Skip to main content
Log in

Role-based intelligent application state computing for OpenFlow distributed controllers in software-defined networking

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Software-defined networking, in which a network is programmable and controlled with soft computing techniques, is widely used in various network testbeds. To satisfy the demands of large networks, control planes are constructed with distributed controllers, which are a routine aspect of OpenFlow research. Distributed controllers are scalable and fault tolerant; thus, they can replace centralized controllers in large-scale networks. In the foreseeable future, there will emerge more applications based on soft computing techniques. Because there is scant research on application management, a distributed controller with a role-based mechanism for properly managing applications and their states based on their properties has yet to be developed. Thus, in this study, we propose a systematic approach for classifying applications according to their roles to dynamically deploy applications and their states. Both applications and their states are managed based on their properties, including CPU, memory and network bandwidth. This intelligent mechanism, which computes the overhead of applications, provides a compromise between storage and bandwidth usage in OpenFlow distributed controllers. We propose a hierarchical system to differentiate applications and design a controller module for dynamically determining the status of an application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agarwal S, Kodialam M, Lakshman T (2013) Traffic engineering in software defined networks. In: 2013 Proceedings IEEE INFOCOM, Turin, Italy, pp 2211–2219

  • Banikazemi M, Olshefski D, Shaikh A, Tracey J, Wang G (2013) Meridian: an SDN platform for cloud network services. IEEE Commun Mag 51(2):120–127

    Article  Google Scholar 

  • Berde P, Gerola M, Hart J, Higuchi Y, Kobayashi M, Koide T, Lantz B, O’Connor B, Radoslavov P, Snow W (2014) ONOS: towards an open, distributed SDN OS. In: Proceedings of the third workshop on hot topics in software defined networking, Chicago, IL, ACM, pp 1–6

  • Chang H-T, Wang S-Y (2015) Using sdn technology to mitigate congestion in the openstack data center network. In: 2015 IEEE international conference on communications (ICC), London, UK, pp 401–406

  • Cleder Machado C, Zambenedetti Granville L, Schaeffer-Filho A, Araujo Wickboldt J (2014) Towards sla policy refinement for qos management in software-defined networking. In: 2014 IEEE 28th international conference on advanced information networking and applications (AINA), Victoria, Canada, pp 397–404

  • Das S, Sharafat A, Parulkar G, McKeown N (2011) MPLS with a simple open control plane. In: Optical Fiber Communication Conference, page OWP2, Los Angeles, CA, Optical Society of America

  • Dixit A, Hao F, Mukherjee S, Lakshman T, Kompella R (2013) Towards an elastic distributed sdn controller. In: HotSDN’13 proceedings of the second ACM SIGCOMM computer communication review, vol. 43, New York, NY, ACM, pp 7–12

  • Erickson D (2013) The beacon openflow controller. In: Proceedings of the second ACM SIGCOMM workshop on hot topics in software defined networking, the Chinese University of Hong Kong, ACM, pp 13–18

  • Giotis K, Argyropoulos C, Androulidakis G, Kalogeras D, Maglaris V (2014) Combining openflow and sflow for an effective and scalable anomaly detection and mitigation mechanism on SDN environments. Comput Netw 62:122–136

    Article  Google Scholar 

  • Hassas Yeganeh S, Ganjali Y (2012) Kandoo: a framework for efficient and scalable offloading of control applications. In: Proceedings of the first workshop on hot topics in software defined networks, Chicago, IL, ACM, pp 19–24

  • Jia X, Wang JK (2013) Distributed firewall for p2p network in data center. In: 2013 IEEE ICCE-china workshop (ICCE-China Workshop), Shenzhen, China, pp 15–19

  • Jouili S, Vansteenberghe V (2013) An empirical comparison of graph databases. In: 2013 international conference on social computing (SocialCom), Washington, DC, pp 708–715

  • Khondoker R, Zaalouk A, Marx R, Bayarou K (2014) Feature-based comparison and selection of software defined networking (SDN) controllers. In: 2014 world congress on computer applications and information systems (WCCAIS), Hammamet, Tunisia, pp 1–7

  • Koponen T, Casado M, Gude N, Stribling J, Poutievski L, Zhu M, Ramanathan R, Iwata Y, Inoue H, Hama T (2010) ONIX: A distributed control platform for large-scale production networks. OSDI, vol 10. Vancouver, BC, pp 1–6

  • Krishnamurthy A, Chandrabose SP, Gember-Jacobson A (2014) Pratyaastha: an efficient elastic distributed sdn control plane. In: Proceedings of the third workshop on hot topics in software defined networking. Chicago, IL, ACM, pp 133–138

  • Li J, Huang X, Li J, Chen X, Xiang Y (2014) Securely outsourcing attribute-based encryption with checkability. IEEE Trans Parallel Distrib Syst 25(8):2201–2210

    Article  Google Scholar 

  • Liu S, Li B (2015) On scaling software-defined networking in wide-area networks. Tsinghua Sci Technol 20(3):221–232

    Article  Google Scholar 

  • Long H, Shen Y, Guo M, Tang F (2013) Laberio: dynamic load-balanced routing in openflow-enabled networks. In: 2013 IEEE 27th international conference on advanced information networking and applications (AINA), Barcelona, Catalonia, Spain, pp 290–297

  • Ma T, Zhou J, Tang M, Tian Y, Al-Dhelaan A, Al-Rodhaan M, Lee S (2015) Social network and tag sources based augmenting collaborative recommender system. IEICE Trans Inf Syst 98(4):902–910

    Article  Google Scholar 

  • Mckeown N, Anderson T, Balakrishnan H, Parulkar G, Peterson L, Rexford J, Shenker S, Turner J (2008) Openflow: enabling innovation in campus networks. ACM SIGCOMM Comput Commun Rev 38(2):69–74

    Article  Google Scholar 

  • Medved J, Varga R, Tkacik A, Gray K (2014) Opendaylight: Towards a model-driven sdn controller architecture. In: 2014 IEEE 15th international symposium on “A World of Wireless, Mobile and Multimedia Networks” (WoWMoM), Sydney, Australia, pp 1–6

  • Ousterhout J, Agrawal P, Erickson D, Kozyrakis C, Leverich J, Mazires D, Mitra S, Narayanan A, Parulkar G, Rosenblum M (2010) The case for ramclouds: scalable high-performance storage entirely in dram. ACM SIGOPS Oper Syst Rev 43(4):92–105

    Article  Google Scholar 

  • Qazi ZA, Lee J, Jin T, Bellala G, Arndt M, Noubir G (2013) Application-awareness in SDN. In: ACM SIGCOMM computer communication review, vol 43, New York, NY, ACM, pp 487–488

  • Quamar A, Deshpande A, Lin J (2014) Nscale: neighborhood-centric analytics on large graphs. Proc VLDB Endow 7(13):1673–1676

    Article  Google Scholar 

  • Shen J, Tan H, Wang J, Wang J, Lee S (2015) A novel routing protocol providing good transmission reliability in underwater sensor networks. J Internet Technol 16(1):171–178

    Google Scholar 

  • Subedi TN, Nguyen KK, Cheriet M (2015) Openflow-based in-network layer-2 adaptive multipath aggregation in data centers. Comput Commun 61:58–69

    Article  Google Scholar 

  • Tavakoli A, Casado M, Koponen T, Shenker S (2009) Applying nox to the datacenter. In: Hot topics in networks workshop, New York, NY

  • Tootoonchian A, Ganjali Y (2010) Hyperflow: a distributed control plane for openflow. In: Proceedings of the 2010 internet network management conference on research on enterprise networking, Berkeley, CA. USENIX Association, pp 3–3

  • Wang G Tang J (2012) The nosql principles and basic application of cassandra model. In: 2012 international conference on computer science and service system (CSSS), Nanjing, China, pp 1332–1335

  • Wang R, Butnariu D, Rexford J (2011) Openflow-based server load balancing gone wild. Hot-ICE 11:12

    Google Scholar 

  • Xiao Z, Li Y, Wang J (2015) Allocation of network error correction flow on disjoint paths. Tsinghua Sci Technol 20(2):182–187

    Article  MathSciNet  Google Scholar 

  • Xie S, Wang Y (2014) Construction of tree network with limited delivery latency in homogeneous wireless sensor networks. Wireless Pers Commun 78(78):231–246

    Article  Google Scholar 

  • Zheng Y, Jeon B, Xu D, Wu Q, Zhang H (2015) Image segmentation by generalized hierarchical fuzzy c-means algorithm. J Intell Fuzzy Syst 28(2):961–973

    Google Scholar 

Download references

Acknowledgments

This work is funded by the European Framework Program (FP7) under Grant No. FP7-PEOPLE-2011-IRSES, National Natural Science Foundation of China under Grant Nos. 61073009 and 61103197, National High Tech R&D Program 863 of China under Grant No. 2011AA010101, National Sci-Tech Support Plan of China under Grant No. 2014BAH02F03, National Sci-Tech Major Projects of China under Grant Nos. SinoProbe-09-01-03 and 2012ZX01039-004-04-3, Key Sci-Tech Program of Jilin Province of China under Grant Nos. 2011ZDGG007 and 20150204035GX and Fundamental Research Funds for Central Universities of China under Grant Nos. JCKY-QKJC46 and 2412015KJ005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuo Zhao.

Ethics declarations

Conflicts of interest

All authors declare that we have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. Our work is original research achieved by all authors. This manuscript has not been submitted to more than one journal for simultaneous consideration. The manuscript has not been published previously (partly or in full). Our study is not split up into several parts to increase the quantity of submissions and submitted to various journals or to one journal over time. No data have been fabricated or manipulated (including images) to support our conclusions. Authors whose names appear on the submission have contributed sufficiently to the scientific work and therefore share collective responsibility and accountability for the results.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, T., Hu, L., Yu, X. et al. Role-based intelligent application state computing for OpenFlow distributed controllers in software-defined networking. Soft Comput 21, 6269–6277 (2017). https://doi.org/10.1007/s00500-016-2180-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-016-2180-4

Keywords

Navigation