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Expanding FLew with a Boolean connective

Rodolfo C. Ertola-Biraben · Francesc Esteva · Llúıs Godo

Abstract We expand FLew with a unary connective

whose algebraic counterpart is the operation that gives

the greatest complemented element below a given argu-
ment. We prove that the expanded logic is conservative

and has the Finite Model Property. We also prove that

the corresponding expansion of the class of residuated

lattices is an equational class.
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1 Introduction

In this paper we study the expansion of the substruc-

tural logic FLew, i.e. Full Lambek calculus with ex-
change and weakening, with a unary connectiveB whose

intended algebraic semantics is as follows: given a bounded

integral commutative residuated lattice (or residuated

lattice for short) A, Ba is the maximum, if it exists, of

the Boolean elements of the universe A below a, which
we call the greatest Boolean below a, that is,

Ba = max{b ∈ A : b ≤ a and b is Boolean}.

In fact, this operator is similar to the so-called Baaz-
Monteiro ∆ operator, very often used in the context of
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mathematical fuzzy logic systems that are semilinear

expansions of MTL. Baaz [2] studied it in connection

with Gödel logic while Hájek [10] investigated ∆ in BL
logics in general, see also [8, Chapter 2] for a more gen-

eral perspective. Indeed, in such a context of semilinear

logics, i.e. logics that are complete with respect to a

class of linearly ordered algebras, the semantics of ∆
is exactly the above one for B: in a linearly-ordered

MTL-algebra, ∆a = 1 if a = 1, and ∆a = 0 otherwise,

since the only Boolean elements in a chain are 1 and 0;

moreover, from a logical point of view, ∆ϕ represents

the weakest Boolean proposition implying ϕ.

The operator B can be also related to the join-

complement operation D, also known as dual intuition-

istic negation, already considered by Skolem [20] in

the context of lattices with relative meet-complement,
and later independently studied by e.g. Moisil [11] and

Rauszer [16] as well, the latter in the context of ex-

pansions of Heyting algebras. It turns out that the op-

eration ¬D and its iterations, where ¬ is the residual
negation, has also very similar properties to B, and in

some classes of residuated lattices they even coincide.

In this paper we study the operator B in the con-

text of FLew and axiomatize it. We show that the usual

axiomatics of the ∆ operator is actually too strong to
capture the above intended semantics. In fact, the ax-

iom

∆(ϕ ∨ ψ) → (∆ϕ ∨∆ψ)

is not sound for B over FLew any longer. Thus, B is
a weaker operator than ∆. However, as we will see, B

keeps most of the properties of ∆. In particular, the

expansion of FLew with B is conservative, its corre-

sponding class of algebras is an equational class, and
has the same kind of deduction theorem as ∆. Also, B

may also be interesting as ¬B has a paraconsistent be-

haviour. On the negative side, the expansion of a semi-
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linear extension of FLew with B needs not to remain

semilinear.

The paper is structured as follows. In Section 2 we

overview well-known facts about residuated lattices and

its Boolean elements, as well as basic facts about the

logic FLew. Sections 3 and 4 contain an algebraic study
of the operator B. In particular, in Section 3 we study

basic properties and show, among other things, that

the class RLB of residuated lattices expanded with B

is an equational class and state the modalities, while in
Section 4 we compareB with the mentioned∆ and with

an operation using the join-complement D. Finally, in

Section 5 we focus on logical aspects, introducing the

logic FLB
ew , i.e. the expansion of FLew with the operator

B, and show that is a conservative expansion and has
the Finite Model Property, and hence it is decidable.

We conclude with some remarks and open problems.

We give appropriate references. However, the paper

is self-contained.

2 Preliminaries

2.1 Residuated lattices and Boolean elements

In this section we recall some properties of residuated
lattices as well as of their Boolean elements that we will

use in the following sections.

Following [9], a bounded, integral, commutative resid-

uated lattice, or residuated lattice for short, is an alge-

bra A= (A;∧,∨, ·,→, 0, 1) of type (2, 2, 2, 2, 0, 0) such

that:

- (A;∧,∨, 0, 1) is a bounded lattice with 0 ≤ a ≤ 1,
for all a ∈ A,

- (A; ·, 1) is a commutative monoid (i.e. · is commu-

tative, associative, with unit 1), and

- → is the residuum of ·, i.e.,

a · b ≤ c iff a ≤ b→ c, for all a, b, c ∈ A,

where ≤ is the order given by the lattice structure. A
negation operator is defined as ¬x = x→ 0.

The class of residuated lattices will be denoted by

RL. It is well known that RL is an equational class

and that it constitutes the algebraic semantics of the

substructural logic FLew (see Section 2.2).

Example 1 In what follows we will have occasion to re-

fer several times to the residuated lattice structure de-

fined on the five-element lattice of Figure 1 by taking

· = ∧ and → its residuum. With these operations, it
actually becomes a five element Gödel algebra, that is,

a residuated lattice with · being idempotent and satis-

fying the pre-linearity law (a → b) ∨ (b→ a) = 1.

0

r

s

1

t

Fig. 1 A five element Gödel algebra

We omit the proof of the following well-known facts,
see e.g. [9].

Lemma 1 Let A ∈ RL. For any a, b, c, d ∈ A, the fol-

lowing properties hold:

(i) if a ∨ b = 1, a ≤ c, and b ≤ c, then c = 1,

(ii) if a ∨ b = 1, a · c ≤ d, and b · c ≤ d, then c ≤ d,

(iii) if a ≤ b, then ¬b ≤ ¬a,

(iv) a ∧ ¬b ≤ ¬(a ∧ b),

(v) a · ¬b ≤ ¬(a→ b),

(vi) if a ∨ b = 1, then ¬a ≤ b,

(vii) a ≤ ¬¬a.

Special elements in a residuated lattice are those
that behave as elements in a Boolean algebra.

Definition 1 Let A ∈ RL. An element a of its uni-

verse A is called Boolean or complemented iff there is

an element b ∈ A such that a ∧ b = 0 and a ∨ b = 1.

In the rest of this section we state several properties

of Boolean elements that will be useful in what follows.
Even if most of them are folklore, we include proofs for

all of them for the sake of being self-contained.

An equivalent and simpler condition for an element

to be Boolean is the following.

Lemma 2 An element a in the universe of a residuated

lattice is Boolean iff a ∨ ¬a = 1.

Proof ⇒) Suppose there is an element b such that a∧

b = 0 and a ∨ b = 1. First, using that a ∧ b = 0 and
a · b ≤ a ∧ b, we have that a · b = 0. So, b ≤ a → 0,

i.e. b ≤ ¬a. Secondly, we have that ¬a = ¬a · 1 =

¬a · (a∨ b) = (¬a · a)∨ (¬a · b) = ¬a · b. So, ¬a = ¬a · b.

As ¬a · b ≤ b, it follows that ¬a ≤ b. So, b = ¬a. As we
have that a ∨ b = 1, it follows that a ∨ ¬a = 1.

⇐) By hypothesis, we have (i) a∨¬a = 1. It is enough

to see that a ∧ ¬a = 0. As a · ¬a = 0, it is enough to
prove that a ∧ ¬a ≤ a · ¬a. We have that a ∧ ¬a ≤ ¬a.

So, by monotonicity of ·, we have (ii) a·(a∧¬a) ≤ a·¬a.

We also have that a∧¬a ≤ a. So, again by monotonicity

of ·, we have ¬a · (a∧¬a) ≤ ¬a ·a = a ·¬a. So, it follows
(iii) ¬a · (a∧¬a) ≤ a ·¬a. Now, using Lemma 1(ii) with

(i), (ii), and (iii), it follows that a ∧ ¬a ≤ a · ¬a. �
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Proposition 1 Let A ∈ RL and let a be a Boolean

element of its universe A. Then, for all b, c, d ∈ A the

following properties hold:

(i) a ∧ b = a · b,

(ii) a · a = a,

(iii) a ∧ ¬a = 0,

(iv) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c),

(v) ¬¬a = a,

(vi) a→ b = ¬a ∨ b,

(vii) 0 = ¬(a ∨ ¬a),

(viii) if a ≤ b ∨ c, a ∧ b ≤ d, a ∧ c ≤ d, then a ≤ d,

(ix) if b ∨ c = 1, a ∧ b ≤ d, a ∧ c ≤ d, then a ≤ d,

(x) if a ∧ b ≤ c, then a ∧ ¬c ≤ ¬b,

(xi) if a ∨ ¬b = 1, then b ≤ a.

Proof (i) Suppose that (i) a ∨ ¬a = 1. It is enough to

see that a ∧ b ≤ a · b. We have that a ∧ b ≤ b. So, by

monotonicity of ·, we have (ii) a · (a ∧ b) ≤ a · b. We
also have that a ∧ b ≤ a. So, again by monotonicity of

·, we have ¬a · (a ∧ b) ≤ ¬a · a = 0. So, it follows (iii)

¬a · (a∧b) ≤ a ·b. Now, using Lemma 1(ii) with (i), (ii),

and (iii), it follows that a ∧ b ≤ a · b.

(ii) Using Part (i), we have a ∧ a = a · a. Also,

a ∧ a = a. So, a · a = a.

(iii) Using Part(i), we have a ∧ ¬a = a · ¬a. Also,
a · ¬a = 0. So, a ∧ ¬a = 0.

(iv) In a residuated lattice it holds that a · (b∨ c) =

(a · b) ∨ (a · c). Let a be Boolean. Then, using Part (i)

three times, it follows that a∧ (b∨ c) = (a∧ b)∨ (a∧ c).

(v) Suppose that (i) a ∨ ¬a = 1. It is enough to see

that ¬¬a ≤ a. We have that (ii) a · ¬¬a ≤ a. Also, (iii)

¬a · ¬¬a ≤ a, as ¬a · ¬¬a = 0. So, using Lemma 1(ii)
with (i), (ii), and (iii), ¬¬a ≤ a.

(vi) It is enough to prove (i) (¬a ∨ b) · a ≤ b and

(ii) if x · a ≤ b, then x ≤ ¬a ∨ b. To see (i), note that

¬a · a ≤ b and b · a ≤ b, whence (¬a · a)∨ (b · a) ≤ b. So,

using distributivity of · relative to ∨, we get (i). To see
(ii), suppose x · a ≤ b. Then, x ≤ a→ b. In order to get

x ≤ ¬a ∨ b, it is enough to derive (iii) a → b ≤ ¬a ∨ b

and use transitivity of ≤. To get (iii), let us use Lemma

1(ii). As a is Boolean, we have a∨¬a = 1. Now, a ·(a→

b) ≤ b ≤ ¬a ∨ b. Also, ¬a · (a → b) ≤ ¬a ≤ ¬a ∨ b. So,
using Lemma 1(ii), we get (iii).

(vii) As we have ¬c ≤ a ∨ ¬a, for any c ∈ A, then,

using Lemma 1(iii) and Part (iv), we get ¬(a ∨ ¬a) ≤

¬¬c ≤ c.

(viii) As a ≤ b ∨ c, we have a ≤ a ∧ (b ∨ c). Now,

using Part (iv), it follows that a ≤ (a∧b)∨(a∧c). Now,
as a∧ b ≤ d and a∧ c ≤ d, we have, by a basic property

of ∨, that (a∧ b)∨ (a∧ c) ≤ d. So, by transitivity of ≤,

a ≤ d.

(ix) As b ∨ c = 1, reason as in Part (viii).

(x) Suppose a∧b ≤ c. Then a ·b ≤ c. By monotonic-

ity of ·, it follows that (a · b) · ¬c ≤ c · ¬c = 0. Then, as

· is both associative and commutative, (a · ¬c) · b ≤ 0.
So, a · ¬c ≤ ¬b. Finally, using that a is Boolean, we get

a ∧ ¬c ≤ ¬b.

(xi) Let a ∨ ¬b = 1. Then, b · (a ∨ ¬b) = b · 1 =
b. By distributivity of · relative to ∨, it follows that

(b ·a)∨ (b · ¬b) = b. As b · ¬b = 0, we have that b ·a = b.

So, as a is Boolean, b ∧ a = b, i.e. b ≤ a. �

Lemma 3 Let A ∈ RL and let a and b be Boolean

elements of A. Then,

(i) a ∧ b = a · b = ¬(¬a ∨ ¬b),

(ii) (a · b) ∨ (¬a · b) ∨ (a · ¬b) ∨ (¬a · ¬b) = 1.

Proof (i) Firstly, we have that ¬a ≤ ¬a∨¬b. So, using
Lemma 1(iii), it follows that ¬(¬a ∨ ¬b) ≤ ¬¬a. Now,

using Proposition 1(v) and ≤-transitivity, we have that

¬(¬a ∨ ¬b) ≤ a. Analogously, we get ¬(¬a ∨ ¬b) ≤ b.

Secondly, suppose c ≤ a and c ≤ b, for c ∈ A. Then,
using Lemma 1(iii) again, it follows that ¬a ≤ ¬c and

¬b ≤ ¬c. So, ¬a ∨ ¬b ≤ ¬c. Then, using Lemma 1(iii)

once again, ¬¬c ≤ ¬(¬a ∨ ¬b). Now, using Proposition

1(v) and ≤-transitivity, we get c ≤ ¬(¬a ∨ ¬b).

(ii) Suppose that a ∨ ¬a = b ∨ ¬b = 1. Then, 1 =

(a∨¬a) · (b∨¬b) = (a · b)∨ (¬a · b)∨ (a · ¬b)∨ (¬a · ¬b).

�

Proposition 2 Let A ∈ RL and let a and b be Boolean

elements of A. Then, (i) ¬a, (ii) a∨b, (iii) a∧b = a ·b,

(iv) a→ b, (v) 0, and (vi) 1 are Boolean.

Proof (i) Suppose a ∨ ¬a = 1. Then, as a ≤ ¬¬a, we

get ¬¬a ∨ ¬a = 1.

(ii) Use Lemma 3 (ii) and see that

a · b ≤ a ≤ a ∨ b ≤ (a ∨ b) ∨ ¬(a ∨ b),

¬a · b ≤ b ≤ a ∨ b ≤ (a ∨ b) ∨ ¬(a ∨ b),

a · ¬b ≤ a ≤ a ∨ b ≤ (a ∨ b) ∨ ¬(a ∨ b), and

¬a · ¬b ≤ ¬a ∧ ¬b ≤ ¬(a ∨ b) ≤ (a ∨ b) ∨ ¬(a ∨ b).

So, a ∨ b is Boolean.

(iii) Use Parts (i) and (ii), and Lemma 3(i).

(iv) Use Parts (i) and (ii), and Proposition 1(vi).

(v) Use Parts (i) and (ii), and Proposition 1(vii).

(vi) Use the definition of Boolean element and the fact

that ¬1 = 0. �

From Proposition 2 it easily follows that, in any

residuated lattice A, the set of its Boolean elements

B(A) = {a ∈ A : a is Boolean} is the domain of a sub-

algebra of A, which is in fact a Boolean algebra. Indeed,
B(A) = (B(A);∧,∨, ·,→, 0, 1) is the greatest Boolean

algebra contained in A. B(A) is called the Boolean

skeleton or the center of A.
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2.2 On the logic FLew

The logics we are interested in are extensions or expan-
sions of the logic FLew described below.

Definition 2 The language of FLew has four binary

connectives, ∧, ∨, ·, and →, and two constants, 0 and
1.

The axioms of FLew are:

(1) (ϕ→ ψ) → ((ψ → γ) → (ϕ→ γ)),

(2) (γ → ϕ) → ((γ → ψ) → (γ → (ϕ ∧ ψ))),
(3) (ϕ ∧ ψ) → ϕ and (ϕ ∧ ψ) → ψ,

(4) ϕ→ (ϕ ∨ ψ) and ψ → (ϕ ∨ ψ),

(5) (ϕ→ γ) → ((ψ → γ) → ((ϕ ∨ ψ) → γ)),

(6) (ϕ · ψ) → (ψ · ϕ),
(7) (ϕ · ψ) → ϕ,

(8) (ϕ→ (ψ → γ)) → ((ϕ · ψ) → γ),

(9) ((ϕ · ψ) → γ) → (ϕ→ (ψ → γ)),

(10) 0 → ϕ and ϕ→ 1.

The only rule of FLew is modus ponens:

ϕ ϕ→ ψ

ψ
.

We define ¬ϕ = ϕ → 0 and ϕ ↔ ψ = (ϕ → ψ) ∧ (ψ →
ϕ).

The following formulas and rules are derivable in

FLew:

(11)
ϕ→ ψ ψ → γ

ϕ→ γ
,

(12) ϕ→ (ψ → ϕ),

(13) ϕ→ ϕ,

(14) ϕ→ (ϕ · 1) and (ϕ · 1) → ϕ,

(15) (ϕ · (ψ · γ)) ↔ ((ϕ · ψ) · γ)
(16) (ϕ · (ϕ→ ψ)) → ψ,

(17) (1 → ϕ) → ϕ, ϕ→ (1 → ϕ),

(18)
ϕ ψ

ϕ ∧ ψ
,

(19) (ϕ ∨ ¬ϕ) → ¬(ϕ ∧ ¬ϕ).

Derivations for (11)-(19) are rather easy. Hence, they

are left to the reader.

We will occasionally consider the following exten-

sions of FLew .

Definition 3 Consider the following axiomatic exten-

sions of FLew:

– Intutitionistic logic IL is FLew plus the axiom

(Contr) ϕ→ (ϕ · ϕ).

– The logic MTL is FLew plus the axiom

(Prel) (ϕ→ ψ) ∨ (ψ → ϕ).

– SMTL logic is MTL plus the axiom

(PC) ¬(ϕ ∧ ¬ϕ)

– WNM logic is MTL plus the axiom

(WNM) ¬(ϕ&ψ) ∨ (ϕ ∧ ψ → ϕ&ψ)

– NM logic is WNM plus the axiom

(Inv) ¬¬ϕ→ ϕ

– BL logic is MTL plus the axiom

(Div) (ϕ ∧ ψ) → (ϕ&(ϕ→ ψ))

– Product logic is BL plus (PC) and the axiom
(C) ¬ϕ ∨ ((ϕ→ ϕ&ψ) → ψ)

– Gödel logic G is BL plus (Contr)

–  Lukasiewicz logic  L is BL plus (Inv).

Remark 1 Note that Gödel logic G arises also as MTL

plus (Contr) or as IL plus (Prel).

In MTL and its extensions we may define φ ∨ ψ :=

((φ→ ψ) → ψ) ∧ ((ψ → φ) → φ). In BL and its exten-

sions we may define ϕ ∧ ψ := ϕ&(ϕ → ψ). Moreover,

in IL the formula (φ · ψ) ↔ (φ ∧ ψ) is derivable, i.e.
connectives ∧ and · coincide in IL.

All these logics are algebraizable, and hence they

are strongly complete with respect to their correspond-

ing classes of algebras. Namely, FLew is complete with

respect to the variety RL of residuated lattices, MTL is

complete with respect to the variety of pre-linear resid-
uated lattices (MTL-algebras), and IL is complete with

respect to the variety of contractive residuated lattices

(Heyting algebras). Moreover, all axiomatic extensions

of MTL are semilinear logics, that is, they are strongly
complete with respect to the corresponding class of lin-

early ordered algebras. For instance, Gödel logic is com-

plete with respect to the class of linearly ordered Heyt-

ing algebras, or Gödel chains.

3 Residuated lattices enriched with B

As explained in the previous section, the set of Boolean
elements of a residuated lattice A forms a Boolean

algebra denoted the center or Boolean skeleton of A.

Cignoli and Monteiro considered Boolean elements in

 Lukasiewicz algebras in [6] and [7]. However, as far as
we know, the operator defining the greatest Boolean

element below, i.e. the operator B studied in this pa-

per, has not yet been studied in the general context

of residuated lattices. One relevant exception is the

paper [18], where Reyes and Zolfaghari define modal
operators � and ♦ in the context of Bi-Heyting alge-

bras that are shown to correspond respectively to the

greatest and the smallest complemented element below

and above, respectively. Thus, the � operation coin-
cides with B. In the cited paper, using dual negation

(or join-complement) D, always in the context of Bi-

Heyting algebras, the authors also study a family of
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modal operators �n and ♦n, in a similar way to the

one we shall employ in Section 4.2.

We will be considering residuated lattices A en-

riched with a unary operationB such that, for all a ∈ A,

Ba is the greatest Boolean element below a, as defined
in the Introduction. It is clear that B can be character-

ized by the following three conditions, for a, b in A:

(BE1) Ba ≤ a,
(BE2) Ba ∨ ¬Ba = 1,

(BI) if b ≤ a and b ∨ ¬b = 1, then b ≤ Ba.

The class of residuated lattices with B will be denoted

by RLB. Namely, an RLB-algebra is an algebra A =
(A;∧,∨, ·,→, B, 0, 1) such that (A;∧,∨, ·,→, 0, 1) is a

residuated lattice and B satisfies the above three con-

ditions.

First of all, note that B is new, that is, B is not ex-

pressible by a {∧,∨, ·,→, 0}-term. Indeed, for instance,

in the Gödel algebra G2×G3 (the direct product of the

two-element Boolean algebra with universe {0, 1} and
the three-element Gödel algebra with universe {0, 1

2
, 1})

we have, for any {∧,∨, ·,→ 0}-term t, that ta ∈ {0, a, 1},

where a = (1, 1
2
) is the join reducible coatom, while

Ba = (1, 0) is the join-irreducible atom, which does not

belong to {0, a, 1}.
In the next proposition we see that all operations

remain independent.

Proposition 3 The set of operators {∧,∨, ·,→, B, 0}

is independent.

Proof To see that ∧ is independent of the rest take the

distributive lattice in Figure 1 and define the monoidal
operation · as s ·t = 0, s ·s = s, and t ·t = t, for coatoms

s and t. This operation has a corresponding residuum

→. Since the only Boolean elements are 0 and 1, the

operator B is defined as B1 = 1 and Ba = 0, for all
a 6= 1. Then, note that the set S = {0, s, t, 1} is closed

for ∨, ·, →, 0 and B, but s ∧ t /∈ S.

To see that ∨ is independent of the rest take the algebra

that results from inverting the lattice order in the alge-

bra of Example 1 and note that the set S with bottom,

both atoms a1 and a2, and top is closed for ∧, ·, →, 0,
and B, but a1 ∨ a2 /∈ S.

To see that · is independent of the rest take the four-

element chain 0 < a < b < 1 where a·b = a·a = b·b = a,

for the atom a and the coatom b, and note that the set

S = {0, b, 1} is closed for ∧, ∨, →, 0, and B, but b·b /∈ S.

To see that → is independent of the rest take the alge-

bra of Example 1 and note that the set S = {0, r, s, 1}
is closed for ∧, ∨, ¬, 0, and B, but s→ r /∈ S.

To see that 0 is independent of the rest take the two

element Boolean algebra and note that the set S = {1}

is closed for ∧, ∨, ·, →, and B, but 0 /∈ S.

The independence of B has already been considered. �

Lemma 4 Let A ∈ RLB and let a ∈ A. Then,

(i) Ba = a iff a is Boolean,

(ii) Ba = 1 iff a = 1,
(iii) BBa = Ba.

Proof (i) Suppose Ba = a. Using (BE2) it follows

that a ∨ ¬a = 1. For the other conditional, suppose

a ∨ ¬a = 1. Then, as a ≤ a, using (BI) it follows that
a ≤ Ba. The other inequality follows by (BE2).

(ii) Suppose Ba = 1. Using (BE1), it follows that

1 ≤ a, i.e. a = 1. For the other conditional, suppose
a = 1. Then, a ≤ 1. Using (BI) and the fact that 1 is

Boolean (see Proposition 2(vi)), it follows that 1 ≤ Ba.

(iii) Considering (BE1), it is enough to see that
Ba ≤ BBa, which follows using (BI) and (BE2). �

We also have the following properties.

Lemma 5 Let A ∈ RLB and let a, b ∈ A. Then,

(i) B-Monotonicity: if a ≤ b, then Ba ≤ Bb,

(ii) B(a ∧ b) = Ba ∧Bb,

(iii) B(a ∧ b) ≤ a · b,

(iv) B(a · b) = B(a ∧ b),
(v) B(a · b) = Ba · Bb,

(vi) Ba ∨Bb ≤ B(a ∨ b),

(vii) B(a → b) ≤ Ba→ Bb,

(viii) B0 = 0,
(ix) B¬a ≤ ¬Ba.

Proof (i) Suppose a ≤ b. Using (BI), it is enough to

haveBa ≤ b and Ba∨¬Ba = 1. Now, the former follows

by (BE1) and the hypothesis, and the latter is (BE2).

(ii) B(a∧ b) ≤ Ba∧Bb follows from a∧ b ≤ a, b us-

ing B-monotonicity. The other inequality follows using

(BI), (BE1), and (iii) in Proposition 2.

(iii) By (i) in Proposition 1 and part (ii) we have

B(a ∧ b) = Ba ∧Bb = Ba · Bb. The goal follows using
Ba ≤ a, Bb ≤ b, and monotonicity of ·.

(iv) From a·b ≤ a∧b by (i), we getB(a·b) ≤ B(a∧b).

For the other inequality, using (BI), it is enough to have
B(a∧ b) ≤ a · b and B(a∧ b) Boolean. Now, the former

is (iii) and the latter follows from (BE2).

(v) As Ba is Boolean, by (i) of Proposition 1, we
have Ba ∧Bb = Ba ·Bb. Moreover, by (ii), B(a ∧ b) =

Ba ∧Bb. We get our goal using (iv).

(vi) It follows using (i) (B-Monotonicity).

(vii) As a → b ≤ a → b, we have (a → b) · a ≤ b.

Then, by B-monotonicity, B((a → b) · a) ≤ Bb. So,
using (v), B(a → b) · Ba ≤ Bb. So, B(a → b) ≤ Ba →

Bb.

(viii) It follows because 0 is Boolean.

(ix) It follows from (vii), (viii), and ¬a = a→ 0. �
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Regarding the inequalities in the previous lemma,

that is, (iii), (vi), (vii), and (ix), their reciprocals do

not hold. Indeed, inequality a · b ≤ B(a ∧ b) fails in

the three-element Gödel algebra G3 taking the top and

the middle element. Inequality B(a ∨ b) ≤ Ba ∨ Bb
fails in the algebra of Example 1 taking a and b to

be the coatoms s and t. Also, inequality ¬Ba ≤ B¬a

fails in G3, taking a to be the middle element. So, also

inequality Ba→ Bb ≤ B(a→ b) fails.

Though B may not exist for every element in a resid-

uated lattice, B exists in every finite residuated lattice.

Proposition 4 Let A ∈ RL be finite. Then, B exists

in A.

Proof In a finite residuated lattice A, for any a ∈ A, we

haveBa =
∨
{b ∈ A : b ≤ a and b∨¬b = 1}. It is enough

to see that if b1 ≤ a, b1∨¬b1 = 1, b2 ≤ a, and b2∨¬b2 =

1, then (i) b1 ∨ b2 ≤ a and (ii) (b1 ∨ b2)∨¬(b1 ∨ b2) = 1.

Now, (i) follows immediately and (ii) follows using (ii)
in Proposition 2. �

On the other hand, there are infinite residuated lat-

tices where B does not exist. Indeed, we have the fol-

lowing example due to Franco Montagna (see [1]).

Proposition 5 There is an (infinite) Gödel algebra A
and a ∈ A such that Ba does not exist, i.e. where B

does not exist.

Proof Let [0, 1
2
, 1]G be the three-element Gödel alge-

bra. Let us consider

A1 = {a ∈ ([0, 1
2
, 1]G)N such that {i ∈ N : ai = 0} is

finite},

A2 = {a ∈ ([0, 1
2
, 1]G)N such that {i ∈ N : ai 6= 0} is

finite}, and

A = A1 ∪ A2.

The set A is the domain of a subalgebra of ([0, 1
2
, 1]G)N.

Indeed, if a, b ∈ A1, then a ∧ b ∈ A1 and a → b ∈ A1,
if a, b ∈ A2, then a ∧ b ∈ A2 and a→ b ∈ A1, if a ∈ A1

and b ∈ A2, then a ∧ b ∈ A2 and a → b ∈ A2, and if

a ∈ A2 and b ∈ A1, then a ∧ b ∈ A2 and a → b ∈ A1.

Also, 0 ∈ A2. So, A is the domain of a subalgebra A of

([0, 1
2
, 1]G)N.

Now, take a to be such that ai = 1 if i is even and
ai = 1

2
if i is odd. Next, consider the set {b ∈ A : b ≤ a

and b is Boolean}. It consists of all elements b such that

bi = 0 for all odd i and for all but finitely many even

i, and bi = 1 otherwise. It can be seen that this set has

no maximum in A. �

Actually, Montagna’s example of Proposition 5 can

be generalized as follows.

Proposition 6 Let V be a variety of MTL-algebras

such that there is a linearly ordered algebra A ∈ V with

a proper filter F (i.e. {1} ( F ( A), that is, such that

A is not simple. Then, V contains an infinite algebra

where B does not exist.

Proof Let D ∈ V be a chain and F be a filter of A sat-
isfying the hypothesis of the proposition. Let us define

F¬ = {x ∈ D | ∃y ∈ F, x ≤ ¬y} and let C = F ∪F¬. It

is easy to check that C is the domain of a subalgebra

of D. Finally define the following sets:

A1 = {a ∈ CN such that {i ∈ N : ai ∈ F} is finite},
A2 = {a ∈ CN such that {i ∈ N : ai ∈ F¬} is finite},

A = A1 ∪ A2.

One can check that again A is the domain of a sub-

algebra of CN, taking into account that if x ∈ F and

y ∈ F¬, then x∧ y, x ∗ y, x→ y ∈ F¬, and if x, y ∈ F¬,

then x→ y ∈ F .
Thus, A is a subalgebra and taking an element a

such that ai = 1 if i is even and ai = b, for a given

b ∈ F \ {1}, then the same argument as in Montagna’s

example proves that Ba does not exist. �

For readers familiar with the main systems of math-
ematical fuzzy logic and their algebraic semantics (see

[8]), we provide the following corollary with further ex-

amples of subvarieties of residuated lattices containing

algebras where B does not exist.

Corollary 1 In the following varieties of MTL-algebras,

there is an infinite algebra where B does not exist:

– the variety generated by any continuous t-norm,

– the varieties generated by either the NM t-norm or

a WNM t-norm. 1

Proof In all these varieties there is an algebra A sat-

isfying the conditions of Proposition 6.
If the t-norm is either a Gödel, Product, or a WNM

t-norm (including NM), then take as A the standard

chain and as F the positive elements respect to ¬,

i.e., the elements such that ¬x ≤ x. If the t-norm is
 Lukasiewicz, then take A as the Chang algebra and F

as the set of its positive elements. Finally, if the contin-

uous t-norm is a proper ordinal sum, then take A as the

standard chain and F = [a, 1], where a ∈ (0, 1) is the

end point of a component. It is clear that in all cases F
is a proper filter and thus Proposition 6 applies.

�

1 Actually, this could be generalized in the following sense.
In [14] Noguera proves that the variety generated by simple
n-contractive MTL-chains is the variety of Sn-MTL algebras,
i.e. MTL-algebras satisfying the law x∨¬xn−1 = 1. Therefore,
any variety of n-contractive MTL-algebras that are not Sn-
MTL has a chain with a proper filter. In particular, this is the
case for the varieties of WNM and NM-algebras, since they
are 3-contractives and are not S3-MTL.
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Some papers (e.g. [4]) consider the notion of com-

patible operation. Operation B is not compatible, that

is, the congruences of RL and RLB are not the same.

To see this, take the three-element Heyting or Gödel

algebra G3 with universe {0, 1
2
, 1} and the equivalence

relation given by θ = {(0, 0), (1
2
, 1
2
), (1

2
, 1), (1, 1

2
), (1, 1)}.

It holds that θ is a RL-congruence, but not an RLB-
congruence, as B 1

2
= 0 and B1 = 1.

Taking modality to mean a finite combination of the

unary operators ¬ andB, the next statement shows how

many different modalities there are in RLB.

Proposition 7 In RLB there are nine different modal-

ities. They may be ordered as follows: on the one hand,

the positive modalities B ≤ Id ≤ ¬¬ ≤ ¬B¬ (with also

B ≤ B¬¬ ≤ ¬¬) and, on the other hand, the negative
modalities B¬ ≤ ¬ ≤ ¬B¬¬ ≤ ¬B. See Figure 2.

Proof The inequalities are immediate. The reverse in-

equalities can be seen not to be the case by considering
either the only atom in the three-element Gödel algebra

G3 or any of the two non-comparable elements of the

Heyting algebra obtained by adding a top element to

the Boolean algebra of 4 elements. There are no other

modalities, because if we apply operations ¬ and B to
the given nine modalities, we do not get anything new,

as ¬¬B = B, BB = B, and B¬B = ¬B. �

¬B¬

¬¬

Id

B

B¬¬

¬B

¬B¬¬

¬

B¬

Fig. 2 The positive and negative modalities of ¬ and B

3.1 An equational class

It is natural to inquire whether the class RLB is in fact

an equational class. To this end, we start focusing our
attention on the following equations, using x 4 y as an

abbreviation for x ∨ y ≈ y:

(BI1) Bx 4 B(x ∨ y),

(BI2) B1 ≈ 1.

Lemma 6 Equations (BI1) and (BI2) hold in RLB.

Proof The given equations follow immediately from

lemmas 4(ii) and 5(vi), respectively. �

We are also interested in the equation

(BI3) B(x ∨ ¬x) 4 Bx ∨ ¬x,

but it is not easy to see that it holds in RLB. Towards

this goal, we state and prove the following result.

Lemma 7 In RLB the following hold:

(i) (B(x ∨ ¬x) ∧ x) ∨ ¬(B(x ∨ ¬x) ∧ x) ≈ 1,

(ii) B(x ∨ ¬x) ∧ x 4 Bx,

(iii) B(x ∨ ¬x) ∧ ¬Bx 4 ¬x.

Proof (i) Using Lemma 1(i), and using T for the left

hand side of the given equation, it is enough to get

(iv) B(x ∨ ¬x) ∨ ¬B(x ∨ ¬x) ≈ 1,

(v) B(x ∨ ¬x) 4 T , and

(vi) ¬B(x ∨ ¬x) 4 T .

Part (iv) is immediate because of (BE2).

To see (v), using Proposition 1(viii), note that we have

that B(x ∨ ¬x) 4 x ∨ ¬x, (immediate using (BE1)),

B(x ∨ ¬x) ∧ x 4 T (also immediate), and B(x ∨ ¬x) ∧

¬x 4 T , which follows from B(x∨¬x)∧¬x 4 ¬(B(x∨
¬x) ∧ x), which holds because of Lemma 1(iv).

To see (vi), note that B(x ∨ ¬x) ∧ x ≤ B(x ∨ ¬x).

So, using Lemma 1(iii), it follows that ¬B(x ∨ ¬x) 4

¬(B(x ∨ ¬x) ∧ x). And so, ¬B(x ∨ ¬x) 4 T .

(ii) Use (BI), Part (i), and B(x ∨ ¬x) ∧ x 4 x.

(iii) Use Part (ii) and Proposition 1(x). �

Proposition 8 The equation (BI3) holds in RLB.

Proof Using Proposition 1(ix), it is enough to check

the following three conditions:

(i) Bx ∨ ¬Bx ≈ 1,

(ii) B(x ∨ ¬x) ∧Bx 4 Bx ∨ ¬x, and

(iii) B(x ∨ ¬x) ∧ ¬Bx 4 Bx ∨ ¬x.

Now, (i) is immediate due to (BE2) and (ii) is also

immediate as B(x∨¬x)∧Bx 4 Bx. Regarding (iii), it

follows from Lemma 7(iii). �

Remark 2 Arguing as in the proof of Proposition 8

and noting that B(x ∨ ¬x) ∧ ¬Bx 4 B¬x follows us-

ing (BI) from Lemma 7(iii) and the fact that the term

B(x ∨ ¬x) ∧ ¬Bx is Boolean, it may be seen that also
the inequality B(x ∨ ¬x) 4 Bx ∨B¬x holds in RLB.

Lemma 8 B is monotone just using equations.

Proof Suppose x ∨ y ≈ y. Then, (i) B(x ∨ y) ≈ By.

Now, using (BI1), we have (ii) Bx∨B(x∨y) ≈ B(x∨y).

From (i) and (ii) we get Bx ∨By ≈ By. �
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The following theorem answers positively the ques-

tion posed above.

Theorem 1 RLB is an equational class. An equational
basis relative to RL is the following set of equations:

(BE1) Bx 4 x,

(BE2) Bx ∨ ¬Bx ≈ 1,

(BI1) Bx 4 B(x ∨ y),
(BI2) B1 ≈ 1,

(BI3) B(x ∨ ¬x) 4 Bx ∨ ¬x.

Proof It is enough to prove (BI) using the given equa-
tions. Suppose (i) b ≤ a and (ii) b ∨ ¬b = 1. From (i),

using Lemma 8, it follows (iii) Bb ≤ Ba. From (ii),

using (BI2), it follows B(b ∨ ¬b) = B1 = 1, which,

using (BI3), implies that Bb ∨ ¬b = 1, which, using
(iii) gives Ba ∨ ¬b = 1, which, using Proposition 1(xi),

implies b ≤ Ba. �

Remark 3 Note that, as expected, the just given proof
of (BI) only uses equations (BI1), (BI2), and (BI3).

It is also natural to inquire whether the given equa-
tions are independent.

Proposition 9 The set {(BE1), (BE2), (BI1), (BI2),

(BI3)} is independent.

Proof To see that (BE1) is independent of the rest,

take the three-element Gödel algebra G3 and define

B0 = 0, and Ba = 1, if a is not 0.

To see that (BE2) is independent of the rest, take the

four-element Gödel chain G4 and define B0 = 0, B1 =

1, Ba = 0, for the only atom a of the chain, and Bc = c,

for the remaining element c.

To see that (BI1) is independent of the rest, take the

Gödel algebra G3 ×G3. If a is any of the four Boolean

elements, then put Ba = a, else put Ba = 0.

To see that (BI2) is independent of the rest, take again
G3, but now define Ba = 0, for every a.

Finally, to see that (BI3) is independent of the rest,

take the four-element Boolean G2 × G2 algebra and

define, for any a, if a = 1, then Ba = 1, else Ba = 0. �

3.2 Subdirectly irreducible RLB-algebras

In this section we show the subdirectly irreducible mem-

bers of RLB are those whose Boolean elements are only

the top and bottom elements.

Definition 4 Let A ∈ RLB. A set F contained in A

is said to be a RLB-filter iff for all a, b ∈ A it satisfies

(1) 1 ∈ F ,
(2) if a ∈ F and a ≤ b, then b ∈ F ,

(3) if a, b ∈ F , then a · b ∈ F ,

(4) if a ∈ F , then Ba ∈ F .

Proposition 10 Let A ∈ RLB. The lattice of RLB-

congruences is isomorphic to the set of RLB-filters. In-

deed, let f : Con(A) −→ Fil(A) be defined by: if ≡ is

a RLB-congruence, then f(≡) is the RLB-filter F≡ =

{a ∈ A : a ≡ 1}. Then, the function f is an isomor-
phism such that if F is a RLB-filter, then f−1(F ) is the

RLB-congruence ≡F defined by a ≡F b iff a → b, b →

a ∈ F .

Proof It is obvious that F≡ is a RLB-filter. In order to

prove that ≡F is a congruence we need to prove that if

a ≡F b, then Ba ≡F Bb, since the other conditions are

known to be true for any residuated lattice. So, suppose
a→ b and b→ a ∈ F . Then, by the fourth condition in

the definition of filter, B(a → b) ∈ F . Now, using (vi)

in Lemma 5 and the second condition in the definition

of filter, it follows that Ba→ Bb ∈ F . Analogously, we

obtain that Bb → Ba ∈ F . Finally, it is also obvious
that f−1 ◦ f = Id. �

Now we can characterize a family of RLB-filters.

Proposition 11 Let A ∈ RLB. If a ∈ B(A), then
Fa = [a, 1] = {x ∈ A : a ≤ x ≤ 1} is a RLB-filter.

Proof It is obvious that Fa satisfies the first two condi-

tions of a RLB-filter. The third is an easy consequence
of the fact that if a ∈ B(A), then a∗x = a∧x and thus

if x, y ∈ Fa, then a = a∧ y ≤ x ∗ y and thus x ∗ y ∈ Fa.

Finally, if x ∈ F , then a = Ba ≤ Bx. �

From now on, Fa denotes the principal filter defined

by a ∈ B(A).

In order to characterize the subdirectly irreducible

RLB-algebras, we will use the result of [22, Theorem

97]: an algebra A is subdirectly reducible iff there exists

a family of non-trivial congruences σi such that their
intersection is the identity. In our case, this means that

A is subdirectly irreducible iff there is a unique coatom

in the lattice of RLB-congruences of A.

Proposition 12 Let A ∈ RLB. Then, A is subdirectly

irreducible iff B(A) = {0, 1}.

Proof Observe first that if F is a RLB-filter of A, then

F contains a Boolean element a (by the third condition

of RLB-filter) and, thus, F contains Fa. So, to obtain
the intersection of the non-trivial RLB-filters of A it

is enough to compute the intersection of the filters Fa.

However, this intersection is not the identity iff there ex-

ists a unique Boolean element a such that a is a coatom
of B(A). So, being B(A) a Boolean algebra, this implies

that B(A) = {0, 1}. �
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4 Comparing B with other operations

Operation B is strongly related to other operations con-

sidered in the literature, e.g. the Monteiro-Baaz ∆ and

an operation defined with the join-complement D. In

this section we study these relationships.

4.1 Comparing B with ∆

The operation ∆ was already considered by Monteiro in

his paper on symmetric Heyting algebras in 1980 (see

[13]). Monteiro considered the same definitions of pos-

sibility and necessity operations given by Moisil in [11]

(see p. 67 in [13]). However, instead of using Moisil’s
notation, Monteiro used ∇ and ∆, respectively. When

so doing, he did not explicitly mention Moisil. However,

many works by Moisil appear in the list of references

of [13], including [11] and [12]. Monteiro also consid-
ered the ∆ operator in the setting of linear symmetric

Heyting algebras and studied the properties of ∆ in

the totally linear case (see [13, Ch. 5, Sect. 3]). In 1996,

independently, Baaz in [2] considered an expansion of

Gödel logic with a connective he also called ∆ satis-
fying certain axioms and the rule ϕ/∆ϕ. Although he

did not cite Monteiro, the proposed axioms are equiv-

alent to the properties that Monteiro proved for his ∆

operator in the framework of totally linear symmetric
Heyting algebras. Baaz also provided a deduction theo-

rem using ∆: Γ, ϕ ⊢ ψ iff Γ ⊢ ∆ϕ→ ψ. In 1998, Hájek

considered Baaz’s ∆ in the context of BL-algebras and

BL logic (see pp. 57-61 [10]). He gave for ∆ exactly

the same axioms as Baaz presented in [2] for Gödel
logic. He observed that all ∆ axioms make it behave

like a necessity operator, with the exception of the ax-

iom ∆(ϕ ∨ ψ) → (∆ϕ ∨ ∆ψ), that is characteristic of

possibility operations (see Remark 2.4.7 of [10]). The ∆
operation has also been studied in the more general con-

text of Mathematical fuzzy logic, see several chapters

in the handbook [8]. More recently, in [1] the authors

study, among other things, the expansion of FLew with

the ∆ operator and show that it is conservative.

In MTL,∆ can always be defined over chains, namely

as ∆1 = 1 and ∆x = 0 for all x 6= 0, and thus, ∆ and B

over MTL-chains coincide. But there are (non-linearly)

MTL-algebras where ∆ does not exist. Nevertheless,
this is not a problem because MTL is semilinear, and

the semantics of ∆ over chains is clear. However, there

is not a clear semantical interpretation of the axioms of

∆ in the general context of residuated lattices.

In the context of a residuated lattice, the operator

∆ is introduced e.g. in [1] by the same equations as in

MTL or BL (cf.[10, p. 58]):

(∆E1) ∆x 4 x,

(∆E2) ∆x ∨ ¬∆x ≈ 1,

(∆I1) ∆(x ∨ y) 4 ∆x ∨∆y,
(∆I2) ∆1 ≈ 1,

(∆I3) ∆x 4 ∆∆x,

(∆I4) ∆(x→ y) 4 ∆x→ ∆y,

where, again, x 4 y abbreviates x ∨ y ≈ y. Note that

(∆I3) may be derived from the rest: it is enough to

check that an operator satisfying the rest of the equa-

tions, satisfies all the equations in Theorem 1, and hence
the quasi-equation (BI) as well; then use (iii) of Lemma

4. Also, regarding their defining equations, the only dif-

ference between ∆ and B is that ∆ satisfies ∆(x∨y) 4

∆x ∨ ∆y, whereas B only satisfies the particular case
y = ¬x, that is, B only satisfies B(x∨¬x) 4 Bx∨B¬x,

as stated in Remark 2.

We will denote by RL∆ the class of residuated lat-

tices expanded with ∆.

It will be useful to bear in mind the following fact.

Lemma 9 Let A ∈ RL∆ and a ∈ A. Then, ∆a = a iff

a is Boolean.

Proof Supposing ∆a = a, using (∆E2) it follows that

a is Boolean. On the other hand, suppose a is Boolean.
Considering (∆E1), it is enough to prove that a ≤

∆a. By Lemma 1(ii), it is enough in turn to prove

∆a ∨∆¬a = 1, a · ∆a ≤ ∆a, and a · ∆¬a ≤ ∆a. The

first condition holds using (∆I1) and (∆I2), since a is
Boolean. The second condition is immediate. For the

third, observe that a ·∆¬a ≤ a · ¬a = 0 ≤ ∆a.

Actually, ∆ is somewhat stronger than B in the fol-

lowing sense.

Proposition 13 Let A ∈ RL. If ∆ exists in A, then

so does B, with B = ∆.

Proof Considering Theorem 1, all we have to see is that

∆ satisfies the equational basis given for B. This is im-
mediate excepting (BI1). Let us see that the equation

∆x 4 ∆(x∨ y) also holds. As we have x→ (x∨ y) ≈ 1,

using (∆I2) and (∆I4) we get 1 4 ∆x → ∆(x ∨ y),

which gives ∆x 4 ∆(x ∨ y). �

On the other hand, we have the following result.

Proposition 14 There exist finite residuated lattices

where B exists, but ∆ does not.

Proof Using Proposition 4, it follows that B exists in

the Gödel algebra of Example 1, as the algebra is finite.

Now, take its coatoms s and t. To see that ∆ does not
exist, note that (∆E1) and (∆E2) imply that ∆s =

∆t = 0. So, ∆s ∨∆t = 0. However, ∆(s ∨ t) = 1, due

to (∆I2). Then, (∆I1) is not satisfied. �
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Example 1 makes clear the basic difference between

∆ and B, when we define them over MTL-algebras. It

is well known that MTL∆, the expansion of MTL with

∆, is semilinear, i.e. each algebra of the variety is a

subdirect product of lineraly ordered MTL∆-algebras.
Moreover, we have seen that ∆ and B coincide over

chains. Thus, Example 1 proves that MTLB, the ex-

pansion of MTL with B, is not semilinear. In fact, this

was already clear from Proposition 12, since there ex-
ist subdirectly irreducible MTLB-algebras (like the one

defined in Example 1) that are not linearly ordered.

4.2 Comparing B with an operation using the

join-complement

The join-complement operation D has a long history.

In 1919, Skolem considered lattices expanded with both

meet and join relative complements (see §2 of [20] or pp.
77-85 of [21]). He just worked from an algebraic point of

view. He noted that existence of both top 1 and bottom

0 is implied. Also, he briefly considered the meet and

join-complements, for which, for an arbitrary argument
a, he used the notations 0

a
and 1 − a, respectively.

In 1942, Moisil defined possibility as ¬¬ and neces-

sity as DD in a logical setting where he had both intu-

itionistic negation ¬ and its dual D (see §4 of [11] or p.

365 in [12]). He did not mention Skolem. In 1949, Riben-
boim proved that distributive lattices with D form an

equational class (see [19]). In fact, the meet is not needed,

as the class with join and join-complement D is already

an equational class. In 1974, Rauszer, mainly consider-
ing algebraic aspects, studied a logic with conjunction,

disjunction, conditional, and its dual (see [16]). She also

included both intuitionistic negation ¬ and its dual D,

though these can be easily defined. Her axiomatization

included the expected axioms plus the rules modus po-
nens and ϕ/¬Dϕ. She also provided a deduction the-

orem using (¬D)n. She neither mentioned Skolem nor

Moisil.

In the context of a join semi-lattice A, it is possible
to postulate the existence of the join-complement Da =

min{b ∈ A : for all c ∈ A, c ≤ a ∨ b}, for a ∈ A. This is

equivalent to the following two conditions:

(DI) b ≤ a ∨Da, for all a, b ∈ A,

(DE) for any a, b ∈ A, if for all c ∈ A, c ≤ a ∨ b,

then Da ≤ b.

In a join semi-lattice the existence of D implies the

existence of both top 1 = a ∨ Da, for any a, and bot-

tom 0 = D(a ∨ Da), for any a. Moreover, D can be
equationally characterized by the following three equa-

tions, where, again, we use x 4 y as an abbreviation for

x ∨ y ≈ y:

(DI) y 4 x ∨Dx,

(DE1) D(x ∨Dx) 4 y,

(DE2) Dy 4 x ∨D(x ∨ y).

In what follows, RLD will denote the class of resid-
uated lattices expanded with an operation D satisfying

these equations. Obviously, by definition, RLD is an

equational class. Notice that in a residuated lattice A,

having in the signature the symbols 0 and 1 for the bot-
tom and top elements, respectively, the above definition

of D can be simplified to Da = min{b ∈ A : a∨ b = 1},

and the condition (DE) simplifies to be

(DE′) for any a, b ∈ A, if a ∨ b = 1, then Da ≤ b.

Moreover the equations (DI) and (DE1) can also be

simplified to:

(DI′) x ∨Dx ≈ 1,

(DE1′) D1 ≈ 0.

Remark 4 Note that, while x 4 ¬¬x holds in RL,

from (DE′) and (DI′) it follows that DDx 4 x holds
in RLD. Note also that in a Heyting algebra D is the

dual of ¬, since in that case ¬ coincides with the meet

complement.

As in the case of B, D may not exist in some resid-
uated lattices, but it always exists in the finite ones.

Proposition 15 Let A be a finite residuated lattice.

Then D exists in A.

Proof It is enough to prove that
∧
{b ∈ A : a ∨ b = 1}

exists in A. For that, it is enough to see that if a∨b1 = 1

and a ∨ b2 = 1, then a ∨ (b1 ∧ b2) = 1. Now, from the

antecedent it follows that (a∨b1)·(a∨b2) = 1 and using

twice the distributive law of · with respect to ∨, we have
that (a ·a)∨ (a · b2)∨ (b1 ·a)∨ (b1 · b2) = 1. Any subterm

t of the left-hand term is such that t ≤ a ∨ (b1 ∧ b2). �

Following [16] and [18], we consider now the com-

pound operation ¬D and its relation to B. First, let us
state the following fact.

Lemma 10 Let A ∈ RLD and a, b ∈ A. Then,

(i) ¬Da ≤ a,

(ii) if a ≤ b, then Db ≤ Da and ¬Da ≤ ¬Db.

Proof (i) follows from a ∨Da = 1 using Lemma 1(vi).

(ii) Assume a ≤ b. Then, 1 = a∨Da ≤ b∨Da. Hence,

by (DE) we have Db ≤ Da. Now, apply Lemma 1(iii)

to get ¬Da ≤ ¬Db. �

In [5, Section 5] the authors prove a result about
iterations of the operation ¬D in the context of meet-

complemented distributive lattices with D. Once triv-

ially adapted to RLD, it is the following fact.
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Proposition 16 (i) For any natural n > 0, let RLDn

be the subvariety of RLD defined by adding to those of

RLD the following equation:

(¬D)n+1x ≈ (¬D)nx.

Then, the sequence of varieties RLD1 ⊂ RLD2 ⊂ . . . ⊂

RLDn ⊂ . . . is strictly increasing.

(ii) There are algebras of RLD where none of the

equations given in (i) hold.

Next, consider the following example of a Heyting

algebra where B exists but D does not.

Example 2 B exists in the Heyting algebra 1+(N×N)∂

of Figure 3, where (N×N)∂ is obtained ‘turning upside

down’ the partial order N×N. In that Heyting algebra,
Ba = 1 if a = 1 else Ba = 0. However, D does not exist

for the elements (0, n) and (n, 0), with non-zero n.

(0,2)

(0,1) (1,0)

(2,0)

Fig. 3 The residuated lattice 1 + (N × N)∂ , where B exists
but D does not

There are also RL-algebras where D exists, but B

does not (see the end of Section 2 of [5] for an example
of a Heyting algebra). Note that in Franco Montagna’s

example, neither B nor D exist.

In the following case, existence of D implies exis-

tence of B.

Proposition 17 Let A ∈ RL and ¬a ∨ ¬¬a = 1, for

all a ∈ A. Then, if D exists in A, then B also exists in
A, with B = ¬D.

Proof Let a ∈ A. Then, ¬Da exists in A. We have to
see (i) ¬Da ≤ a, (ii) ¬Da∨¬¬Da = 1, and (iii) if b ≤ a

and b∨¬b = 1, then b ≤ ¬Da. Now, (i) holds as seen in

Lemma 10(i) and (ii) follows from the hypothesis that

¬a ∨ ¬¬a = 1, for any a ∈ A. To see (iii), suppose (iv)
b ≤ a and (v) b∨¬b = 1. Due to Lemma 10(ii), we have

that (iv) implies Da ≤ Db and, using (DE), (v) implies

Db ≤ ¬b. So, by ≤-transitivity it follows that Da ≤ ¬b.

Then, in a residuated lattice we have b ≤ ¬Da. �

Remark 5 Given the conditions of Proposition 17, tak-

ing any of the coatoms in the algebra of Example 1, it

is easy to see that Dx ≈ ¬Bx does not hold. Also, the

reciprocal of Proposition 17 is not the case, as the alge-

bra in Example 2 satisfies the equation ¬x ∨ ¬¬x ≈ 1
and B exists in that algebra, but D does not exist.

Taking into account De Morgan laws valid in any

MTL-algebra 2, we can easily obtain the following con-
sequence of the previous proposition.

Corollary 2 Let A be a SMTL-algebra, i.e. an MTL-

algebra such that for all a ∈ A, a ∧ ¬a = 0. Then, for

any a ∈ A, if Da exists, then so does Ba, and Ba =
¬Da.

Lemma 11 Let A ∈ RLD and a ∈ A. Then, the fol-

lowing are equivalent:

(i) a is Boolean,

(ii) ¬Da = a,

(iii) Da = ¬a.

Proof (i) ⇒ (ii) Suppose a∨¬a = 1. Then, using (DE),

Da ≤ ¬a. Then, a ≤ ¬Da. Now, by Lemma 10(i) we

have ¬Da ≤ a. So, ¬Da = a.

(ii) ⇒ (iii) Suppose ¬Da = a. Then, ¬¬Da = ¬a.

As Da ≤ ¬¬Da, we have that Da ≤ ¬a. Now, by (DI),
a ∨Da = 1. So, also ¬a ≤ Da. Then, Da = ¬a.

(iii) ⇒ (i) Suppose Da = ¬a. As using (DI) we

have a ∨Da = 1, it follows that a ∨ ¬a = 1. �

As a direct consequence we have the following fact.

Corollary 3 Let A be a residuated lattice where both

B and D exist. Then, Da ≤ ¬Ba, for all a ∈ A. Equiv-

alently, Ba ≤ ¬Da, for all a ∈ A.

Proof Let a ∈ A. We have that Ba ≤ a. Hence, using

Lemma 10(ii), Da ≤ DBa. Now, since Ba is Boolean,

using Lemma 11 it follows that Da ≤ ¬Ba. �

Remark 6 The equality B ≈ ¬D does not hold. In-

deed, consider the join-irreducible coatom c in the Heyt-

ing algebra in Figure 4, where 0 = Bc < ¬Dc.

Lemma 12 Let A be a RLD-algebra and a, b ∈ A. We

have that if b ≤ a and b ∨ ¬b = 1, then b ≤ ¬Da.

Proof Suppose b ≤ a. Then, ¬Db ≤ ¬Da. Now, using
the hypothesis b∨¬b = 1 and Lemma 11, we have that

¬Db = b. So, b ≤ ¬Da. �

2 Notice that not all instances of De Morgan laws are valid
in the variety of MTL-algebras, for instance the equations
¬(x ∧ y) ≈ ¬x ∨ ¬y and ¬(x ∨ y) ≈ ¬x ∧ ¬y are valid, but
x ∧ y ≈ ¬(¬x ∨ ¬y) is not.
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c

¬Dc

Bc

Dc

Fig. 4 Behaviour of B and D in a coatom of a residuated
lattice

Proposition 18 Let A be a RLD-algebra, let a ∈ A,

and let us have a finite number of elements b ∈ A such

that b ≤ a. Then, Ba = (¬D)na, for some n ∈ N.

Proof In the case a is Boolean, Ba = (¬D)0a. In the

case a is not Boolean, take ¬Da. Now, Lemma 12 says
we will not be missing Boolean elements. Repeating the

procedure we will find the first Boolean below a. �

Proposition 19 (i) In every algebra of RLDn , for any

natural number n ≥ 0, B exists, with B = (¬D)n.

(ii) There are RLD-algebras where B does not exist.

Proof (i) It suffices to see that (¬Dx)n satisfies (BE1),

(BE2), and (BI). It always satifies (BE1), as it is eas-
ily seen by induction using ¬Da ≤ a and ≤-transitivity.

We get (BE2) applying Lemma 11 on the hypothesis

that (¬D)n+1 = (¬D)n. Finally, to get (BI), suppose

both (i) b ≤ a and (ii) b∨¬b = 1. From (i) it follows (iii)
¬Db ≤ ¬Da. From (ii), using Lemma 11, we get (iv)

¬Db = b. From (iii) and (iv) we get b ≤ ¬Da. Repeat

the argument n times to get b ≤ (¬D)na.

(ii) cf. end of Section 2 in [5]. �

In the next proposition we will use the following De

Morgan properties for ¬ and D. In the proof we use the
abreviation {xi} for {xi ∈ A : i ∈ I}.

Lemma 13 Let A be a complete RLD-algebra. Then,
both (i) ¬

∨
{xi} =

∧
{¬xi} and (ii) D

∧
{xi} =

∨
{Dxi}.

Proof We prove only (ii), (i) is already known. By (DI)

we have that xj ∨Dxj = 1. Then, xj ∨
∨
{Dxi} = 1 for

all j ∈ I and so,
∧
{xi}∨

∨
{Dxi} = 1. So, by (DE) we

obtain that D
∧
{xi} ≤

∨
{Dxi}.

For the other inequality, using (DI′), we have that∧
{xi} ∨ D

∧
{xi} = 1. Now, from

∧
{xi} ≤ xj and

xj ≤ xj ∨ D
∧
{xi} we obtain

∧
{xi} ≤ xj ∨ D

∧
{xi},

and taking into account that D
∧
{xi} ≤ xj ∨D

∧
{xi},

we have that
∧
{xi} ∨D

∧
{xi} ≤ xj ∨D(

∧
{xi}. Now,

by (DI′) we obtain that {xi}∨D
∧
{xi} = 1, which, by

(DE), implies Dxj ≤ D
∧
{xi}, for all j ∈ I. Thus, we

finally get
∨
{Dxi} ≤ D

∧
{xi}. �

In the next proposition, N and N+ denote the set of

natural numbers including 0 and excluding 0, respec-

tively.

Proposition 20 Let A be a complete RLD-algebra.
Then, Ba exists, with Ba =

∧
{(¬D)na : n ∈ N}, for

any a ∈ A.

Proof Considering the definition of B, it is enough to

prove, for a ∈ A, (i)
∧
{(¬D)na : n ∈ N} ≤ x, (ii)∧

{(¬D)na : n ∈ N} ∨ ¬
∧
{(¬D)na : n ∈ N} = 1, and

(iii) if b ≤ a and b ∨ ¬b = 1, then b ≤
∧
{(¬D)na : n ∈

N}. Now, (i) follows, because a ∈ {(¬D)na : n ∈ N},

as a = (¬D)0a. Regarding (ii) and using Lemma 11, it

is enough to prove that ¬D(
∧
{(¬D)na : n ∈ N}) =∧

{(¬D)na : n ∈ N}. As it is always the case, for

any b ∈ A, that ¬Db ≤ b, it suffices to prove that
∧
{(¬D)na : n ∈ N} ≤ ¬D(

∧
{(¬D)na : n ∈ N}). Now,

using both properties of Lemma 13, we have that the
right hand side of the just given inequality is equal to
∧
{(¬D)na : n ∈ N+}. It is clear that

∧
{(¬D)na : n ∈

N} ≤
∧
{(¬D)na : n ∈ N+}, because

∧
{(¬D)na : n ∈

N} ≤ (¬D)ma, for m ∈ N+. Regarding (iii), suppose
(iv) b ≤ a and b ∨ ¬b = 1, the last of which implies,

by Lemma 11, that (v) ¬Db = b. In order to prove

that b ≤
∧
{(¬D)na : n ∈ N}, it is enough to prove

that b ≤ (¬D)na, for all n ∈ N, which easily follows

by induction, as b ≤ a = (¬D)0a, by (iv), and suppos-
ing that b ≤ (¬D)na, it follows, using Lemma 10, that

¬Db ≤ (¬D)n+1a, and, using (v), b ≤ (¬D)n+1a. �

In Example 2 we saw that the existence of B in

a residuated lattice does not force the existence of D.
Now, let us see that operation ∆ is stronger than B in

this respect.

Proposition 21 Let A ∈ RL. If ∆ exists in A, then

also D exists in A, with D = ¬∆ and ∆ = ¬D.

Proof Suppose A is a residuated lattice where ∆ ex-

ists. Then, also ¬∆ exists. We have to prove that Da =

¬∆a, for any a ∈ A. We have that a ∨ ¬∆a = 1, as

∆a ∨ ¬∆a = 1 and ∆a ≤ a. Now, suppose a ∨ b = 1.
Then, ∆(a ∨ b) = ∆1 = 1. It is also the case that

∆(a ∨ b) = ∆a ∨∆b. So, ∆a ∨∆b = 1. Using Lemma

1(vi), ¬∆a ≤ ∆b. Moreover, ∆b ≤ b. So, ¬∆a ≤ b.

Let us also see that ∆a = ¬Da, for all a. From
the first part it follows that ¬Da = ¬¬∆a. Now, from

(∆E2), using Lemma 1(vi), it follows that ¬¬∆a ≤ ∆a.

And using Lemma 1(vii) we have that ∆a ≤ ¬¬∆a. �

Remark 7 The reciprocal of Proposition 21 is not the
case, as D exists in Example 1, but ∆ does not.

Corollary 4 Let A ∈ RL. If ∆ exists in A, then also

B and D exist, and we have ∆ = B = DD = ¬D.
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Proof Considering Propositions 13 and 21, it is enough

to prove that ∆ = DD, which follows from ¬∆¬∆ = ∆.

As for any a ∈ A, ∆a is Boolean due to (∆E2), using

Lemma 9 it is enough to check that ¬¬∆ = ∆, which

follows again from (∆E2) and Lemma 1(vi). �

5 The logic FLB

ew

In this section we introduce an expansion of FLew with
a unary connective B, whose intended algebraic seman-

tics is the variety of RLB-algebras studied in Section 3.

Indeed, we define FLB
ew as the expansion of FLew

with the following axiom schemas:

(B1) Bϕ→ ϕ,
(B2) Bϕ ∨ ¬Bϕ,

(B3) B(ϕ ∨ ¬ϕ) → (Bϕ ∨ ¬ϕ),

(B4) B(ϕ→ ψ) → (Bϕ→ Bψ).

and the following additional rule:

(B) From ϕ derive Bϕ.

We denote (finitary) derivability in FLB
ew by ⊢.

Note that we have the following facts.

Lemma 14 (i) ⊢ Bϕ→ BBϕ and

(ii) Bϕ→ ψ ⊢ Bϕ→ Bψ.

Proof For (i) check the following derivation:

1. Bϕ ∨ ¬Bϕ (B2)

2. B(Bϕ ∨ ¬Bϕ) 1, rule (B)

3. BBϕ ∨ ¬Bϕ (B3), 2, mp
4. BBϕ→ (Bϕ→ BBϕ) FLew

5. ¬Bϕ→ (Bϕ→ BBϕ) FLew

6. Bϕ→ BBϕ 3, 4, 5, FLew

(ii) follows easily using (i). �

Clearly, FLB
ew is a Rasiowa implicative logic (cf. [17]).

Then, it follows that it is algebraizable in the sense of

Blok and Pigozzi [3]. It is also straightforward to check

that the variety RLB is its equivalent algebraic seman-

tics. Algebraizability immediately implies strong com-
pleteness of FLB

ew with respect to RLB.

Theorem 2 For every set Γ ∪ {ϕ} of formulas, Γ ⊢

ϕ iff for every A ∈ RLB and every A-evaluation e,
e(ϕ) = 1, whenever e[Γ ] ⊆ {1}.

In FLB
ew the usual form of the deduction theorem

does not hold. Indeed, ϕ ⊢ Bϕ, but 0 ϕ→ Bϕ, Which
fails in the three-element Gödel algebra [0, 1

2
, 1]G, where

B1 = 1 and B 1

2
= B0 = 0: for any evaluation e in this

algebra, if e(ϕ) = 1, then e(Bϕ) = 1, but for e(ϕ) = 1

2

we have e(Bϕ) = 0, and thus e(ϕ→ Bϕ) = 0.
Actually, FLB

ew enjoys the same form of deduction

theorem holding for logics with the ∆ operator (cf. [2,

Proposition 2.2]).

Theorem 3 Γ, ϕ ⊢ ψ iff Γ ⊢ Bϕ→ ψ.

Proof ⇒) We prove by induction on every formula χi

(1 ≤ i ≤ n) of the given derivation of ψ from Γ ∪ {ϕ}

that Γ ⊢ Bϕ → χi. If χi = ϕ, then the result follows

due to axiom schema (B1). If χi belongs to Γ or is
an instance of an axiom, then the result follows using

modus ponens and the derivability of the schema χi →

(Bϕ→ χi). If χi comes by application of modus ponens

on previous formulas in the derivation, then the result

follows, because from Bϕ → χk and Bϕ → (χk → χi)
we may derive (Bϕ&Bϕ) → (χk&(χk → χi)) and then

also Bϕ → χi, using transitivity of → applied to the

derivable formulas Bϕ→ (Bϕ&Bϕ) and (χk & (χk →

χi)) → χi. Finally, if χi = Bχk comes using rule (B)
from formula χk, then from Bϕ → χk we may derive

Bϕ→ Bχk using Lemma 14(ii).

⇐) To the derivation given by the hypothesis add a

step with ϕ. In the next step putBϕ, which follows from

the previous formula using rule (B). Finally, derive ψ
using modus ponens. �

Thanks to this B-deduction theorem, the logic FLB
ew

has the following property: if we expand FLB
ew with any

further rule ϕ1, . . . , ϕn/ϕ, then it is possible to dispose

of the rule just adding the axiom (Bϕ1∧· · ·∧Bϕn) → ϕ.
This property also holds for the logics FL∆

ew and FLD
ew.

Proposition 22 FLB
ew is a conservative expansion of

FLew.

Proof Use Proposition 4 and the Finite Model Prop-

erty of FLew (see [15]). �

One could analogously define the expansion of MTL
(which is in turn the extension of FLew with the pre-

linearity axiom (ϕ → ψ) ∨ (ψ → ϕ)) with B, with

the same additional axioms and rule, yielding the logic

MTLB, which is algebraizable and strongly complete

with respect to the variety MTLB of MTLB-algebras.
However, unlike the case of expansion with ∆, MTLB

is not a semilinear logic, that is, it is not complete with

respect to the class of MTLB-chains. The reason is that

the ∨-form of rule (B), “from ψ ∨ ϕ derive ψ ∨ Bϕ”,
is not derivable in MTLB. Indeed, taking the coatoms

s and t in the Gödel algebra of Example 1, it is clear

that s ∨ t = 1, while s ∨Bt = s ∨ 0 = s.

As a final result, we can show that FLB
ew inherits

from FLew the Finite Model Property (FMP). Before
proving this, we introduce some preliminary notation.

For a logic L ∈ { FLew or FLB
ew}, let us denote

by Fm(L, V ar) the set of L-formulas built from a set

V ar of propositional variables. Now let us define the
enlarged set of propositional variables V ar∗ = V ar ∪

{“Bϕ” | Bϕ ∈ Fm(FLB
ew, V ar)}, where “Bϕ” is in-

tended to denote a fresh propositional variable, one



14 Rodolfo C. Ertola-Biraben et al.

for each formula Bϕ ∈ Fm(FLB
ew, V ar). Then, we can

define a one-to-one translation of every formula ϕ ∈

Fm(FLB
ew, V ar) into a formula ϕ∗ ∈ Fm(FLew , V ar

∗),

by just inductively defining:

- 0∗ = 0,
- if ϕ = p ∈ V ar, then ϕ∗ = p,

- if ϕ = Bψ, then ϕ∗ = “Bψ”,

- if ϕ = ψ⊙χ, then ϕ∗ = ψ∗⊙χ∗, for ⊙ ∈ {∧,∨,&,→}.

If Γ is a set of formulas, we write Γ ∗ = {ϕ∗ | ϕ ∈

Γ}. Note that for any ψ ∈ Fm(FLew, V ar
∗), there is a

formula ϕ ∈ Fm(FLB
ew , V ar) such that ϕ∗ = ψ.

Moreover, we need the following result that will al-

low us to reduce proofs in FLB
ew to proofs in FLew.

Lemma 15 Let T be the set of all instances of axioms

of FLB
ew. For each set Γ ∪ {ϕ} ⊆ Fm(FLB

ew, V ar), it

holds that

Γ ⊢FLB
ew
ϕ iff Γ ∗ ∪ Cg∗ ∪ T ∗ ⊢FLew

ϕ∗,

where Cg = {Bϕ↔ Bψ | Γ ⊢FLB
ew
ϕ↔ ψ}.

The proof is quite straightforward and analogous to
those of similar results that can be found in the lit-

erature in slightly different contexts.

Theorem 4 FLB
ew enjoys the FMP, that is, if Γ 6⊢FLB

ew

ϕ, then there is a finite A ∈ RLB and an A-evaluation

e such that e(Γ ) = 1 and e(ϕ) < 1.

Proof If Γ 6⊢FLB
ew
ϕ, by Lemma 15, it holds that Γ ∗ ∪

Cg∗ ∪ T ∗ 6⊢FLew
ϕ∗, and by strong completeness and

FMP of FLew, there is a finite algebra C ∈ RL and

C-evaluation v such that v(Γ ∗ ∪ Cg∗ ∪ T ∗) = 1 and
v(ϕ∗) < 1. Then, the result will follow from the follow-

ing facts:

Claim 1: G = {v(“Bϕ”) | Bϕ ∈ Fm(FLB
ew , V ar)} is a

set of Boolean elements of C. “You were a little grave,”

Proof of the claim: It is enough to check that v((Bϕ)∗)∨

¬v((Bϕ)∗) = v((Bϕ)∗ ∨¬(Bϕ)∗) = v((Bϕ∨¬Bϕ)∗) =
1, where the latter holds because Bϕ∨¬Bϕ is the axiom

(B2) of FLB
ew. ⊣

Claim 2: Let A be the RL-algebra generated by the
set X = {v(ϕ) | ϕ ∈ Fm(FLew, V ar

∗)}, which is finite

since A is a subalgebra of C. Then, B exists in A and

B(A) = G. Therefore, A is indeed an RLB-algebra.

Proof of the claim: That A is finite is obvious, and thus,

by Proposition 5, B exists. On the other hand, the el-

ements of G keep being Boolean in A. Hence, the only

missing thing to check is that any Boolean element of
A already belongs to G. This is also clear since Boolean

elements are closed by propositional combinations with

connectives. ⊣

Claim 3: Let us define the A-evaluation (taking A as

RLB-algebra) e : V ar → A defined by e(p) = v(p).

Then, for any ϕ, e(ϕ) = v(ϕ∗), in particular, e(Bϕ) =

v(“Bϕ”).

Proof of the claim: We prove that e(ϕ) = v(ϕ∗) by

structural induction.

- if ϕ is a propositional variable, it holds by construc-

tion

- if ϕ = ψ ⊙ χ for ⊙ ∈ {∧,∨,&,→}, by induction
hypothesis we have e(ψ) = v(ψ∗) and e(χ) = v(χ∗),

and hence e(ϕ) = e(ψ⊙ψ) = e(ψ)⊙e(χ) = v(ψ∗)⊙

v(χ∗) = v(ψ∗ ⊙ χ∗) = v((ψ ⊙ χ)∗) = v(ϕ∗).

- If ϕ = Bψ, then we have to prove that v(“Bψ”) =

B(e(ψ)), the latter being equal to e(Bψ) by def-
inition. Therefore, we have to prove in turn that

the three defining conditions (BE1), (BE2), and

(BI) are satisfied by v(“Bψ”) = v((Bψ)∗) to be the

greatest Boolean below e(ψ), assuming by induction
that v(ψ∗) = e(ψ).

(BE1) Since Bψ → ψ is axiom (BE1) of FLB
ew, we have

that 1 = v((Bψ → ψ)∗) = v((Bψ)∗) → v(ψ∗) =

v((Bψ)∗) → e(ψ). Hence, v((Bψ)∗) ≤ e(ψ).

(BE2) is clear from Claim 1.
(BI) We have to check that if b ∈ B(A) is such that

b ≤ e(ψ) = v(ψ∗), then b ≤ v((Bψ)∗). If b ∈

B(A), by construction of A, then there exists

a formula χ such that b = v((Bχ)∗). On the
other hand, by (ii) of Lemma 12, we know that

Bχ→ ψ,Bχ∨ ¬Bχ ⊢ Bχ→ Bψ. Thus, we also

know that if v((Bχ)∗) ≤ v(ψ)∗ and v((Bχ)∗) ∨

¬v((Bχ)∗) = 1, then v((Bχ)∗ ≤ v((Bψ)∗). Now,

the two conditions are satisfied, hence we have
b = v((Bχ)∗ ≤ v((Bψ)∗).

This closes the proof of Claim 3. ⊣

Finally, from these claims it readily follows that e(Γ ) =

v(Γ ∗) = 1 and e(ϕ) = v(ϕ∗) < 1, as required. �

6 Conclusions and dedication

In this paper we have considered the expansion of FLew

with the operator B, that in algebraic terms provides

the greatest Boolean below a given element of a residu-

ated lattice. Among other things, we have axiomatized
it and shown that the resulting logic is a conservative

expansion enjoying the Finite Model Property. The ax-

ioms for B turn out to be very close to those of the

Monteiro-Baaz ∆ operator, in fact only one axiom is a
weaker version of the one for ∆. Even if the properties

are very similar, that small difference causes, e.g. that

in the context of MTL, the expansion with B is not any
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longer a semilinear logic, in contrast to the expansion

with ∆.

As a matter of fact, we have chosen this topic for
our humble contribution to honour the memory of our

beloved and late friend Franco Montagna, because it

was suggested by Franco to the first author during the

preparation of their joint manuscript [1], together with

Amidei, where they study the expansion of FLew and
other substructural logics with ∆.
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