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Abstract Uncertainty and risk are key features of
many social dilemmas, where individual decisions are
often made with imperfect knowledge and variance in
outcomes. In this paper, we investigate the evolutionary
dynamics of the well-known public goods game using a
recently introduced modelling framework encapsulating
risk sensitive assortment. Here, the population of mo-
bile agents playing the game is divided into fixed-sized
interaction groups. Individuals are defined by a single
genetic trait – a risk sensitivity trait – that guides their
decision-making. This trait is mapped to a continuous
range of investment levels and also provides a mecha-
nism to guide mobility (migration) decisions. Detailed
computational simulation experiments confirm the rela-
tionship between risk orientation, decision-making and
mobility in the game. As the size of each group in-
creases, assortment levels tend to decrease and risk-
averse individuals tend to dominate the population.
However, in many scenarios, there was high variance
in the proportion of ‘cooperators’ both in groups and
between different groups suggesting that risk-seeking
bevaviour is an emergent property of mobility induced
positive assortment.
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1 Introduction

Social dilemmas, that is situations in which collective
and private interest conflict, have been studied exten-
sively in many domains, including evolutionary biol-
ogy, social psychology, economics, statistical physics,
and multi-agent systems (Hauert, 2006; Nowak, 2012;
Perc et al., 2013; Fu et al., 2007; Szolnoki, 2009;
Smaldino and Lubell, 2011; Capraro, 2013). The public
goods game (Olson, 1971; Gintis, 2000) is a well-known
abstract mathematical framework used to investigate
mechanisms promoting cooperative behaviour in social
dilemmas. In this game, individual participants have to
make an investment decision, that is, they must choose
how much of their endowment they wish to contribute
to the group pool and how much they wish to keep for
themselves. The sum of the contributions is multiplied
by a constant factor (greater than 1), before then being
shared out equally between all group members regard-
less of their relative contributions. The social dilemma
arises as this multiplication factor is usually less than
the group size. Thus, there is a temptation for individ-
ual agents to ‘free-ride,’ and the population may evolve
toward the ‘tragedy of the commons’ (Hardin, 1968).

The literature on multi-player social dilemma games
is quite diverse. However, the overarching goal of such
studies has been to investigate the promotion and
stabilisation of cooperation in the population, typi-
cally by categorising individuals into ‘pro-self’ or ‘pro-
social’ types, or by proposing alternative decision-
making strategies based on reputation and/or interac-
tion topologies. In the case where individuals are faced
with a binary decision, either to make a contribution or
to refuse to make a contribution, groups of cooperators
(or investors) outperform groups of non-cooperators,
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but selfish individuals always do better than cooper-
ators in their group (Nowak, 2012; Perc et al., 2013).

A number of hypotheses explaining why individuals
might contribute to a public good, including reciprocal
altruism, reputation, punishment, spatial selection and
multi-level selection have been proposed (Nowak, 2006,
2012). Additionally, a number of studies have exam-
ined the effects of ‘mobility patterns’ using network or
spatial models (Traulsen and Nowak, 2006; Boyd and
Richerson, 2002). The rationale behind such models is
primarily based on the mechanism underlying positive
assortment, where altruistic individuals are likely to
help other altruists within their group. In many circum-
stances, between-group variation exceeds within-group
variation, which in turn influences the evolutionary tra-
jectory of the population (Wilson and Dugatkin, 1997).
Group success encourages the common belief that ev-
erything is going well, consequently no modification of
behaviour is required (Macy, 1995). However, individu-
als not satisfied with their current group may attempt
to swap groups in search of ‘greener pastures’ (Le Gal-
liard et al., 2005; Killingback et al., 2006).

One important direction that requires further re-
search is the role of ‘risk’ in decision-making, and sub-
sequently the population dynamics and emergent be-
haviour in social dilemmas. Uncertainty and risk, in-
cluding risk aversion, risk seeking and risk preference,
are key features of many social dilemmas (Kanagaret-
nam et al., 2009; Parks, 2004; Van Assen and Snijders,
2004). Recently, agent-based models investigating the
evolution of risk taking (Stern, 2010) and risk aversion
(Hintze et al., 2015) have appeared. Starting from an
assumption that risk-seeking behaviour is not favoured
by natural selection, inherent biases guiding decisions-
making strategies have been examined. Hintze et al.
(2015) report that beneficial risk aversion adaptations
emerge in small populations, particularly when a larger
population is divided into smaller groups, with limited
migration between groups.

In this paper, we combine the risk sensitivity model
introduce by Hintze et al. (2015) with the multiple
group public goods game framework used by both
Killingback et al. (2006) and Janssen and Goldstone
(2006), to investigate evolutionary dynamics. In our
simple model, the population of mobile agents is divided
into fixed-sized interaction groups. Individuals have a
single genetic trait – a risk sensitivity trait – that guides
their decision-making. Instead of using a discrete ‘coop-
erate’ or ‘defect’ investment option, the risk sensitivity
trait guides a continuous investment strategy. Individ-
uals with a high trait value are considered to be risk
averse, corresponding to a low chance of investing a
small amount. In contrast, individuals with a low trait

value are considered to have a risk seeking strategy, cor-
responding to a high chance of investing a large amount.
At the end of each game playing round, an opportu-
nity arises for individuals to modify their risk sensitivity
trait. An individual can update their risk trait by imi-
tating successful (fitter) individuals within their current
group. Thus, an individual’s risk trait is inherited over
generations and is subject to mutation. Individuals are
also presented with an opportunity to switch groups at
the end of each round of the game. We examine different
mobility or switching mechanisms: random migration,
conditional migration and risk sensitive migration.

We use Monte Carlo simulation experiments to in-
vestigate model behaviour, as it is not practical to
study this group-structured model analytically. Key
model parameters include population size, the number
of groups, and migration/switching mode. The use of
a real-value risk sensitivity trait generates rich dynam-
ics. We report results illustrating the evolutionary tra-
jectory of the risk trait, and indirectly the average in-
vestment level. Across the population as a whole, the
average value of the risk aversion trait is significantly
lower in smaller groups and in the random migration
model. We find that lower levels of investment are typ-
ically maintained in the conditional migration model
suggesting that individuals who make decisions based
on whether that are satisfied with their local neigh-
bourhood tend to be more risk averse. Detailed analy-
sis of variation of the distribution of the risk aversion
trait, measured in terms of the assortment ratio, indi-
cates that positive assortment is more clearly defined
in smaller populations.

The remainder of this paper is organised as follows.
In Section 2, we briefly discuss background literature
describing risk in social dilemmas. Related work de-
scribing mobility mechanisms in social dilemmas is also
discussed. Our hybrid model is introduced in Section 3.
In Section 4, the simulation experiments are described
and results presented. We summarise the results and
discuss the implications of our findings, before briefly
outlining avenues for future work in Section 5.

2 Background and related work

2.1 Decision-making and risk in social dilemmas

In social dilemmas, there is an inherent risk in each
decision that is made. The cooperative choice can be
conceived as a ‘gamble’ and defection as a ‘safe’ choice,
framed with respect to different reference points. For
example, in the public goods game the temptation to
‘free-ride’ on the contributions of the other players is of-
ten seen as the less risky option, consistent with Nash
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equilibrium of the game. Making an investment (coop-
erating) contains an element of risk no matter which
reference point one chooses.

A number of studies focussed on the well-known
prisoners’ dilemma game have examined risk sensitivity
and the evolution of cooperation. For example, Parks
(2004) suggested that cooperation in the non-iterative
prisoners’ dilemma game is a ‘risky’ behaviour. It was
reported that risk-seeking individuals were more co-
operative than risk-averse individuals in a five-person
prisoner’s dilemma game when the risk of others being
cooperative was high. However, in the iterative game,
Van Assen and Snijders (2004), showed that risk-averse
people tended to cooperate when group membership did
not change throughout over the course of the game. In
a recent study Zeng et al. (2014), incorporate risk atti-
tudes into an iterated prisoner’s dilemma game. Here,
risk was defined as the standard deviation of the one-
move payoffs for players. Interestingly, their simula-
tion results show that risk-averse players perform bet-
ter than risk-seeking players, a results consists with the
work of (Van Assen and Snijders, 2004). Despite the
fact that differences in emergent outcomes between re-
peated games and ‘single-shot’ games exists, the work
of Capraro et al. (2014) highlights the effectiveness of
heuristics when used to guide decision-making give vari-
ations in possible outcomes.

More generally, the ‘risk orientation’ of an individ-
ual may be defined as an individual’s general preference
towards making decisions in uncertain situations. Ge-
netic factors have been used to help explain this obser-
vation in human experiments, together with environ-
mental variables and individual behavioural histories
(Bateson, 2002; Bell, 2009). From a social psychological
science perspective, people tend to be risk-averse when
dealing with outcomes that are gains relative to their
reference point – they choose sure smaller gains over
larger riskier gains, but became risk-seeking when deal-
ing with losses (Kahneman and Tversky, 1979). This is
in contrast to the widely accepted economic perspec-
tive, where a rational decision-maker is an individual
who attempts to maximise their expected utility in any
decision-making scenario.

2.2 Mobility in social dilemmas

It is now widely accepted that mobility (migration)
plays an important role in evolutionary dynamics in
group structured social dilemmas (Fu and Nowak, 2013;
Nowak, 2012). Mobility mechanisms are typically sub-
ject to stringent rules, taking into account personal
preferences of individuals, their strategies, as well as
their aims (Vainstein et al., 2007). In a recent paper,

Gavrilets (2015), have identified that both the compo-
sition and size of the group as well as the mechanism
used to transfer ‘effort’ into ‘rewards’ contribute to the
likelihood of the group’s success and the level of within-
group ‘free riding’ in collective social dilemmas. Wilson
and Dugatkin (1997) suggest that population viscosity
and the effects of group membership and success, plays
a significant role in a ‘multi-level’ selection framework.
In addition, Hauert et al. (2014) shows that rare mi-
gration can in fact favour cooperation. Under positive
assortment, altruistic individuals are likely to help other
altruists (Traulsen and Nowak, 2006; Boyd and Richer-
son, 2002), thus promoting higher levels of cooperation
across the population as a whole. In contrast, Traulsen
and Nowak (2006) show that migration may have a neg-
ative effect on the trajectory of evolving population as
it brings about the mixing of groups.

There are still many unanswered questions about
the effects of different modes of migration of individ-
uals between groups (Pichugin et al., 2015). In a ran-
dom mobility model, there is a periodic exchange of
individuals between specific groups. This approach is
somewhat limited, thus a number of extensions to this
base-line model have been proposed and evaluated. No-
table examples include success-driven migration (Hel-
bing and Yu, 2009), adaptive migration (Jiang et al.,
2010) and aspiration-induced migration (Yang et al.,
2010). Success-driven migration is based on the idea
that individuals can elect to move to sites with higher
expected payoffs. The challenge of success-driven mi-
gration, however, is to determine in advance the po-
tential payoff of the ‘non-local’ site. In contrast, in the
adaptive migration model individuals only make use of
local information when attempting a move. In the study
presented by Jiang et al. (2010), adaptive migration
took place probabilistically in proportion to the number
of defectors in the neighbourhood. Aspiration-induced
migration is a third alternative, where individuals move
to a new site if their payoff is below a certain aspira-
tion level. Each of these migration schemes has been
shown to enhance the extent of cooperative behaviour
considerably, even in a noisy environment (Helbing and
Yu, 2009) or in an environment dominated by defectors
(Jiang et al., 2010).

In the context of multi-player social dilemma games,
the efficacy of conditional mobility mechanisms has
been reported in recent work by Chiong and Kirley
(2012, 2013). However, that work was restricted to spa-
tial models (regular lattice). Works investigating evolu-
tionary dynamics in populations divided into subgroups
focussed on the public goods game include the work of
Killingback et al. (2006); Janssen and Goldstone (2006).
These studies report on the effects of variable groups
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sizes and the impacts of random migration mechanisms
on the emergent cooperation levels.

In another interesting related study, Le Galliard
et al. (2005) modelled the simultaneous evolution of
mobility and altruism. When allowed to evolve sepa-
rately, altruism was associated with low mobility. Here,
constraints on mobility coupled with the life history of
genetic traits directly impacted in the coevolution of
altruism and mobility.

3 Model

3.1 Overview

Our model is an evolutionary game theoretic model,
which combines the multiple group public goods game
investigated by Killingback et al. (2006) and Janssen
and Goldstone (2006) and the risk sensitivity model in-
troduce by Hintze et al. (2015). The model consists of
a population of agents playing a multiple group version
of the continuous public goods game. The population
is composed of g disjoint fixed-sized interaction groups,
each of size n. In each round of the game, each indi-
vidual must make two separate decisions. Firstly, they
must decide how much to invest into the common public
pool. Then, at the end of the round, they must decide
whether to switch groups or stay in their current group.
Each of these decisions is inherently risky. Fig. 1 pro-
vides a schematic overview of the multiple group public
goods game.

It is reasonable to expect that the fixed-sized trait
groups in our model should (a) generated evolution-
ary trajectories similar to the risk sensitivity model of
Hintze et al. (2015), and (b) the emergent ‘cooperation
levels’ will be different to the variable-sized groups used
in the models by Killingback et al. (2006).

3.2 Public goods game with continuous strategy space

Typically, studies of social dilemmas assume that indi-
viduals playing the game have a discrete choice, either
to ‘cooperate’ or to ‘defect.’ However, this binary de-
cision is somewhat unrealistic, especially when invest-
ment levels are considered in games such as the public
goods game. We suggest that individual game playing
agents are diverse and subsequently can make different
decisions when confronted with variance in outcomes.
Therefore, we extend the actions available to an in-
dividual by taking into account the whole continuous
range of the strategy space (Killingback et al., 2006;
Janssen and Goldstone, 2006; Hauert, 2006). At an ab-
stract level, this approach has some similarities with

Fig. 1: Schematic overview of the multiple-group pub-
lic goods game. (a) A single group public goods game
(g = 1) with seven players (n = 7). The grey-scale
circles represent the risk sensitivity trait (χ) and thus
investment level (x) as described in Section 3.2. (b)
A multiple-group public goods game with four groups
(g = 4), each with seven players (n = 7). Here, the blue
arrow indicates two individuals from separate groups
that wish to switch groups. Section 3.5 describes alter-
native migration or ‘group switching’ mechanisms.

the probabilistic participation framework introduced in
(Sasaki et al., 2007).

Assume that n individuals each make an investment
xi in a public good, where each xi ∈ (i = 1, . . . , n) is
a real number between 0 and some positive maximum
value V . The payoff to individual i is given by:

πi = (k/n)
n∑

j=1

xj − xi (1)

where k is a positive constant (which can be viewed as
a synergy factor or interest rate). When 1 < k < n

every individual will maximise their payoff by making
a zero investment, irrespective of the investments made
by the other individuals (that is, act as a free-rider). If
all the players make a zero investment, they each receive
a payoff 0. If all the players invest V , each would receive
(k − 1) × V . Here, the ratio k/n is frequently referred
to as the ‘marginal per capita return’ (MPCR) (Shank
et al., 2015).

The evolutionary dynamics of the game can be de-
scribed by the adaptive replicator dynamics for a con-
tinuous strategy space (Doebeli et al., 2004; Cressman
et al., 2012). Under such conditions, the replicator equa-
tion assumes that the population state is described by
a Borel probability measure P over [0, V ]. The expected
payoff of an individual playing xi in a group on n play-
ers, where the other n−1 players are chosen at random
is:

π(xi, P ) = V + (
k

n
− 1)xi +

k

n
x̄(n− 1) (2)
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where x̄ =
∫
[0,V ]

xjP (dxj) is the average contribution
of an individual in the population.

3.3 Risk sensitivity trait: decision-making

Each agent is defined by real-value genetic trait χ in
a similar manner to the risk sensitivity trait in Hintze
et al. (2015). Here, χ, is used to determine both the
level of investment in a given round of the public goods
game, and to guide mobility or group switch decision
(see Section 3.5). Thus for each agent, i, it is necessary
to map the value of χi to a specific investment level
xi in each round of the public goods game. Equation 3
describes how this is done:

xi =

{
p× V p = 1− χi

0 p = χi
(3)

where p (a uniform random variable) is the probability
of investing the corresponding xi in the current round
of the game; and V is the maximum possible invest-
ment. The contribution xi is thus defined by a Bernoulli
random variable representing the expressed behaviour
or ‘phenotype’ of an individual given the underlying
‘genotype’ χi. When χi > 0.5, there is a low chance
of investing a small amount consistent with risk-averse
behaviour. When χi < 0.5, there is a high chance of in-
vesting a large amount consistent with risk-seeking be-
haviour. If χi = p, then the investment is zero (a form of
probabilistic participation, where an agent ‘free-rides’).

After each individual agent i has made an invest-
ment decision xi, the accumulated investments of the n
group members are multiplied by a factor k and evenly
redistributed between the members of the group based
on Equation 1. The reward (or payoff) πi is then al-
located to each agent. The payoff is also added to an
individual’s assets (initialised as V ). It is important to
note that we include the accumulated assets simply as
an additional metric to query/display rather than using
it to guide/influence decision-making.

3.4 Updating the risk aversion trait

Individuals have an opportunity to update their ‘strat-
egy’ or risk sensitivity trait at the end of each round of
the game. Given that χi defines an individual’s strategy,
this equates to single trait update via social imitation.
The fitness of an individual is determined relative to the
performance of their current group. The more successful
individuals (larger πi values) will be imitated by others,
so that the number of individuals adopting a given risk

trait χ will evolve over time. Thus at each time step, an
individual i can adopt the strategy χj from individual
j within its current groups using the well-known Fermi
update rule (Szabó and Hauert, 2002):

χi ← χj =
1

1 + exp[(πi − πj)/T ]
(4)

where T quantifies the uncertainty by strategy adop-
tions (without loss of generality we use T = 0.1). All
individuals are also subject to mutation. That is, with
probability µ the offspring mutates to a random strat-
egy; otherwise its risk trait χi is identical to its parent.
Hence, an individual’s risk sensitivity trait (or strat-
egy) adjustment dynamics are driven by reinforcement
feedback based on the individual’s recent experience.

3.5 Switching groups

There are many different ways to implement migra-
tion models in multiple group social dilemma games.
Pichugin et al. (2015) provides a detailed analysis of
the available techniques.

We limit our analysis to three alternative ‘group
switching’ strategies. Here, the overarching goal is to
mediate the assortment of risk sensitivity traits from
one group to another (West et al., 2007; Hintze et al.,
2015). An important feature of our multiple group
framework is the fact that each group is a fixed size that
does not change during the simulation (this is in stark
contrast to Killingback et al. (2006) but it is consistent
with the approach used by Hintze et al. (2015)). Given
this capacity constraint, there is no guarantee that any
particular group will accept a ‘switch group’ request.
Groups with less movement out will have less move-
ment in. Assortment under similar capacity constraints
has been shown to enhance cooperation (Smaldino and
Lubell, 2011).

3.5.1 Random migration

In the random migration model, a fixed proportion of
individuals λ are randomly selected to migrate to a
different group. Here, λ is assumed to be very small
compared to the rate of fixation of a strategy within a
group (Pichugin et al., 2015) and is typically a value
of 0.05 consistent with the mechanism used in island-
based evolutionary algorithms (Cantú-Paz, 1998). For
each migrant, a randomly selected individual from a
randomly selected group is simply nominated to ‘swap’
groups. This naive group-based model approximates the
scenario of individuals evolving in small groups with
some level of inter-group mobility.
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3.5.2 Conditional migration

In the conditional migration model, individuals playing
the game use ‘environmental’ feedback as a mechanism
to trigger migration. Here, individuals have the capac-
ity to detect and leave low-quality social environments
and share specific information about past group per-
formance. We implement a form of the so-called walk-
away-rule, which introduces a threshold value that de-
fines the minimal payoff (return) an individual must
receive in order to stay in the same group, otherwise
the individual attempts to migrate to another group.
To simplify the model, the threshold is based on the
payoff π in the given round – any profit equates to a
‘good’ environment.

Whether the attempted move is successful or not
depends on the relative fitness of a randomly selected
individual in a nominated destination group, a tech-
nique adopted in (Chiong and Kirley, 2012, 2013). Two
different techniques are used to select the destination
group: (a) select the ‘best’ group, and (b) select the
‘worst’ group, where we use the group payoff at the pre-
vious game iteration to determine the nominated group.
The rationale behind the conditional migration models
is based on the idea that a defecting individual has a
higher probability of fixation in a group of cooperators
as compared with a group of defectors. The fitness value
of the migrant is subsequently compared with the ran-
domly selected individual from the nominated group,
and if it has a higher fitness value, the swap is com-
plete. The aim of this assortment mechanism is to the
reduce exploitation by selfish group members.

3.5.3 Risk-sensitive migration

A decision to migrate is made with incomplete infor-
mation, where the goal is to enhance survivability and
ultimately enhance fitness (and indirectly reproductive
success). In the risk-sensitive migration model, we com-
bine some of the features from the random migration
model and the environmental feedback mechanism from
the conditional migration model. However, what clearly
differentiates this approach from the previous migration
models is the use of the risk sensitivity trait, χ, in the
decision making process. Here, χ endogenously deter-
mines an individual’s propensity to switch groups, if
a ‘satisfaction’ threshold is not met. Importantly, this
risk-sensitive model is a form of ‘blind switching’ where
individuals attempting to swap groups, do so without
specific knowledge of the payoff or social rewards of
other groups. All individuals who have flagged their in-
tention to migrate are moved to an external ‘migrant
pool.’ Then each of the individuals from this ‘migrant

pool’ are randomly allocated back to one of the groups.
This approach allows for heterogeneity in risk prefer-
ences. Importantly, risk-seeking individuals tend to seek
out a new, potentially more profitable, group.

4 Simulation experiments

A series of Monte Carlo simulation experiments were
performed to examine population dynamics in our
model. Two questions guided the experimental design:

1. Is it possible to evolve risk-seeking behaviour in the
multiple group public goods game?

2. Given capacity constraints for group size, does risk-
sensitive conditional migration offer greater oppor-
tunities for positive assortment when compared to
random migration and other forms of conditional
migration?

In all simulation experiments, the value of χ was ini-
tialised randomly from a uniformly distribution at the
beginning of a trial. The value of the maximum invest-
ment V and the MPCR were 5.0 and 0.75 respectively.
In the reproduction stage, the mutation rate µ was 0.01.
The migration rate λ was set to 0.05.

In the conditional migration model, the threshold
value used to determine whether an agent attempts to
switch groups was simply the payoff value in the cur-
rent round – a loss corresponding to a low-quality so-
cial environments. The payoff performance from each
group was made available to all individuals. In the risk-
sensitive migration model, each ‘switch group’ request
was based on the risk sensitivity trait χ. However, the
payoff performance from other groups was not available.

All results listed below are mean values over 30 sim-
ulation trials with differing seeds for the random num-
ber generators. Error bars have been omitted from most
time-series plots as they are smoothed values and the
standard errors are very small. Key model parameters
investigated are: group size (n), the number of groups
(g), and the group switching (or migration) mechanism
(random, conditional – best or worse, risk-sensitive).
Key output metrics include: evolved χ values – both
within and between groups and assortment levels, mea-
sured in terms of the variance ratio for χ both between
and across groups. We also report limited results for cu-
mulated assets (profit) to further illustrate the efficacy
of the model.

4.1 Evolutionary trajectory of χ in a single group

In the first set of experiments, we investigate the evo-
lutionary trajectory of χ in a single group (g = 1) with
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Fig. 2: The average strategy χ vs generation number
across the population for varying population size n

when g = 1.

varying population sizes n ∈ {2, 4, 8, 16, 32, 64, 128} and
constant MPCR value. The simulations start from a
random uniform initial distribution for χ.

Fig. 2 plots time series values for the average strat-
egy χ vs generation number for different n values. For
all values of n, the trajectory of χ fluctuates around
the mid-range value of 0.5, after initial evolutionary se-
lection pressure favoured larger values of χ at earlier
time steps. Significantly, the number of steps required
to reach this value is correlated with the population
size, a result consistent in general with the risk sensi-
tivity model of Hintze et al. (2015). This suggests that
the size of the group must be considered when analysing
perceptions of risk in the continuous public goods game.
For smaller population sizes, there appears to an emer-
gent preference for χ with low variance (see sub-section
4.3 for further details).

4.2 Evolutionary trajectory of χ in multiple groups

In the second set of simulation experiments, we in-
vestigate the underlying population dynamics, limit-
ing the analysis to two migration models – random
migration and conditional migration. That is, mobil-
ity decisions are not based directly on the ‘genetic
trait’ χ. Fig. 3 plots the average value of χ, calcu-
lated over the final 2500 generations of a simulation
trial, for each of the different group sizes considered
n ∈ {2, 4, 8, 16, 32, 64, 128}) with g = 32 groups. Errors
bars have been included on the plot. Based on Wilcoxon
rank sum test, there are significant differences between
each of the migration modes consider (p < 0.01) for

Fig. 3: The average strategy χ across the population
for varying groups sizes calculated over the last 2500
generations for each of the migration model. The yellow
line indicates the expected value of 0.5 for unbiased
evolution; i.e. no risk bias/preference.

larger group sizes. When the group size is smaller (n = 2
and n = 4) the differences are not as clear-cut. This is
to be expected as the game is relatively easy (event
though there is still a social dilemma) under this con-
dition. It is important to note that as the size of the
group increases there is transition to higher average χ
values.

Fig. 4 plots trends in the trajectory of the risk sen-
sitivity trait χ. When n = 4, the differences between
the random migration and conditional worst migra-
tion strategy are not significant, with the χ fluctuating
around the 0.5 value. However, in the case of conditional
best migration, the χ fluctuates around a value of 0.7,
indicating relative high levels of average risk aversion
across the population. However, when the group size
is larger (n = 32), the evolutionary trajectory of the
χ changes considerably. In each of the migration mod-
els considered, the average value of χ is greater than
the expected unbiased value of 0.5. The selection pres-
sured embedded in the conditional migrations results in
higher χ values, with average values around 0.8 emerg-
ing in the conditional best model.

A closer inspection of the number of a successful
‘group switches’ is necessary, give the constraints im-
posed by the fixed group size. Fig. 5 plots time series
values for the proportion of migrant ‘desired’ and ‘suc-
cessful’ moves respectively for a typical population size
(g = 32 and n = 32 in this case). Here, ‘desired’ simply
means that an individual has flagged their intention
that they wish to swap groups as the payoff received
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(a) n = 4

(b) n = 32

Fig. 4: Average strategy χ vs generation number for
each of the migration models considered. The expected
value of 0.5 for unbiased evolution is also plotted.

in the current game was not satisfactory. A successful
move is when the individual actually switches groups.
As expected, the proportion of successful moves is sig-
nificantly lower than desired moves in the conditional
modes, with lowest values apparent in the conditional
best migration mode. This result is consistent with the
expectation that potential risky moves may have a pos-
itive effect on assortment.

To further assess population dynamics, we plot time
series values of accumulate average profit (based on ac-
cumulated payoff values, π) for agents in Fig. 6. Clear
differences can been seen between migration modes in
both plots. A comparison between the two different

(a) Desired

(b) Successful

Fig. 5: Proportion of (a) desired and (b) successful
moves vs generation number for each of the migration
models when group size n=32 and g = 32.

group sizes (n = 4 and n = 32) reveals that for larger
groups the average profit decreases. The differences be-
tween the conditional best and conditional worse modes
are apparent in both group sizes. The results suggest
that this transition to risk averse behaviour, especially
in larger groups, is caused by the presence of ‘free-
riders.’ Since the investment decision is based on both
the risk sensitivity trait and the expectation of other
group members, we observe a qualitatively different
relationship between risk-averse investment levels and
group size. Conditional migration provides opportuni-
ties to take advantage of potentially more beneficial
‘social environments,’ while allowing for the possibility
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(a) n = 4

(b) n = 32

Fig. 6: Average profit vs generation number for each of
the migration models.

of leaving a group when that particular environment
degrades. A constraint on conditional migration was
that the migrant must have higher fitness value than
the randomly selected individual from the nominated
group (either the best or worse group depending on the
model). This constraint was imposed to mediate the
assortment effects. However, such an approach requires
that an individual can query the ‘performance’ of other
groups in the population.

4.3 Risk-sensitive assortment

The previous simulation experiments have provided im-
portant insights into the population dynamics of the

multiple group public goods game. The results suggest
that decision-making based on a level of risk sensitivity
leads to interesting outcomes. The focus of our analy-
sis now turns to understanding assortment within the
model in more detail. We are particular interested in
examining the effects that assortment has on the evolu-
tionary trajectory of both individual χ values and the
population wide distribution of χ values, when mobil-
ity (or group switch) requests are based on threshold
satisfaction levels and the ‘genetic trait’ χ.

Additional simulation experiments were carried out
to investigate the group size effects on the level of
investment in the public goods game by keeping the
MPCR ratio fixed1 when increasing the size of the
group. Fig. 7 plots the average ‘genetic trait’ χ across
the population at the end of the simulation for vary-
ing group size (n) and number of group (g) when
MPCR = 0.75. As expected, the overall trend is con-
sistent with the model of Hintze et al. (2015), with
values relatively close to the un-biased value of 0.5.
However, an inspection of the plot suggests that risk-
sensitive assortment has emerged, especially for larger
group sizes. For a given χ value (or range of genotype
values) to increase in frequency in a population, indi-
viduals must, on average, end up with higher fitness
benefits (payoff values) than average population mem-
bers. That is, the local group imitation dynamics cou-
pled with risk-sensitive migration must be guiding the
trajectory of the evolving population. Individuals who
attempt to switch groups are searching for a more coop-
erative group. However, further analysis of assortment
and genetic variation is required before firm conclusions
can be made.

To delve deeper, a version of a ‘relatedness’ metric
for single trait evolving populations is used to measure
assortment in the multiple group public goods game.
This metric is based on Hamilton’s rule (Hamilton,
1964). Similar versions have been used by Fletcher and
Zwick (2007) and Pepper and Smuts (2002). Here, the
‘assortment ratio’ r is defined as:

r =
VB

VB + VW

(5)

where VB and VW are the statistical variance of the χ
values between groups and the average statistical vari-
ance of the χ values within groups, respectively. Thus, r
can be used as a similarity or assortment metric, repre-
senting the between-group variance over the total vari-
ance.

1 We have also run a large number of simulations using a
range of V and k values. The results were qualitatively the
same across a range of values, thus we do not include all
results in this paper.
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Fig. 7: The average strategy χ across the population for
varying group size (n) and number of groups (g) calcu-
lated over the last 2500 generations when MPCR =
0.75.

Fig. 8: The assortment ratio r value averaged over the
last 2500 generations for varying group size (n) and
number of groups (g) when MPRC = 0.75.

Fig. 8 plots the relationship between group size, the
number of groups and the emergent assortment levels
(in terms of the ratio of the variance of the χ values
within the model). For smaller groups, the value of r is
closer to 1, suggesting that ratio of the variation (or di-
versity) of χ values in each group, and between groups,
is relatively low. When continuous investment is used

Fig. 9: The assortment ratio r vs generation number
when g = 32 and n = 16 when MPCR = 0.75.

in the multiple group public goods game, it is possi-
ble for individual groups to be homogenous, however,
more than likely the groups will contain a mix of in-
dividuals making small contributions or be a mix of a
small number of ‘cooperators’ making substantial con-
tributions and a large number of ‘defectors.’ The re-
sults shown in the plot are consistent with observations
reported in Gavrilets (2015), where increasing group
size typically decreases within-group cooperation. The
trends in Fig. 8 indicate high emergent altruism lev-
els. For larger groups the assortment level is signifi-
cantly lower, suggesting the presence of ‘free riders,’
distributed throughout the groups.

To conclude this section, we plot time series values
of the assortment level r for one scenario (n = 16 and
n = 32) in Fig. 9. Despite the overall trends suggested
in Figs. 7 and 8, there are significant fluctuations in the
trajectory of assortment ratio values at each time step
reflecting the game dynamics.

5 Discussion and conclusions

In this paper we have described a hybridised version
of a multiple group public goods game / risk sensitive
model. By explicitly adopting an evolutionary game
theoretic approach, where risk-seeking can be conceived
as potentially beneficial, we have examined the most
basic requirement for the evolution of ‘cooperative be-
haviour’ based on positive assortment. The rationale
behind our model was based on the fact that uncer-
tainty and risk are key features of many social dilem-
mas, where individual decisions are often made with im-
perfect knowledge and variance in outcomes. Individual
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game playing agents adopted a continuous investment
strategy mapped to their underlying risk sensitivity pa-
rameter. Additionally, we allowed this risk sensitivity
trait to be used in the ‘group switching’ decision. Thus,
a dynamic perception of risk was used to guide both
investment levels and mobility.

In multiple group games with variable group sizes,
the general outcome of the game is correlated with both
the average group size and the variance of the group-
size distribution (Killingback et al., 2006; Pena, 2012).
However, given the constraints of fixed group sizes in
our model, it is reasonable to expect that emergent
dynamics may be different (Szolnoki and Perc, 2011).
The simulation results listed in Section 4 illustrate that
the mean level of the risk aversion trait χ increases
over time, especially for larger groups, a result con-
sistent with Gavrilets (2015), who report that larger
group size typically makes it more difficult for cooper-
ation to be maintained in cooperative dilemma games.
In our model, lower investment levels corresponding to
risk-averse behaviour were evident, a result consistent
with the work of (Sella and Lachmann, 2000) in social
dilemma games and the work of Hintze et al. (2015)
focussed on the adaptive benefits of risk-aversion in an
evolutionary context.

An analysis of the alternative mobility or migra-
tion models reveals interesting insights. The random
migration model introduces a limited level of assort-
ment. In contrast, conditional migration significantly
affects population assortment. In the ‘blind switch’ risk-
sensitive migration model, the emergent value of r is
inversely correlated with the groups size. The average
value of χ across the population at the end of the simu-
lation run was also correlated with both the group size,
and to a lesser extent the number of groups. Here, mo-
bility can be thought of as a secondary goal, in that
requests to switch groups are made on the basis that a
successful move will lead to higher rewards (the primary
goal). Population viscosity is a self-organising process
that depends only on the risk each individual is ex-
posed to, and is willing to accept. When an individual
can ‘query’ other groups before attempting to migrate
to a new group, the dynamics change. In the condi-
tional worse mode, the proportion of successful switches
is greater as, on average, the fitness of individuals in the
worse pool will be relatively small, thus the chance of
a successful move increases. However, the group may
contain many free-riders, which adversely affect future
performance. In the conditional best mode, the chance
of a successful switch are reduced, but if successful, the
positive assortment leads to higher future return. In
each of the conditional migration models, capacity con-
straints impose a fixed upper limit on the number of

individuals that can join any particular groups, which
directly impacts on the evolutionary trajectory of the
risk aversion trait.

In sum, detailed simulation experiments confirm a
number of our expectations about the relationship be-
tween risk orientation, decision-making and mobility in
the multiple-group public goods game. As the size of
the group increases, in the long term, assortment lev-
els tend to decrease and risk-averse individuals tend to
dominate the population. This suggests that the abil-
ity to respond contingently to the social environment –
via a risk sensitivity trait – is a desirable characteris-
tic to have. Significantly, a positive correlation between
evolutionarily stable levels of altruism and mobility do
emerge in the multiple group public goods game.

There are a number of directions to explore in fu-
ture work. In our model, we did not impose additional
costs when changing groups. Exploring the effect of
such costs and limiting the number of possible moves
is an interesting direction for future empirical research.
It would also be interesting to examine more complex
rules for migration/mobility including social networks
and geographical locations as discussed in Pfau et al.
(2013). Despite the robustness of our findings, further
application in real social psychology settings may be
problematic. If individuals are regularly faced with fluc-
tuations of their general environment – variable risky
situations – the proposed model should be tested ex-
perimentally to validate its conclusions.
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