.22±3.87(*)

3 83.73 54.90±0.95 51.56±0.66(*) 53.17±0.97(*) 52.34±1.49(*) 50.63±1.67(*) 10.45±2.15(*)

4 90.42 52.70±1.16 42.05±0.92(*) 49.76±1.23(*) 51.32±1.68(*) 52.19±1.21(-) 32.53±2.36(*)

5 164.65 50.33±1.45 47.31±1.29(*) 48.30±1.04(*) 49.42±1.49(*) 51.90±1.98(v) 46.89±1.66(*)

are not only interpretable but also practically applica-

ble [39], [40]. Note that the same fuzzy pre-partition of

the input space is adopted for both PTTD and QSBA as

that for the proposed method, whereas the same par-

titioning interval is chosen as the corresponding vari-

able discretisation for J48. All these algorithms are im-

plemented within the WEKA machine learning frame-

work [41] with default parameter setting unless other-

wise stated previously.
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The winning results in terms of achieving the high-

est classification accuracy per learning classifiers are

highlighted in boldface in Table 3. Note that the pro-

posed method (PSO-FR) has 18 wins, compared with

17 wins by PTTD, 6 wins by J48, and 5 wins by QSBA.

Obviously the proposed approach significantly outper-

forms J48 and QSBA, and is competitive to PTTD. Be-

tween the two better performers, PSO-FR and PTTD,

a specific comparison can be made from the results ob-

tained. Statistically, the proposed method wins 22 times

and loses 16 times with 10 ties over PTTD. These re-

sults jointly demonstrate that the present work is at

least competitive to the state-of-the-art rule-based clas-

sifiers in the literature regarding classification accuracy.

5 Conclusion and Future Work

This paper has proposed an approach for fuzzy rule

weight refinement by the use of PSO. The approach

works for situations where an initial rule fuzzy rule-

base has been built with predefined fuzzy sets, which

are required to be maintained for the purpose of con-

sistent interpretability, both in the learned models and

in the inference results using such models. Systematic

experimental results have demonstrated the following:

1. The performance of a fuzzy rule-based classifier can

be significantly improved with rule weight refine-

ment implemented by PSO.

2. The size of an initially built rule base may affect the

performance of the proposed method (but optimisa-

tion of the initial fuzzy quality space is expected to

help reduce such influence).

3. The approach is at least competitive to typical state-

of-the-art learning classifiers even when only simple

fuzzy grid partitioning is used to create the initial

rule base.

Whilst promising, work remains to further improve

this approach. In particular, currently, only the accu-

racy of a fuzzy learning classifier is considered as the

criterion or fitness measure when evolving rule weights.

However, as the size of the rule base or equivalently the

number of rule weights will affect the final result, the

number of rules and hence the partition of the input

space should become part of the fitness function. The

optimisation of PSO parameters also needs to be exam-

ined in order to strengthen the ability of the proposed

method since the current implementation does not in-

vestigate such potential effects. Furthermore, instead of

using PSO, it would be interesting to see whether the

use of an alternative evolutionary computation mecha-

nism may help develop better fuzzy learning classifiers,

regarding both effectiveness and efficiency.

Finally, note that this work assumes the availabil-

ity of an initial rule base, be it created by a simple

partitioning scheme as used in the present implementa-

tion, given by the human expert, or generated by a cer-

tain rule learning method automatically (e.g., through a

clustering algorithm like fuzzy c-means). It investigates

the efficacy of modifying rule weights for rules given in

such an initial rule base. The modification process it-

self has little to do with the set-up of the initial rule

base, which is fixed throughout. However, in the ex-

treme cases where an exceedingly fine-tuned initial rule

base is available such that the rules are already too

accurate to be improved, the need for weight adjust-

ment may vanish. Therefore, it is worth examining the

efficacy of the proposed approach when different rule

bases initialisations are involved, including the situa-

tions where different variables have different partitions

of their respective underlying domains. This remains

active research.
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