Skip to main content

Advertisement

Log in

Novel wharf-based genetic algorithm for berth allocation planning

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Commercial ports require an efficient means of scheduling vessels for public berths. In this study, a wharf-based genetic algorithm is proposed for the scheduling of public berths with the aim of reducing reliance on communications and shortening the waiting time of vessels. Schedules are initially encoded as chromosomes, based on wharf characteristics and the need from the generated wharf matching lists to avoid assigning vessels to inappropriate wharves. The proposed algorithm uses a special wharf-based sequential type of chromosome that keeps all of the generated schedules as feasible solutions. Following the selection process, crossover, and mutation, the proposed algorithm adjusts the usage of wharves in order to increase the speed of convergence. The proposed algorithm is able to handle a greater number of vessels when combined with the map-reduce technique. Experimental results demonstrate the effectiveness of the proposed algorithm at assigning vessels to appropriate berths as soon as they arrive. Compared to three other existing algorithms, it performs nine times faster in terms of convergence speed and produces better quality of the solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Boile M, Golias M, Theofanis S (2009) Scheduling of berthing resources at a marine container terminal via the use of genetic algorithms: current and future research. In: dos Santos WP (ed) Evolutionary Computation. InTech. doi:10.5772/9602. ISBN 978-953-307-008-7

  • Brodersen OB, Meier L, Schumann M (2010) Optimizing the berth allocation problem using a genetic algorithm and particle swarm optimization. Paper presented at the MKWI 2010—Planung/Scheduling und Konfigurieren/Entwerfen

  • Cheong CY, Lim CJ, Tan KC, Liu DK (2007) A multi-objective evolutionary algorithm for berth allocation in a container port. In: 2007 IEEE Congress on evolutionary computation, 25–28 Sept 2007, pp 927–934. doi:10.1109/CEC.2007.4424569

  • Eiben AE, Smith JE (2003) Introduction to evolutionary computing. Natural computing series. Springer, New York. doi:10.1007/978-3-662-05094-1

  • Frojan P, Correcher JF, Alvarez-Valdes R, Koulouris G, Tamarit JM (2015) The continuous berth allocation problem in a container terminal with multiple quays. Expert Syst Appl 42:7356–7366. doi:10.1016/j.eswa.2015.05.018

    Article  Google Scholar 

  • Gkolias MD (2007) The discrete and continuous berth allocation problem: models and algorithms. Rutgers University, New Jersey. doi:10.7282/T3DB828Q

  • Goh KS, Lim A (2000) Combining various algorithms to solve the ship berthing problem. In: 12th IEEE international conference on tools with artificial intelligence, 2000. ICTAI 2000. Proceedings. pp 370–375. doi:10.1109/TAI.2000.889896

  • Guan Y, Cheung RK (2004) The berth allocation problem: models and solution methods. OR Spectr 26:75–92. doi:10.1007/s00291-003-0140-8

    Article  MathSciNet  MATH  Google Scholar 

  • Imai A, Nishimura E, Papadimitriou S (2001) The dynamic berth allocation problem for a container port. Transp Res Part B Methodol 35:401–417. doi:10.1016/S0191-2615(99)00057-0

    Article  Google Scholar 

  • Imai A, Sun X, Nishimura E, Papadimitriou S (2005) Berth allocation in a container port: using a continuous location space approach. Transp Res Part B Methodol 39:199–221. doi:10.1016/j.trb.2004.04.004

    Article  Google Scholar 

  • Imai A, Zhang JT, Nishimura E, Papadimitriou S (2007) The berth allocation problem with service time and delay time objectives. Marit Econ Logist 9:269–290

    Article  Google Scholar 

  • Lee HH (2000) Taguchi methods principles and practices of quality design. Gau Lih, New Taipei City

    Google Scholar 

  • Lee Y, Chen CY (2009) An optimization heuristic for the berth scheduling problem. Eur J Oper Res 196:500–508. doi:10.1016/j.ejor.2008.03.021

    Article  Google Scholar 

  • Lim A (1998) The berth planning problem. Oper Res Lett 22:105–110. doi:10.1016/S0167-6377(98)00010-8

    Article  MathSciNet  MATH  Google Scholar 

  • Ludwig SA (2011) Single-objective versus multi-objective genetic algorithms for workflow composition based on service level agreements. In: 2011 IEEE international conference on service-oriented computing and applications (SOCA), 12–14 Dec 2011. pp 1–8. doi:10.1109/SOCA.2011.6166211

  • Moorthy R, Teo CP (2006) Berth management in container terminal: the template design problem. OR Spectr 28:495–518. doi:10.1007/s00291-006-0036-5

    Article  MATH  Google Scholar 

  • Nishimura E, Imai A, Papadimitriou S (2001) Berth allocation planning in the public berth system by genetic algorithms. Eur J Oper Res 131:282–292. doi:10.1016/S0377-2217(00)00128-4

    Article  MATH  Google Scholar 

  • Pandian MV (ed) (2013) Meta-heuristics optimization algorithms in engineering, business, economics, and finance. IGI Global, Hershey. doi:10.4018/978-1-4666-2086-5

    Google Scholar 

  • Pandian MV (ed) (2014) Handbook of research on novel soft computing intelligent algorithms: theory and practical applications, vol 2. IGI Global, Hershey. doi:10.4018/978-1-4666-4450-2

    Google Scholar 

  • Pandian V (ed) (2015) Handbook of research on artificial intelligence techniques and algorithms, vol 2. IGI Global, Hershey. doi:10.4018/978-1-4666-7258-1

    Google Scholar 

  • Pandian V, Nadar B, Jeffrey W (eds) (2012) Innovation in power, control, and optimization: emerging energy technologies. IGI Global, Hershey. doi:10.4018/978-1-61350-138-2

  • Park KT, Kim KH (2002) Berth scheduling for container terminals by using a sub-gradient optimization technique. J Oper Res Soc 53:1054–1062

    Article  MATH  Google Scholar 

  • Park YM, Kim HK (2003) A scheduling method for berth and quay cranes. OR Spectr 25:1–23. doi:10.1007/s00291-002-0109-z

    Article  MathSciNet  MATH  Google Scholar 

  • Ting CK, Lee CN, Chang HC, Wu JS (2009) Wireless heterogeneous transmitter placement using multiobjective variable-length genetic algorithm. IEEE Trans Syst Man Cybern Part B (Cybern) 39:945–958. doi:10.1109/TSMCB.2008.2010951

    Article  Google Scholar 

  • Yan S, Lu CC, Hsieh JH, Lin HC (2015) A network flow model for the dynamic and flexible berth allocation problem. Comput Ind Eng 81:65–77. doi:10.1016/j.cie.2014.12.028

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Nan Lee.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by C.-H. Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 191 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, AH., Lee, CN., Wu, JS. et al. Novel wharf-based genetic algorithm for berth allocation planning. Soft Comput 21, 2897–2910 (2017). https://doi.org/10.1007/s00500-016-2272-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-016-2272-1

Keywords

Navigation