Skip to main content
Log in

Constrained fuzzy evidential multivariate model identified by EM algorithm: a soft sensor to monitoring imprecise and uncertain process parameters

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

This paper focuses on the problem of monitoring/estimating process parameters in the insufficient case when only imprecise and uncertain information can be obtained, possibly due to limited precision and reliability of sensors in industries. To solve this problem, a constrained fuzzy evidential multivariate model is proposed as a soft sensor to monitor imprecise and uncertain process parameters. The most challenging task involved in the modeling is how to identify structure parameters of the monitor model, especially under sets of constraints. To tackle this challenge, we represent the imprecise and uncertain information as fuzzy belief functions in the evidence theory framework, and then propose a restricted fuzzy evidential Expectation-Conditional Maximization algorithm (RFE2CM) for maximum likelihood estimation from fuzzy belief functions under linear inequality constraints. Also, the convergence property of the restricted fuzzy evidential EM algorithm is discussed. In order to validate the performance of the proposed model and algorithm, some numerical simulations are conducted as well as an experimental simulation on a real ball mill in a power plant. The numerical and experimental simulation results show that the proposed model and algorithm can not only be feasibly applicable to monitor the process parameters in insufficient informatics cases, but also have high prediction accuracy with small mean square errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The symbol “\(\rightarrow \)” means “approaching”. Notice that x cannot be one in practice, because “\(x = 1\)” means there is no gap inside the ball mill. This will never occur in practice.

  2. Around the 4269th second, there are some fine coal powder overflowing from the inlet of ball mill and the ball mill thus achieving the over load condition. After the 4269th second, the operators reduce the load of feed coal slowly in order to make the level of coal powder maintain at a high-level case. Therefore, the level of coal powder associated to the running data before the 4269th second covers its whole domain in some sense.

References

  • Davidov O, Rosen S (2011) Constrained inference in mixed-effects models for longitudinal data with application to hearing loss. Biostatistics 12(2):327–340

    Article  Google Scholar 

  • Dempster AP (1967) Upper and lower probabilities induced by a multivalued mapping. Ann Math Stat 38(2):325–339

    Article  MathSciNet  MATH  Google Scholar 

  • Dempster AP (1968) Upper and lower probabilities generated by a random closed interval. Ann Math Stat 39(3):957–966

    Article  MathSciNet  MATH  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B 39:1–38

    MathSciNet  MATH  Google Scholar 

  • Denoeux T (2011) Maximum likelihood estimation from fuzzy data using the EM algorithm. Fuzzy Sets Syst 183:72–91

    Article  MathSciNet  MATH  Google Scholar 

  • Denoeux T (2013) Maximum likelihood estimation from uncertain data in the belief function framework. IEEE Trans Knowl Data Eng 25(1):119–130

    Article  Google Scholar 

  • Dykstra RL, Robertson T, Silvapulle MJ (eds) (2002) Statistical inference under inequality constraints (special issue). J Stat Plan Inference 107:1–2

  • Fessler JA, Hero AO (1994) Space-alternating generalized expectation-maximization algorithm. IEEE Trans Signal Process 42:2664–2677

    Article  Google Scholar 

  • Hoferkamp C, Peddada SD (2002) Parameter estimation in linear models with heteroscedastic variances subject to order restrictions. J Multivar Anal 82:65–87

    Article  MathSciNet  MATH  Google Scholar 

  • Kim DK, Taylor JMG (1995) The restricted EM algorithm for maximum likelihood estimation under linear restrictions on the parameters. J Am Stat Assoc 430:708–716

    Article  MathSciNet  MATH  Google Scholar 

  • Liew CK (1976) Inequality constrained least-squares estimation. J Am Stat Assoc 71:746–751

    Article  MathSciNet  MATH  Google Scholar 

  • Little RJA, Rubin DB (1994) The ECME algorithm: a simple extension of EM and ECM with faster monotone convergence. Biometrika 81:633–648

    Article  MathSciNet  MATH  Google Scholar 

  • Meng XL, van Dyk DV (1997) The EM algorithm–an old folk song sung to a fast new tune. J R Stat Soc Ser B 59:511–567

    Article  MathSciNet  MATH  Google Scholar 

  • Meng XL, Rubin DB (1991) Using EM to obtain asymptotic variance-covariance matrices: the SEM algorithm. J Am Stat Assoc 86:899–909

    Article  Google Scholar 

  • Shafer G (1976) A mathematical theory of evidence. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Shi NZ, Zheng SR, Guo JH (2005) The restricted EM algorithm under inequality restrictions on the parameters. J Multivar Anal 92:53–76

    Article  MathSciNet  MATH  Google Scholar 

  • Shi NZ, Jiang H (1998) Maximum likelihood estimation of isotonic normal means with unknown variances. J Multivar Anal 64:183–195

    Article  MathSciNet  MATH  Google Scholar 

  • Smets Ph (1981) The degree of belief in a fuzzy event. Inf Sci 25(1):1–19

    Article  MathSciNet  MATH  Google Scholar 

  • Smets Ph (1990) The combination of evidence in the transferable belief model. IEEE Trans Pattern Anal Mach Intell 12(5):447–458

    Article  Google Scholar 

  • Smets Ph (1991) Varieties of ignorance. Inf Sci 57–58:135–144

  • Su ZG, Wang PH, Yu XJ, Lv ZZ, Lu L (2011) Multi-model strategy based evidential soft sensor model for predicting evaluation of variables with uncertainty. Appl Soft Comput 11(2):2595–2610

    Article  Google Scholar 

  • Su ZG, Wang PH, Wang YF (2012) Interval-valued EM algorithm with application to estimating parameters. In: Proceedings of the world congress on engineering and computer science, vol. I, San Francisco, USA, pp 551–556

  • Su ZG, Wang PH, Song ZL (2013a) Kernel based nonlinear fuzzy regression model. Eng Appl Artif Intell 28(2):724–738

    Article  Google Scholar 

  • Su ZG, Wang YF, Wang PH (2013b) Parametric regression analysis of imprecise and uncertain data in the fuzzy belief function framework. Int J Approx Reason 54(8):1217–1242

    Article  MathSciNet  MATH  Google Scholar 

  • Su ZG, Zheng SR, Wang PH (2014) Likelihood-based multivariate fuzzy model with linear inequality constraints. J Intell Fuzzy Syst 27(5):2194–2209

    MathSciNet  Google Scholar 

  • Su ZG, Wang PH (2014) Regression analysis of belief functions on interval-valued variables: comparative studies. Soft Comput 18(1):51–70

    Article  MATH  Google Scholar 

  • Wu CFJ (1983) On the convergence properties of the EM algorithm. Ann Stat 11:95–103

    Article  MathSciNet  MATH  Google Scholar 

  • Yager RR (1982) Generalized probabilities of fuzzy events from fuzzy belief structures. Inf Sci 28(1):45–62

    Article  MathSciNet  MATH  Google Scholar 

  • Yager RR (1996) On the normalization of fuzzy belief structure. Int J Approx Reason 14(2–3):127–153

    Article  MathSciNet  MATH  Google Scholar 

  • Yen J (1990) Generalizing the Dempster-Shafer theory to fuzzy sets. IEEE Trans Syst Man Cybern 20(3):559–569

    Article  MathSciNet  MATH  Google Scholar 

  • Zangwill WI (1969) Nonlinear programming: a unified approach. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Zheng SR, Guo JH, Shi NZ, Tian GL (2012) Likelihood-based approaches for multivariate linear models under inequality constraints for incomplete data. J Stat Plan Inference 142:2926–2942

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the contributions of Professor Thierry Denoeux to our work. The authors also thank the significant contributions of the editors and the two anonymous referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-gang Su.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Communicated by V. Loia.

This work is supported by the National Natural Science Foundation of China (No. 51106025, 51476028) and in part by the Fundamental Research Funds for the Central Universities (No. 2242014R30002).

Appendices

Appendix 1: Calculations of \(\mathbf {z}^{( q)}={\mathtt {E}}_{\varvec{\psi } ^{(q)}} ( {\left. \mathbf {z} \right| {pl}})\),\(\varvec{\alpha } _i^{( q)} ={\mathtt {E}}_{\varvec{\psi } ^{(q)}} ( {\left. {\mathbf {x}_i \mathbf {{x}'}_i } \right| {pl}_i })\) and \(\beta _i^{( q)} ={\mathtt {E}}_{\varvec{\psi } ^{(q)}} ( {\left. {\mathbf {x}_i } \right| {pl}_i })\) in E-step of RFE2CM algorithm.

Let us assume that P is the distribution of a univariate normal random variable \(X_{ij}\) with mean v, standard deviation \(\sigma \) and p.d.f. g(x). A piece of (marginal) FBA \(m_{ij}\) on \( X_{ij}\), holding \(r_{i}\) focal elements \(F(m_{ij})\) = {\(\tilde{A}_1 \), \(\tilde{A}_2 \), ..., \(\tilde{A}_{r_i } \)}, is used to represent our partial and uncertain information about the realization \(x_{ij}\). Let \(\forall \tilde{A}=( {a,b,c})\in F( {m_{ij} })\)be a triangular fuzzy number, with membership function:

$$\begin{aligned} \mu _{\tilde{A}} (x)=\left\{ {\begin{array}{l} \frac{x-a}{b-a}\qquad \mathrm{if}\quad a\le x\le b, \\ \frac{c-x}{c-b}\quad \quad \;\mathrm{if}\quad b\le x\le c, \\ 0\qquad \quad \,\, \mathrm{otherwise} \\ \end{array}} \right. \end{aligned}$$
(60)

Denoting by g(x) the p.d.f. of \(X_{ij}\) with parameter \(\varvec{\psi }\) = (v, \(\sigma \))’, we have

$$\begin{aligned} L( {\varvec{\psi } ,{pl_{ij} }})= & {} {\mathtt {E}}\left[ {{pl_{ij} }( x)} \right] =\int {g( x){pl_{ij} }( x)\mathrm{d}x}\nonumber \\= & {} \int {g( x)\left( {\sum \limits _{\tilde{A}\in F( {m_{ij} })} {m( {\tilde{A}})\mu _{\tilde{A}} ( x)} }\right) \mathrm{d}x}\nonumber \\= & {} \sum \limits _{\tilde{A}\in F( {m_{ij} })} {m_{ij} ( {\tilde{A}})} \int {g( x)\mu _{\tilde{A}} ( x)\mathrm{d}x} \end{aligned}$$
(61)

which can be completed by

$$\begin{aligned} \int {\mu _{\tilde{A}} ( x)g( x){\text{ d }}x}= & {} \frac{1}{b-a}\int _a^b {xg( x){\text{ d }}x} \\&-\frac{a}{b-a}\left( {\Phi ( {b^*})-\Phi ( {a^*})}\right) \\&+\frac{c}{c-b}\left( {\Phi ( {c^*})-\Phi ( {b^*})}\right) \\&-\frac{1}{c-b}\int _b^c {xg( x){\text{ d }}x} . \end{aligned}$$

where \(\Phi \)(.) denotes the c.d.f. of the standard normal distribution, and \(x_{ij}^{*}\) denotes (\(x_{ij}\)v)/ \(\sigma \) for all \(x_{ij}\). It is easy to show that

$$\begin{aligned}&\int _a^b {xg( x){\text{ d }}x} =\frac{\sigma }{\sqrt{2\pi } }\left[ {\exp \left( {-\frac{a^{*2}}{2}}\right) -\exp \left( {-\frac{b^{*2}}{2}}\right) } \right] \nonumber \\&\quad +v\left( {\Phi ( {b^*})-\Phi ( {a^*})}\right) \end{aligned}$$
(62)

Eq. (62) makes it possible to complete the Eq. (70).

Let us now compute the expectation of \(X_{ij}\) given \({pl}_{ij} \)for the conditional density of \(X_{ij}\). We have

$$\begin{aligned} \beta _{ij}^{( q)}= & {} {\mathtt {E}}_{\varvec{\Psi } ^{( q)}} ( {\left. {X_{ij} } \right| {pl}_{ij} })=\int {xg( {\left. x \right| {pl_{ij} },\varvec{\psi } }){\text{ d }}x}\nonumber \\= & {} \frac{\int {xg( x){pl_{ij} }( x){\text{ d }}x} }{L( {\varvec{\psi } ,{pl_{ij} }})}\nonumber \\= & {} \frac{\sum \limits _{\tilde{A}\in F( {m_{ij} })} {m_{ij} ( {\tilde{A}})} \int {x\mu _{\tilde{A}} ( x)g( x){\text{ d }}x} }{L( {\varvec{\psi } ,{pl_{ij} }})} \end{aligned}$$
(63)

where the denominator is given by (61), and the numerator is

$$\begin{aligned} \int {x\mu _{\tilde{A}} ( x)g( x){\text{ d }}x}= & {} \frac{1}{b-a}\int _a^b {x^2g( x){\text{ d }}x}\nonumber \\&-\frac{a}{b-a}\int _a^b {xg( x){\text{ d }}x}\nonumber \\ \nonumber \\&+\frac{c}{c-b}\int _b^c {xg( x){\text{ d }}x}\nonumber \\&-\frac{1}{c-b}\int _b^c {x^2g( x){\text{ d }}x} \end{aligned}$$
(64)

which can be computed using Eq. (62)and

$$\begin{aligned}&\int _a^b {x^2g( x){\text{ d }}x} =\frac{\sigma ^2}{\sqrt{2\pi } }\left[ {a^*\exp \left( {-\frac{a^{*2}}{2}}\right) -b^*\exp \left( {-\frac{b^{*2}}{2}}\right) } \right] \nonumber \\&\quad +\frac{2\sigma v}{\sqrt{2\pi } }\left[ {a^*\exp \left( {-\frac{a^{*2}}{2}}\right) -b^*\exp \left( {-\frac{b^{*2}}{2}}\right) } \right] \nonumber \\&\quad +\left( {v^2+\sigma ^2}\right) \left( {\Phi ( {b^*})-\Phi ( {a^*})}\right) \end{aligned}$$
(65)

Therefore, we have

$$\begin{aligned}&\varvec{\beta } _i^{( q)} ={\mathtt {E}}_{\varvec{\psi } ^{(q)}} \left( {\left. {\mathbf {x}_i } \right| {pl}_i }\right) =\left( {\mathtt {E}}_{\varvec{\psi } ^{(q)}} \left( {\left. {X_{i1} } \right| {pl}_{i1} }\right) ,\right. \nonumber \\&\left. \quad {\mathtt {E}}_{\varvec{\psi } ^{(q)}} \left( {\left. {X_{i2} } \right| {pl}_{i2} }\right) ,\ldots ,{\mathtt {E}}_{\varvec{\psi } ^{(q)}} \left( {\left. {X_{it} } \right| {pl}_{it} }\right) \right) ^\prime \nonumber \\&\quad =\left( {\beta _{i1}^{( q)} ,\beta _{i2}^{( q)} ,\ldots ,\beta _{it}^{( q)} }\right) ^\prime \end{aligned}$$
(66)

Because \({\varvec{\bar{\mathrm{x}}}}=( {{\varvec{\bar{\mathrm{x}'}}}_1 ,\varvec{{\bar{\mathrm{x}}'}}_2 ,\ldots ,{\varvec{\bar{\mathrm{x}'}}}_t })^\prime \) and \(\mathbf {z}={{\varvec{\bar{\mathrm{U}}}}'D\bar{x}}\), we have

$$\begin{aligned} \mathbf {z}^{( q)}= & {} {\mathtt {E}}_{\varvec{\psi } ^{(q)}} ( {\left. \mathbf {z} \right| {pl}}) \nonumber \\= & {} {{\varvec{\bar{\mathrm{U}}}}^{\prime }{\mathbf {A}}}E_{\varvec{\psi } ^{(q)}} ( {\left. {{\varvec{\bar{\mathrm{x}}}}} \right| {pl}}) \nonumber \\= & {} {{\varvec{\bar{\mathrm{U}}}}^{\prime }{\mathbf {A}}}E_{\varvec{\psi } ^{(q)}} \left( {\left. {\left( {\varvec{{\bar{\mathrm{x}'}}}_1 ,{\varvec{\bar{\mathrm{x}'}}}_2 ,\ldots ,{\varvec{\bar{\mathrm{x}'}}}_t }\right) ^\prime } \right| {pl}}\right) \nonumber \\= & {} {\varvec{{\bar{\mathrm{U}}}}^{\prime }{\mathbf {D}}}\left( {\beta _{11}^{( q)} ,\beta _{21}^{( q)} ,\cdots ,\beta _{n1}^{( q)} ,\ldots ,\beta _{1t}^{( q)} ,\beta _{2t}^{( q)} ,\ldots ,\beta _{nt}^{( q)} }\right) ^\prime \nonumber \\ \end{aligned}$$
(67)

We finally compute

$$\begin{aligned} \alpha _{ij}^{( q)}= & {} {\mathtt {E}}\left( {\left. {X_{ij}^2 } \right| {pl}_{ij} }\right) =\int {x^2g\left( {\left. x \right| {pl}_{ij} ,\varvec{\psi } }\right) {\text{ d }}x}\nonumber \\= & {} \frac{\int {x^2g( x){pl}_{ij} ( x){\text{ d }}x} }{L\left( {\varvec{\psi } ,{pl}_{ij} }\right) }\nonumber \\ {}= & {} \frac{\sum \limits _{\tilde{A}\in F( {m_{ij} })} {m_{ij} ( {\tilde{A}})} \int {x^2\mu _{\tilde{A}} ( x)g( x){\text{ d }}x} }{L\left( {\varvec{\psi } ,{pl}_{ij} }\right) } \end{aligned}$$
(68)

The numerator in (68) is

$$\begin{aligned}&\int {x^2\mu _{\tilde{A}} ( x)g( x){\text{ d }}x} =\frac{1}{b-a}\int _a^b {x^3g( x){\text{ d }}x}\nonumber \\&\quad -\frac{a}{b-a}\int _a^b {x^2g( x){\text{ d }}x}\nonumber \\&\quad +\frac{c}{c-b}\int _b^c {x^2g( x){\text{ d }}x} -\frac{1}{c-b}\int _b^c {x^3g( x){\text{ d }}x} \end{aligned}$$
(69)

which can be computed using (65) and

$$\begin{aligned}&\int _a^b {x^3g( x){\text{ d }}x} \nonumber \\&\quad =\frac{\sigma ^3}{\sqrt{2\pi } }\left[ {\left( {2+a^*}\right) \exp \left( {-\frac{a^{\mathbf {*2}}}{2}}\right) -( {2+b^*})\exp \left( {-\frac{b^{\mathbf {*2}}}{2}}\right) } \right] \nonumber \\&\qquad +\,\frac{3\sigma ^2v}{\sqrt{2\pi } }\left[ {a^*\exp \left( {-\frac{a^{\mathbf {*2}}}{2}}\right) -b^*\exp \left( {-\frac{b^{\mathbf {*2}}}{2}}\right) } \right. \nonumber \\&\qquad \left. {+\,\sqrt{2\pi } \left( {\Phi ( {b^*})-\Phi ( {a^*})}\right) } \right] \nonumber \\&\qquad +\,\frac{3\sigma v^2}{\sqrt{2\pi } }\left[ {\exp \left( {-\frac{a^{\mathbf {*2}}}{2}}\right) -\exp \left( {-\frac{b^{\mathbf {*2}}}{2}}\right) } \right] \nonumber \\&\qquad +v^3\left( {\Phi ( {b^*})-\Phi ( {a^*})}\right) \end{aligned}$$
(70)

Then, we have

$$\begin{aligned}&\varvec{\alpha } _i^{( q)} ={\mathtt {E}}_{\varvec{\psi } ^{(q)}} \left( {\left. {\mathbf {x}_i \mathbf {{x}'}_i } \right| {pl}_i }\right) \\&\quad =E_{\varvec{\psi } ^{(q)}} \left( {\left. {\left( {{\begin{array}{llll} {X_{i1}^2 } &{} {X_{i1} X_{i2} } &{} \cdots &{} {X_{i1} X_{it} } \\ {X_{i2} X_{i1} } &{} {X_{i2}^2 } &{} \cdots &{} {X_{i2} X_{it} } \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ {X_{it} X_{i1} } &{} {X_{it} X_{i2} } &{} \cdots &{} {X_{it}^2 } \\ \end{array} }}\right) } \right| {pl}_i }\right) \\&\quad =\left( {{\begin{array}{llll} {E_{\varvec{\psi } ^{(q)}} \left( {\left. {X_{i1}^2 } \right| {pl}_i }\right) } &{} {E_{\varvec{\psi } ^{(q)}} \left( {\left. {X_{i1} X_{i2} } \right| {pl}_i }\right) } &{} \cdots &{} {E_{\varvec{\psi } ^{(q)}} \left( {\left. {X_{i1} X_{it} } \right| {pl}_i }\right) } \\ {E_{\varvec{\psi } ^{(q)}} \left( {\left. {X_{i2} X_{i1} } \right| {pl}_i }\right) } &{} {E_{\varvec{\psi } ^{(q)}} \left( {\left. {X_{i2}^2 } \right| {pl}_i }\right) } &{} \cdots &{} {E_{\psi ^{(q)}} \left( {\left. {X_{i2} X_{it} } \right| {pl}_i }\right) } \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ {E_{\varvec{\psi } ^{(q)}} \left( {\left. {X_{it} X_{i1} } \right| {pl}_i }\right) } &{} {E_{\varvec{\psi } ^{(q)}} \left( {\left. {X_{it} X_{i2} } \right| {pl}_i }\right) } &{} \cdots &{} {E_{\varvec{\psi } ^{(q)}} \left( {\left. {X_{it}^2 } \right| {pl}_i }\right) } \\ \end{array} }}\right) =\left( {{\begin{array}{llll} {\alpha _{i1}^{( q)} } &{} {\beta _{i1}^{( q)} \beta _{i2}^{( q)} } &{} \cdots &{} {\beta _{i1}^{( q)} \beta _{it}^{( q)} } \\ {\beta _{i2}^{( q)} \beta _{i1}^{( q)} } &{} {\alpha _{i2}^{( q)} } &{} \cdots &{} {\beta _{i2}^{( q)} \beta _{it}^{( q)} } \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ {\beta _{it}^{( q)} \beta _{i1}^{( q)} } &{} {\beta _{it}^{( q)} \beta _{i2}^{( q)} } &{} \cdots &{} {\alpha _{it}^{( q)} } \\ \end{array} }}\right) . \end{aligned}$$

Appendix 2

Proof of Theorem 1

The Lagrange function corresponding to optimization problem (31) can be given by

$$\begin{aligned} l( \varvec{\theta } )=\left\| {\varvec{\theta } -\varvec{\gamma } ^{( q)}} \right\| ^2-{\varvec{\lambda } }'( {\mathbf {B}_0 \varvec{\theta } -\mathbf {a}}) \end{aligned}$$
(71)

where \(\varvec{\lambda } \) is a non-negative l-dimensional vector.

Let \(\varvec{\theta } \) be the solution to (31), we have

$$\begin{aligned} \frac{\partial l( \varvec{\theta } )}{\partial \varvec{\theta } }=2\left( {\varvec{\theta } -\varvec{\gamma } ^{( q)}}\right) -\mathbf {{B}'}_0 \varvec{\lambda } =0 \end{aligned}$$
(72)
$$\begin{aligned} \mathbf {B}_0 \varvec{\theta } -\mathbf {a}\ge \mathbf {0} \end{aligned}$$
(73)
$$\begin{aligned} {\varvec{\lambda } }'( {\mathbf {B}_0 \varvec{\theta } -\mathbf {a}})=\mathbf {0} \end{aligned}$$
(74)

If B \(_{1}\) \(\varvec{\theta } \) \(>\) a \(_{1}\) and B \(_{2}\) \(\varvec{\theta } \) = a \(_{2}\), then (74) implies

$$\begin{aligned} {\varvec{\lambda } }'( {\mathbf {B}_0 \varvec{\theta } -\mathbf {a}})=( {{\varvec{\lambda } }'_1 ,{\varvec{\lambda } }'_2 })\left( {\begin{array}{l} \mathbf {B}_1 \varvec{\theta } -\mathbf {a}_1 \\ \mathbf {B}_2 \varvec{\theta } -\mathbf {a}_2 \\ \end{array}}\right) ={\varvec{\lambda } }'_1 ( {\mathbf {B}_1 \varvec{\theta } -\mathbf {a}_1 })=\mathbf {0} \end{aligned}$$
(75)

where \(\varvec{\lambda } \) \(_{1}\) and \(\varvec{\lambda } \) \(_{2}\) are, respectively, \(l_{1}\)- and \(l_{2}\)-dimensional vectors such that \(l_{1}\)+ \(l_{2}=l\).

Therefore, we get \(\varvec{\lambda } \) \(_{1}\) = 0 and \(\varvec{\lambda } \) \(_{2}\) \(\ge \) 0. From (72), we have

$$\begin{aligned} 2( {\varvec{\theta } -\varvec{\gamma } ^{( q)}})-\mathbf {{B}'}_2 \varvec{\lambda } _2 =\mathbf {0} \end{aligned}$$
(76)

Multiplying B \(_{2}\) on both sides of (76), we have

$$\begin{aligned} 2\mathbf {B}_2 ( {\varvec{\theta } -\varvec{\gamma } ^{( q)}})-\mathbf {B}_2 \mathbf {{B}'}_2 \varvec{\lambda } _2 =\mathbf {0} \end{aligned}$$
(77)

From (77), we can obtain the solution of \(\varvec{\lambda } \) \(_{2}\) as following:

$$\begin{aligned} \varvec{\lambda } _2= & {} 2( {\mathbf {B}_2 \mathbf {{B}'}_2 })^{-1}\mathbf {B}_2 ( {\varvec{\theta } -\varvec{\gamma } ^{( q)}})\nonumber \\= & {} 2( {\mathbf {B}_2 \mathbf {{B}'}_2 })^{-1}\left( {\mathbf {B}_2 \varvec{\theta } -\mathbf {B}_2 \varvec{\gamma } ^{( q)}}\right) \nonumber \\= & {} 2\left( {\mathbf {B}_2 \mathbf {{B}'}_2 }\right) ^{-1}\left( {\mathbf {a}_2 -\mathbf {B}_2 \varvec{\gamma } ^{( q)}}\right) \end{aligned}$$
(78)

By inserting (78) into (77), we can obtain the final solution to (31):

$$\begin{aligned} \varvec{\theta } =\left( {\mathbf {I}_k -\mathbf {{B}'}_2 \left( {\mathbf {B}_2 \mathbf {{B}'}_2 }\right) ^{-1}\mathbf {B}_2 }\right) \varvec{\gamma } ^{( q)}+\mathbf {{B}'}_2 \left( {\mathbf {B}_2 \mathbf {{B}'}_2 }\right) ^{-1}\mathbf {a}_2\nonumber \\ \end{aligned}$$
(79)

In addition, by Kuhn–Tucker Theorem, we have B \(_{1}\) \(\varvec{\theta } \) - a \(_{1} \quad >\)0 and \(\varvec{\lambda } \) \(_{2} \ge \) 0, i.e.,

$$\begin{aligned} \left\{ {\begin{array}{l} \mathbf {B}_1 \left( {\mathbf {I}_k -\mathbf {{B}'}_2 \left( {\mathbf {B}_2 \mathbf {{B}'}_2 }\right) ^{-1}\mathbf {B}_2 }\right) \varvec{\gamma } ^{( q)}\\ \quad +\mathbf {B}_1 \mathbf {{B}'}_2 \left( {\mathbf {B}_2 \mathbf {{B}'}_2 }\right) ^{-1}\mathbf {a}_2 -\mathbf {a}_1 >0 \\ \left( {\mathbf {B}_2 \mathbf {{B}'}_2 }\right) ^{-1}\left( {\mathbf {a}_2 -\mathbf {B}_2 \varvec{\gamma } ^{( q)}}\right) \ge 0 \\ \end{array}} \right. . \quad \end{aligned}$$

\(\square \)

Proof of Proposition 1

According to Theorem 1, the MLEs of parameters with linear inequalities is

$$\begin{aligned} \varvec{\hat{{\theta } }}\mathbf {=}\left( {\mathbf {I}_k -\mathbf {{B}'}_2 ( {\mathbf {B}_2 \mathbf {{B}'}_2 })^{-1}\mathbf {B}_2 }\right) \varvec{\gamma } ^{( q)}+\mathbf {{B}'}_2 \left( {\mathbf {B}_2 \mathbf {{B}'}_2 }\right) ^{-1}\mathbf {a}_2 \end{aligned}$$

We have

$$\begin{aligned}&E\left( {\varvec{\hat{{\theta } }}}\right) \mathbf {=}E\left( {\left( {\mathbf {I}_k -\mathbf {{B}'}_2 \left( {\mathbf {B}_2 \mathbf {{B}'}_2 }\right) ^{-1}\mathbf {B}_2 }\right) \varvec{\gamma } ^{( q)}+\mathbf {{B}'}_2 \left( {\mathbf {B}_2 \mathbf {{B}'}_2 }\right) ^{-1}\mathbf {a}_2 }\right) \\&\quad =\left( {\mathbf {I}_k -\mathbf {{B}'}_2 \left( {\mathbf {B}_2 \mathbf {{B}'}_2 }\right) ^{-1}\mathbf {B}_2 }\right) E\left( {\varvec{\gamma } ^{( q)}}\right) +\mathbf {{B}'}_2 \left( {\mathbf {B}_2 \mathbf {{B}'}_2 }\right) ^{-1}\mathbf {a}_2 \\&\quad =\left( {\mathbf {I}_k -\mathbf {{B}'}_2 \left( {\mathbf {B}_2 \mathbf {{B}'}_2 }\right) ^{-1}\mathbf {B}_2 }\right) E\left( {\left( {\Lambda ^{( q)}}\right) ^{-1/2}\mathbf {z}^{( q)}}\right) \\&\qquad +\,\mathbf {{B}'}_2 \left( {\mathbf {B}_2 \mathbf {{B}'}_2 }\right) ^{-1}\mathbf {a}_2 \\&\quad =\left( {\mathbf {I}_k -\mathbf {{B}'}_2 \left( {\mathbf {B}_2 \mathbf {{B}'}_2 }\right) ^{-1}\mathbf {B}_2 }\right) \left( {\Lambda ^{( q)}}\right) ^{-1/2}E_{\varvec{\psi } ^{(q)}} \left( {\left. \mathbf {z} \right| {pl}}\right) \\&\qquad +\,\mathbf {{B}'}_2 \left( {\mathbf {B}_2 \mathbf {{B}'}_2 }\right) ^{-1}\mathbf {a}_2 \\&\quad =\left( {\mathbf {I}_k -\mathbf {{B}'}_2 \left( {\mathbf {B}_2 \mathbf {{B}'}_2 }\right) ^{-1}\mathbf {B}_2 }\right) \left( {\Lambda ^{( q)}}\right) ^{-1/2}{\varvec{{\bar{\mathrm{U}}}}^{\prime }{\mathbf {A}}}^{( q)}E_{\varvec{\psi } ^{(q)}} \left( {\left. {\varvec{{\bar{\mathrm{x}}}}} \right| {pl}}\right) \\&\qquad +\,\mathbf {{B}'}_2 \left( {\mathbf {B}_2 \mathbf {{B}'}_2 }\right) ^{-1}\mathbf {a}_2 \\&\quad =\left( {\mathbf {I}_k -\mathbf {{B}'}_2 ( {\mathbf {B}_2 \mathbf {{B}'}_2 })^{-1}\mathbf {B}_2 }\right) \left( {\Lambda ^{( q)}}\right) ^{-1/2}{{\varvec{\bar{\mathrm{U}}}}^{\prime }{\mathbf {A}}}^{( q)}E_{\varvec{\psi } ^{(q)}} \left( {\left. {{\varvec{\bar{\mathrm{U}}}{\mathbf {b}}}} \right| {pl}}\right) \\&\qquad +\,\mathbf {{B}'}_2 \left( {\mathbf {B}_2 \mathbf {{B}'}_2 }\right) ^{-1}\mathbf {a}_2 \\&\quad =\left( {\mathbf {I}_k -\mathbf {{B}'}_2 \left( {\mathbf {B}_2 \mathbf {{B}'}_2 }\right) ^{-1}\mathbf {B}_2 }\right) \left( {\Lambda ^{( q)}}\right) ^{-1/2}{{\varvec{\bar{\mathrm{U}}}}^{\prime }{\mathbf {A}}}^{( q)}{\varvec{\bar{\mathrm{U}}}}E_{\varvec{\psi } ^{(q)}} \left( {\left. \mathbf {b} \right| {pl}}\right) \\&\quad +\,\mathbf {{B}'}_2 \left( {\mathbf {B}_2 \mathbf {{B}'}_2 }\right) ^{-1}\mathbf {a}_2 \end{aligned}$$

Then

$$\begin{aligned}&E\left( {{\varvec{\hat{\mathrm{b}}}}}\right) \mathbf {=}\left( {\varvec{\Lambda }^{( q)}}\right) ^{-1/2}E\left( {\varvec{\hat{{\theta } }}}\right) \nonumber \\&\quad =\left( {\varvec{\Lambda }^{( q)}}\right) ^{-1/2}\left( {\mathbf {I}_k -\mathbf {{B}'}_2 \left( {\mathbf {B}_2 \mathbf {{B}'}_2 }\right) ^{-1}\mathbf {B}_2 }\right) \nonumber \\&\qquad \times \left( {\Lambda ^{( q)}}\right) ^{-1/2}{{\varvec{\bar{\mathrm{U}}}}'D}^{( q)}{\varvec{\bar{\mathrm{U}}}}E_{\varvec{\psi } ^{(q)}} \left( {\left. \mathbf {b} \right| {pl}}\right) \nonumber \\&\qquad +\left( {\varvec{\Lambda }^{( q)}}\right) ^{-1/2}\mathbf {{B}'}_2 \left( {\mathbf {B}_2 \mathbf {{B}'}_2 }\right) ^{-1}\mathbf {a}_2 \nonumber \\&\quad =\mathbf {K}_1 E_{\varvec{\psi } ^{(q)}} \left( {\left. \mathbf {b} \right| {pl}}\right) +{\varvec{K}}_2 \ne \mathbf {b}\nonumber \\ \end{aligned}$$
(80)

where \(\mathbf {K}_1 =( {\varvec{\Lambda }^{( q)}})^{-1/2}( {\mathbf {I}_k -\mathbf {{B}'}_2 ( {\mathbf {B}_2 \mathbf {{B}'}_2 })^{-1}\mathbf {B}_2 })( {\Lambda ^{( q)}})^{-1/2}{{\varvec{\bar{\mathrm{U}}}}'{\mathbf {D}}}^{( q)}{\varvec{\bar{\mathrm{U}}}}\), and\(\varvec{K}_2 =( {\varvec{\Lambda }^{( q)}})^{-1/2}\mathbf {{B}'}_2 ( {\mathbf {B}_2 \mathbf {{B}'}_2 })^{-1}\mathbf {a}_2 \). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, Ys., Su, Zg., Wang, Ph. et al. Constrained fuzzy evidential multivariate model identified by EM algorithm: a soft sensor to monitoring imprecise and uncertain process parameters. Soft Comput 21, 1619–1642 (2017). https://doi.org/10.1007/s00500-015-1948-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-015-1948-2

Keywords

Navigation