Skip to main content
Log in

Nadir point estimation for many-objective optimization problems based on emphasized critical regions

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Nadir points play an important role in many-objective optimization problems, which describe the ranges of their Pareto fronts. Using nadir points as references, decision makers may obtain their preference information for many-objective optimization problems. As the number of objectives increases, nadir point estimation becomes a more difficult task. In this paper, we propose a novel nadir point estimation method based on emphasized critical regions for many-objective optimization problems. It maintains the non-dominated solutions near extreme points and critical regions after an individual number assignment to different critical regions. Furthermore, it eliminates similar individuals by a novel self-adaptive \(\varepsilon \)-clearing strategy. Our approach has been shown to perform better on many-objective optimization problems (between 10 objectives and 35 objectives) than two other state-of-the-art nadir point estimation approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amiri M, Ekhtiari M, Yazdani M (2010) Nadir compromise programming: a model for optimization of multi-objective portfolio problem. Expert Syst Appl 36(6):7222–7226

    Google Scholar 

  • Bechikh S, Ben Said L, Ghedira K (2010) Estimating nadir point in multi-objective optimization using mobile reference points. In: Evolutionary computation (CEC), 2010 IEEE congress on, IEEE Press, pp 1–9

  • Ben Said L, Bechikh S, Ghédira K (2010) The r-dominance: a new dominance relation for interactive evolutionary multicriteria decision making. IEEE Trans Evol Comput 14(5):801–818

    Article  Google Scholar 

  • Benayoun R, De Montgolfier J, Tergny J, Laritchev O (1971) Linear programming with multiple objective functions: step method (STEM). Math Program 1(1):366–375

    Article  MathSciNet  MATH  Google Scholar 

  • Branke J, Kaußler T, Smidt C, Schmeck H (2000) A multi-population approach to dynamic optimization problems. In: Evolutionary design and manufacture. Springer, pp 299–307

  • Branke J, Deb K, Dierolf H, Osswald M (2004) Finding knees in multi-objective optimization. In: Parallel problem solving from nature-PPSN VIII. Springer, pp 722–731

  • Branke J, Deb K, Miettinen K (2008) Multiobjective optimization: interactive and evolutionary approaches. Springer, New York

    Book  MATH  Google Scholar 

  • Chen N, Chen WN, Gong YJ, Zhan ZH, Zhang J, Li Y, Tan YS (2015) An evolutionary algorithm with double-level archives for multiobjective optimization. IEEE Trans Cybern 45(9):1851–1863

    Article  Google Scholar 

  • Dai J, Wang W, Xu Q (2013) An uncertainty measure for incomplete decision tables and its applications. IEEE Trans Cybern 43(4):1277–1289

    Article  Google Scholar 

  • Deb K, Jain H (2014) An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints. IEEE Trans Evol Comput 18(4):577–601

    Article  Google Scholar 

  • Deb K, Kumar A (2007) Interactive evolutionary multi-objective optimization and decision-making using reference direction method. In: Proceedings of the genetic and evolutionary computation conference (GECCO 2007). ACM Press, pp 781–788

  • Deb K, Miettinen K (2009) A review of nadir point estimation procedures using evolutionary approaches: a tale of dimensionality reduction. In: Proceedings of the multiple criterion decision making (MCDM-2008) conference. Springer, pp 1–14

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002a) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  • Deb K, Thiele L, Laumanns M, Zitzler E (2002b) Scalable multi-objective optimization test problems. In: Evolutionary computation (CEC), 2002 IEEE congress on, vol 1. IEEE Press, pp 825–830

  • Deb K, Chaudhuri S, Miettinen K (2006) Towards estimating nadir objective vector using evolutionary approaches. In: Proceedings of the genetic and evolutionary computation conference (GECCO 2006). ACM Press, pp 643–650

  • Deb K, Miettinen K, Sharma D (2009) A hybrid integrated multi-objective optimization procedure for estimating nadir point. In: Evolutionary multi-criterion optimization. Springer, pp 569–583

  • Deb K, Miettinen K, Chaudhuri S (2010) Toward an estimation of nadir objective vector using a hybrid of evolutionary and local search approaches. IEEE Trans Evol Comput 14(6):821–841

    Article  Google Scholar 

  • Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18

    Article  Google Scholar 

  • Dessouky M, Ghiassi M, Davis W (1986) Estimates of the minimum nondominated criterion values in multiple-criteria decision-making. Eng Costs Prod Econ 10(1):95–104

    Article  Google Scholar 

  • Ehrgott M, Tenfelde-Podehl D (2003) Computation of ideal and nadir values and implications for their use in MCDM methods. Eur J Oper Res 151(1):119–139

    Article  MathSciNet  MATH  Google Scholar 

  • Fan Z, Liu Y (2010) A method for group decision-making based on multi-granularity uncertain linguistic information. Expert Syst Appl 37(5):4000–4008

    Article  Google Scholar 

  • He Y, He Z, Chen H (2015) Intuitionistic fuzzy interaction bonferroni means and its application to multiple attribute decision making. IEEE Trans Cybern 45(1):116–128

    Article  Google Scholar 

  • Hsu S, Wang T (2011) Solving multi-criteria decision making with incomplete linguistic preference relations. Expert Syst Appl 38(9):10882–10888

    Article  Google Scholar 

  • Huband S, Hingston P, Barone L, While L (2006) A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans Evol Comput 10(5):477–506

    Article  MATH  Google Scholar 

  • Hughes E (2005) Evolutionary many-objective optimisation: many once or one many? In: Evolutionary computation (CEC), 2005 IEEE congress on, vol 1. IEEE Press, pp 222–227

  • Ishibuchi H, Tsukamoto N, Nojima Y (2008) Evolutionary many-objective optimization: a short review. In: Evolutionary computation (CEC), 2008 IEEE congress on. IEEE Press, pp 2419–2426

  • Ishibuchi H, Masuda H, Tanigaki Y, Nojima Y (2014) Review of coevolutionary developments of evolutionary multi-objective and many-objective algorithms and test problems. In: Computational intelligence in multi-criteria decision-making (MCDM), 2014 IEEE symposium on. IEEE, pp 178–184

  • Jiang S, Ong YS, Zhang J, Feng L (2014) Consistencies and contradictions of performance metrics in multiobjective optimization. IEEE Trans Cybern 44(12):2391–2404

    Article  Google Scholar 

  • Ke L, Zhang Q, Battiti R (2013) MOEA/D-ACO: a multiobjective evolutionary algorithm using decomposition and antcolony. IEEE Trans Cybern 43(6):1845–1859

    Article  Google Scholar 

  • Khare V, Yao X, Deb K (2003) Performance scaling of multi-objective evolutionary algorithms. In: Fonseca C, Fleming P, Zitzler E, Thiele L, Deb K (eds) Evolutionary multi-criterion optimization. Lecture notes in computer science, vol 2632. Springer, Berlin, pp 376–390

    Chapter  Google Scholar 

  • Klamroth K, Miettinen K (2008) Integrating approximation and interactive decision making in multicriteria optimization. Oper Res 56(1):222–234

    Article  MathSciNet  MATH  Google Scholar 

  • Korhonen P, Salo S, Steuer R (1997) A heuristic for estimating nadir criterion values in multiple objective linear programming. Oper Res 45(5):751–757

    Article  MATH  Google Scholar 

  • Li K, Kwong S, Zhang Q, Deb K (2015) Interrelationship-based selection for decomposition multiobjective optimization. IEEE Trans Cybern 45(10):2076–2088

  • Ma X, liu f, Qi Y, Wang X, Li L, Jiao L, Yin M, Gong M (2015) A multiobjective evolutionary algorithm based on decision variable analyses for multi-objective optimization problems with large scale variables. IEEE Trans Evolut Comput PP(99):1–1. doi:10.1109/TEVC.2015.2455812

  • Metev B, Vassilev V (2003) A method for nadir point estimation in MOLP problems. Cybern Inf Technol 3(2):15–24

    MathSciNet  Google Scholar 

  • Miettinen K (1999) Nonlinear multiobjective optimization. Springer, New York

    MATH  Google Scholar 

  • Miettinen K, Eskelinen P, Ruiz F, Luque M (2010) NAUTILUS method: an interactive technique in multiobjective optimization based on the nadir point. Eur J Oper Res 206(2):426–434

    Article  MathSciNet  MATH  Google Scholar 

  • Praditwong K, Yao X (2006) A new multi-objective evolutionary optimisation algorithm: the two-archive algorithm. In: Computational intelligence and security, 2006 international conference on, vol 1. IEEE Press, pp 286–291

  • Praditwong K, Yao X (2007) How well do multi-objective evolutionary algorithms scale to large problems. In: Evolutionary computation (CEC), 2007 IEEE congress on. IEEE Press, pp 3959–3966

  • Purshouse R, Fleming P (2003) Evolutionary many-objective optimisation: an exploratory analysis. In: Evolutionary computation (CEC), 2003 IEEE congress on, vol 3. IEEE Press, pp 2066–2073

  • Szczepanski M, Wierzbicki A (2003) Application of multiple criteria evolutionary algorithms to vector optimisation, decision support and reference point approaches. J Telecommun Inf Technol 3:16–33

    Google Scholar 

  • Thiele L, Miettinen K, Korhonen P, Molina J (2009) A preference-based evolutionary algorithm for multi-objective optimization. Evol Comput 17(3):411–436

    Article  Google Scholar 

  • Wang H, Jiao L, Yao X (2015) Two\_Arch2: an improved two-archive algorithm for many-objective optimization. IEEE Trans Evol Comput 19(4):524–541

    Article  Google Scholar 

  • Yuan Y, Xu H, Wang B, Yao X (2015a) A new dominance relation based evolutionary algorithm for many-objective optimization. doi:10.1109/TEVC.2015.2420112

  • Yuan Y, Xu H, Wang B, Zhang B, Yao X (2015b) Balancing convergence and diversity in decomposition-based many-objective optimizers. doi:10.1109/TEVC.2015.2443001

  • Zitzler E, Künzli S (2004) Indicator-based selection in multiobjective search. In: Parallel problem solving from nature-PPSN VIII. Springer, pp 832–842

  • Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans Evol Comput 3(4):257–271

    Article  Google Scholar 

  • Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: empirical results. Evol Comput 8(2):173–195

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program (973 Program) of China (No.2013CB329402), an EPSRC Grant (No. EP/J017515/1) on “DAASE: Dynamic Adaptive Automated Software Engineering”, the Program for Cheung Kong Scholars and Innovative Research Team in University (No. IRT1170), the National Natural Science Foundation of China (No. 61329302), National Science Foundation of China (Nos. 91438103 and 91438201), and the Fund for Foreign Scholars in University Research and Teaching Programs (the 111 Project) (No. B07048). Xin Yao was supported by a Royal Society Wolfson Research Merit Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Handing Wang.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., He, S. & Yao, X. Nadir point estimation for many-objective optimization problems based on emphasized critical regions. Soft Comput 21, 2283–2295 (2017). https://doi.org/10.1007/s00500-015-1940-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-015-1940-x

Keywords

Navigation