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Abstract We introduce a generalised notion of state

as an additive map from a Boolean algebra of events

to an arbitrary MV-algebra. Generalised states become

unary operations in two-sorted algebraic structures that

we call state algebras. Since these, as we show, form an

equationally defined class of algebras, universal-algebraic

techniques apply. We discuss free state algebras, their

geometric representation, and their connection with the

theory of affine representations of lattice-groups.
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1 Introduction

Classically, states are normalised positive linear func-

tionals on Riesz spaces with unit, or more generally, on

lattice-ordered Abelian groups with unit. States provide

the standard abstraction of the expected value opera-

tor. States of MV-algebras [14] are just the same thing

as classical states, up to translation through the well-

known theory of the functor Γ [4, Chapter 7]. How-

ever, because of the relation between MV-algebras and

Boolean algebras, MV-algebraic states may also be re-

garded as a many-valued generalisation of finitely ad-

ditive probability assignments. Here, families of (many-

valued) events are no longer modelled by Boolean alge-

bras, but rather by MV-algebras. MV-algebraic states
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have been intensively investigated in the last two de-

cades; see [6] for a recent survey of results. On MV-

algebraic matters we follow the notation and termi-

nology of [4], to which we refer the reader for back-

ground. Given an MV-algebra (D,⊕,¬, 0), we intro-

duce as usual the binary operations �, 	, and the con-

stant 1 together with the lattice supremum ∨ and infi-

mum ∧ on D. The lattice order of D is denoted by ≤.

In 2009, Flaminio and Montagna [7] introduced the

notion of internal state as an additional unary opera-

tion s : D → D on an MV-algebra D. Internal states

are intended to capture the basic properties of states in

a setting amenable to universal-algebraic techniques.

Indeed, in [7, Definition 3.1], s is required to satisfy

certain equational laws. (See Remark 1 below for the

Flaminio-Montagna axiomatisation.) Please see the ref-

erences in [6, Section 8] for subsequent work on internal

states. On the other hand, a state of an MV-algebra D

is a mapping s : D → [0, 1] satisfying s(1) = 1 and the

following condition for every a, b ∈ D:

if a� b = 0, then s(a⊕ b) = s(a) + s(b). (1)

Thus:

– a state is defined on an MV-algebra and takes values

in the real unit interval, and

– the form of the key axiom (1) is not equational.

Prima facie, therefore, there seems to be no hope of di-

rectly applying the theory of universal algebra to states.

One way to remedy this is to make recourse to the

Flaminio-Montagna theory of internal states. Unfortu-

nately, that comes at the significant cost of renouncing

the fundamental conceptual distinction between events

— elements of the domain of a state — and degrees of

probability — elements of the co-domain of the state.
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The purpose of this note is to show that, pace first im-

pressions, an equational theory of states that preserves

this conceptual distinction is indeed feasible; more sub-

stantially, we also provide sufficient mathematical ev-

idence to indicate that its developments may prove of

considerable interest. Specifically, we provide a prelimi-

nary representation theory for free objects in the result-

ing equationally definable class of algebras. Our main

point can already be made in the classical setting of

Boolean algebras of events, and we shall therefore work

in that setting. We do emphasise that it is straightfor-

ward to adapt our definitions to MV-algebras of many-

valued events; compare Remark 1. We further alert the

reader to the fact that MV-algebras already play a key

rôle in this classical setting, as abstractions of the co-

domain [0, 1] of finitely additive probabilities.

Throughout this note we think of a Boolean alge-

bra E as an abstract algebraic model of the structure

of events in probability theory, an event being an ele-

ment of E. The underlying order relation on a Boolean

algebra is written ⊆, and the binary relative comple-

ment operation is written \. We stress for clarity that

our definitions need no lattice-theoretic completeness

assumption about E. As is well known, Boolean alge-

bras are precisely those MV-algebras such that ⊕ is

idempotent, and then ⊕ agrees with join and � agrees

with meet. Because we shall soon have to work with

Boolean algebras and MV-algebras within a single for-

mal framework, we need to distinguish the Boolean op-

erations from the MV-algebraic ones. Hence we write

(E,∪,∩, ′,⊥,>)

to denote a Boolean algebra with its operations and

their obvious meaning. Now, if D = E is a Boolean al-

gebra, states of E clearly coincide with finitely additive

probability assignments of E. More precisely, a state of

a Boolean algebra E is a mapping s : E → [0, 1] satis-

fying s(>) = 1 and the following condition for every

a, b ∈ E:

if a ∩ b = ⊥, then s(a ∪ b) = s(a) + s(b). (2)

Terminology. For the rest of this note, state means

state of a Boolean algebra.

If Boolean algebras are algebraic models of families

of events, what is an abstract model of the set [0, 1] of

probability degrees? In the remainder of this note, we

make the following points.

(I) The relevant structure of [0, 1] as the collection of

probability degrees includes its MV-algebraic struc-

ture.

(II) In light of (I), one can replace [0, 1] by any MV-

algebra in the definition of state (2), thereby ob-

taining what we call generalised states (see Defini-

tion 1).

(III) Furthermore, generalised states admit an equational

definition — hence, a fortiori, so do states.

(IV) Items (I–III) show that generalised states, when pro-

perly interpreted, can be regarded as genuine al-

gebraic structures, provided only one allows multi-

sorted algebras. (We comment on multi-sorted uni-

versal algebra in Section 4.)

(V) Item (IV) thus leads to the notion of state alge-

bra, a two-sorted algebraic structure equipped with

a generalised state as a multi-sorted operation. In

closing, we discuss free state algebras and prove

a significant representation theorem for a class of

them.

2 Generalised states

The basic operations required in elementary probability

theory on the probability degrees themselves — not on

the events — are the following.

(i) Addition of real numbers.

(ii) Involution in [0, 1], that is, x ∈ [0, 1] 7→ 1−x ∈ [0, 1].

(iii) Infima and suprema derived from the natural order

of the real numbers.

Now, (i–iii) amount to considering (R, 1) as a lattice-

ordered Abelian group with unit 1. It may be argued that

one should add to (i–iii) the multiplicative structure of

[0, 1], for example to model independence of events, or

conditioning. However, for the purposes of this note we
do not consider multiplication.

The addition in (i) can only be restricted to [0, 1] at

the price of turning it into a partially defined operation.

However, by the theory of the functor Γ [4, Chapter 7],

the unital lattice-group (R, 1) [1] is uniquely determined

by the MV-algebra [0, 1], its unit interval. Hence, in

place of (i–ii) we can equivalently consider the MV-

algebraic structure of [0, 1]. The order in (iii) is then

derivable from the MV-algebraic structure in the usual

manner.

In light of the above, let (G, u) be any lattice-ordered

Abelian group with strong order unit u, and let E be

any Boolean algebra. We can define a generalised notion

of (G, u)-valued state by considering functions

s : E → G

that satisfy the normalisation condition s(>) = u and

the finite additivity condition

if a ∩ b = ⊥, then s(a ∪ b) = s(a) + s(b).



Generalised states and probability 3

Passing to the unit-interval MV-algebra Γ (G, u) = [0, u],

whose truncated addition is x⊕ y := (x+ y) ∧ u for all

x, y ∈ [0, u], such functions turn out to be in one-one

correspondence with the functions s : E → [0, u] that

satisfy

s(>) = u, and (3)

if a ∩ b = ⊥, then s(a ∪ b) = s(a) + s(b). (4)

We will show in Lemma 1 below how to turn the quasi-

equational notion (3–4) into an equivalent equational

one, thus achieving item (III) in the Introduction.

Definition 1 (Generalised state)

A generalised state of a Boolean algebra E, with

values in an MV-algebra D, is a mapping s : E → D

such that for every a, b ∈ E the following hold.

(A1) s(a ∪ b) = s(a)⊕ s(b \ a),

(A2) s(a′) = ¬s(a),

(A3) s(>) = 1.

Remark 1 Our Definition 1 is inspired by but not iden-

tical to the one used in [7]. If the domain of s were an

MV-algebra rather than a Boolean algebra, then con-

dition (A1) would need to be replaced by

(A1′) s(a⊕ b) = s(a)⊕ s(b	 (a� b))

in order to prove an analogue of our Lemma 1 below. In-

deed, Flaminio and Montagna defined an internal state

of the MV-algebra D to be a map s : D → D that satis-

fies (A1′), (A2), and (A3), together with the additional

axiom

(A4) s(s(a)⊕ s(b)) = s(a)⊕ s(b)

expressing the fact that the image of D under s is an

MV-subalgebra of D. Further, other authors introduced

and studied a concept of state for residuated lattices,

allowing for values in an arbitrary residuated lattice —

a generalised state in the sense of our Definition 1 is

called, in that literature, an “order-preserving type I

state”; see [5, Proposition 3.22].

Notation. For the rest of this note, E always denotes

a Boolean algebra, D always denotes an MV-algebra,

and s always denotes a function s : E → D.

Let us collect useful elementary facts about gener-

alised states in

Proposition 1 If s is a generalised state, the following

hold for every a, b ∈ E.

1. s(⊥) = 0.

2. If a ⊆ b, then s(a) ≤ s(b).
3. s(a∪b) ≤ s(a)⊕s(b), and if a∩b = ⊥, then s(a∪b) =

s(a)⊕ s(b).

4. s(a \ b) ≥ s(a)	 s(b), and if b ⊆ a, then s(a \ b) =

s(a)	 s(b).
5. s(a∩ b) ≥ s(a)� s(b), and if a∩ b = ⊥, then s(a)�

s(b) = 0.

6. s(a ∪ b) = s(a)⊕ [s(b)	 s(a ∩ b)].

Proof 1. By (A2) and (A3), s(⊥) = ¬s(>) = 0.

2. Let a ⊆ b. Then b = a∪ (b \ a). Since a∩ (b \ a) = ⊥,

we get

s(b) = s(a ∪ (b \ a)) = s(a)⊕ s(b \ a) ≥ s(a).

3. It follows from (A1) and item 2 that

s(a ∪ b) = s(a)⊕ s(b \ (a ∩ b)) ≤ s(a)⊕ s(b).

Let a ∩ b = ⊥. Then

s(a ∪ b) = s(a)⊕ s(b \ ⊥) = s(a)⊕ s(b).

4. We get

s(a \ b) = s((a′ ∪ b)′) = ¬s(a′ ∪ b)
≥ ¬(¬s(a)⊕ s(b)) = s(a)� ¬s(b) = s(a)	 s(b).

Let b ⊆ a. Then a′ ∩ b = 0 and the equality in the

formula above follows from item 3.

5. We get

s(a ∩ b) = s(a \ b′)
≥ s(a)	 s(b′) = s(a)� ¬s(b′) = s(a)� s(b).

Let a ∩ b = ⊥. Then

s(a)� s(b) ≤ s(a ∩ b) = s(⊥) = 0.

6. This is a consequence of (A1) and item 4. ut

We can now prove:

Lemma 1 Let s : E → D satisfy s(>) = 1. Then the

following are equivalent.

1. s is a generalised state.

2. For every a, b ∈ E, if a ∩ b = ⊥, then s(a ∪ b) =

s(a)⊕ s(b) and s(a)� s(b) = 0.

3. For every a, b ∈ E, if a ∩ b = ⊥, then s(a ∪ b) =

s(a) + s(b), where + is the addition operation of

the essentially unique lattice-ordered Abelian group

(G, 1) such that Γ (G, 1) = D.

Proof The implication from item 1 to 2 follows from

Proposition 1. Conversely, let a mapping s : E → D

satisfy s(>) = 1 and 2. Then a ∩ a′ = 0 yields s(a) �
s(a′) = 0 and

1 = s(>) = s(a ∪ a′) = s(a)⊕ s(a′), a ∈ E.

Therefore s(a′) = ¬s(a) by [4, Lemma 1.1.3] and thus

(A2) in Definition 1 holds. Finally, we prove (A1). Using
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the identities a ∩ (b \ a) = ⊥, a ∪ b = a ∪ (b \ a), we

obtain

s(a ∪ b) = s(a ∪ (b \ a)) = s(a)⊕ s(b \ a), a, b ∈ E.

Hence, (A1) in Definition 1 holds.

It remains to show that item 2 is equivalent to item 3.

This amounts to the well-known fact that in any MV-

algebra x⊕ y agrees with x+ y of its enveloping unital

Abelian lattice-group if, and only if, x � y = 0 — see

[4, Lemma 2.1.3(i)]. ut

As promised, Lemma 1 shows that a generalised state

can be thought of as an additive map E → D, that is to

say, it is the same thing as a function satisfying (3–4).

Using Proposition 1 we can easily derive the fol-

lowing inequalities, which can be viewed as analogues

of the well-known Boole–Fréchet bounds in probability

theory, see e.g. [9, §3.5].

Corollary 1 (Boole–Fréchet bounds) If s is a gen-

eralised state then the following hold for all a, b ∈ E.

s(a) ∨ s(b) ≤ s(a ∪ b) ≤ s(a)⊕ s(b)
s(a)� s(b) ≤ s(a ∩ b) ≤ s(a) ∧ s(b)

Further, these bounds are attained for appropriate choi-

ces of D, E, s, a, and b.

Proof We use Proposition 1. Both s(a)∨s(b) ≤ s(a∪ b)
and s(a ∩ b) ≤ s(a) ∧ s(b) follow from monotonicity

(item 2). The inequalities s(a ∪ b) ≤ s(a) ⊕ s(b) and

s(a) � s(b) ≤ s(a ∩ b) are item 3 and 5, respectively.

To show the bounds are attained, it suffices to take

D = E and s the identity homomorphism, which clearly

is a generalised state.

Remark 2 The notion of observable introduced by Pul-

mannová in [17] is formally the same as our concept of

generalised state. Indeed, an observable was defined in

that paper as a mapping x from a Boolean algebra E

into an MV-algebra D satisfying x(>) = 1 and condi-

tion 2 in Lemma 1. The motivation for studying observ-

ables in [17] comes from quantum probability theory.

3 Examples of generalised states

We discuss in this section two examples of generalised

states that are significant for different reasons. We first

point out a few easy facts.

Clearly, any state of a Boolean algebra E is a gen-

eralised state — in this case, D is the standard MV-

algebra [0, 1] and the rest follows from Lemma 1. More-

over, by regarding Boolean algebras as algebras of the

same similarity type as MV-algebras, we can consider

the case when the function s : E → D is a homomor-

phism. Then Lemma 1 shows that s is a generalised

state. Moreover, in this case the range s[E] is in fact

a Boolean algebra, because E is and s is a homomor-

phism that is onto its range. Hence, s[E] must be con-

tained in the Boolean skeleton B(D) of D [4, Corol-

lary 1.5.4], and s[E] must be a Boolean subalgebra

of B(D). We thus have the following. Any homomor-

phism s : E → D is a generalised state that factors

as in the commutative diagram below into generalised

states which are surjective and injective, respectively,

and a factorisation of s with these properties is essen-

tially unique:

E D

s[E]

s

s ⊆

3.1 Example 1: The infinite lottery.

Let us model an experiment consisting in the random

draw of a natural number n ∈ N. Assume that the

events to be considered ought to afford an answer at

least to questions of the form ‘n ∈ A?’, for A ⊆ N finite.

The minimal algebraic model of observable events is

then the finite-cofinite Boolean algebra E on N, that is,

E = {A ⊆ N | either A or A′ is finite}.

Note that there is no [0, 1]-valued state modelling both

(i) the uniformly random character of the experiment,

and (ii) the intuition that each n ∈ N may actually turn
out to be the winning number. That is to say, there is

no state s : E → [0, 1] satisfying p({n}) = α > 0 for all

n ∈ N. There is, however, exactly one state s : E → [0, 1]

modelling (i) alone, namely, the invariant state given by

s(A) =

{
0 A finite,

1 A cofinite,
A ∈ E .

This state s fails to account for (ii), in that according

to s the probability that any given single n ∈ N be

drawn is 0. The classical way out of this situation is to

issue the usual caveat that events of null probability may

actually obtain — probability zero and impossibility are

distinct concepts. Whether one considers this solution

satisfactory or not, we proceed to exhibit an alternative

way out that makes use of generalised states.

We construct a generalised state for the experiment

at hand that accounts for both (i) and (ii). We do

so by replacing the co-domain MV-algebra [0, 1] with
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a non-semisimple MV-chain, the well-known Chang’s

MV-algebra C [3]. Its underlying set is

C = {0, ε, 2ε, . . . , 1− 2ε, 1− ε, 1},

where ε is a symbol interpreted as a positive infinitesi-

mal and C is equipped with the operations:

x⊕ y =


(k +m)ε x = kε, y = mε,

1− (m− k)ε x = kε, y = 1−mε, m > k,

1− (k −m)ε x = 1− kε, y = mε, k > m,

1 otherwise,

¬x =

{
1− kε if x = kε,

kε if x = 1− kε.

We define a mapping s : E → C such that, for all

A ∈ E ,

s(A) =

{
|A|ε A finite,

1− |A′|ε A cofinite,

Lemma 1 can be employed to show that s is a gener-

alised state. First,

s(N) = 1− |N′|ε = 1− 0ε = 1.

Second, take A,B ∈ E such that A∩B = ∅. This implies

that at least one of the sets must be finite. If A and B

are finite, then

s(A)⊕ s(B) = |A|ε⊕ |B|ε = |A ∪B|ε = s(A ∪B)

and, analogously, s(A) � s(B) = 0. Assume that A is

finite and B is cofinite. Then the assumption A∩B = ∅
yields A ⊆ B′ and

s(A)⊕ s(B) = |A|ε⊕ (1− |B′|ε) = 1− (|B′| − |A|)ε
= 1− |A′ ∩B′|ε = 1− |(A ∪B)′|ε
= s(A ∪B),

as A ∪B is cofinite. Finally,

s(A)�s(B) = |A|ε�(1−|B′|ε) = ¬((1− |A|ε)⊕ |B′|ε︸ ︷︷ ︸
1

),

since |A| ≤ |B′|. Hence, s is a generalised state E → C.

The state s : E → C of this example can be viewed

as a non-standard analogue of the probabilistic model

for the random selection of a natural number: there

is a “uniform nowhere-zero distribution” on the sample

space E intuitively associated to s, which is the function

constantly equal to ε on E .

3.2 Example 2: Affine representations are generalised

states.

In this example we apply the classical theory of affine

representations of unital Riesz spaces, or more gener-

ally of unital lattice-ordered Abelian groups. See [8] for

background. We formulate everything in the language

of MV-algebras; this requires a straightforward transla-

tion from the group-theoretic version via the functor Γ .

The Boolean algebra E comes with its associated state

space. To explain this, let StE be the set of all [0, 1]-

valued states of E, and consider the set-theoretic prod-

uct [0, 1]E equipped with its product (Tychonoff) topol-

ogy. Using the natural (injective) map StE −→ [0, 1]E ,

we topologise StE through the subspace topology in-

duced by [0, 1]E . The resulting Tychonoff space StE

is the state space of E. It is well known that StE is

a compact convex subset of the ambient locally convex

topological linear space RE .

For any a ∈ E, let us define a function

â : StE −→ [0, 1]

by setting, for every p ∈ StE,

â(p) := p(a).

Then â is continuous and affine. To represent E by such

affine functions, let C (StE) be the MV-algebra of all

continuous functions StE → [0, 1], with operations de-

fined pointwise from those of the standard MV-algebra

[0, 1]. Define a function s : E → C (StE) as s(a) = â,

for every a ∈ E. Then s provides such a representation.

The reader is cautioned that s is not a homomorphism,

in general. However, it can be shown that s indeed is

a generalised state. Thus, the theory of affine represen-

tations of Boolean algebras may be recast in the lan-

guage of generalised states.

We shall see at the end of our note that this ex-

ample is a crucially important one: states arising from

affine representations enjoy the universal property of

free objects, cfr. Remark 4.

4 State algebras

In the Birkhoff-Lipson approach to multi-sorted1 alge-

bras [2], classical universal algebra is extended to multi-

sorted operations. The key to doing this is to replace the

category of sets and functions by the category of multi-

sorted sets and multi-sorted functions. Here we only

1 Called heterogeneous algebras in [2]. We stick to the multi-
sorted terminology which seems to have become standard.
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spell out the two-sorted case of interest to us. A two-

sorted set is an ordered pair (A,B) of sets. The compo-

nent sets A and B are called the sorts of the two-sorted

set (A,B). A two-sorted function

f : (A1, B1) −→ (A2, B2)

between two-sorted sets is a pair f := (f1, f2) of func-

tions

f1 : A1 −→ A2,

f2 : B1 −→ B2.

Composition and identity morphisms are defined com-

ponent-wise. This defines the category of two-sorted

sets. One can study multi-sorted sets equipped with

multi-sorted operations in much the same way as one

studies, in general algebra, sets equipped with opera-

tions. We shall apply this idea to generalised states.

Consider, then, a generalised state s : E → D. We

can regard the pair of sets (E,D) as a two-sorted set;

we call E the sort of events, and D the sort of probability

degrees. Then s : E → D is a unary operation between

the two different sorts. Hence, we are concerned with

two-sorted algebras whose underlying two-sorted set is

the ordered pair (E,D), and whose (multi-sorted) op-

erations are as follows.

(T1) The operations of Boolean algebras ∪, ∩, ′, >, ⊥ in

the single sort E.

(T2) The operations of MV-algebras ⊕, ¬, 0 in the single

sort D.

(T3) The unary operation s with sort E in the domain

and D in the codomain.

Thus (T1–T3) define a two-sorted similarity type. Build-

ing on Definition 1, we now have:

Definition 2 (State algebra) A state algebra is an

algebra (E,D, s) of the two-sorted similarity type (T1–

T3) such that the following equational conditions hold.

(S1) (E,∪,∩,′ ,⊥,>) is a Boolean algebra.

(S2) (D,⊕,¬, 0) is an MV-algebra.

(S3) The operation s : E → D is a generalised state, i.e.

satisfies the equational conditions (A1–A3) in Defini-

tion 1.

When no danger of confusion arises, we write only (E,D)

in place of (E,D, s).

All of the universal-algebraic constructions and funda-

mental theorems go through to the multi-sorted setting

up to minimal modifications.2 For example, since state

2 Somewhat more substantial changes are needed in the
presence of algebras with underlying multi-sorted sets which
are not everywhere non-empty. In our case, given that the
type of MV-algebras, hence of Boolean algebras, includes con-
stants, neither E nor D can be empty.

algebras are defined by equations, they are closed under

homomorphic images, subalgebras, and products. For

an important sample of such universal-algebraic multi-

sorted results please see the original [2]. We now focus

on free objects.

For clarity, let us first spell out the notion of homo-

morphism of state algebras. A homomorphism between

state algebras (E1, D1) and (E2, D2) is a morphism

h : (E1, D1) −→ (E2, D2)

of two-sorted sets, which means that h := (h1, h2) is

a pair of functions h1 : E1 → E2, h2 : D1 → D2, such

that h preserves all operations in the type (T1–T3).

In turn, the latter means that h1 is a homomorphism

of Boolean algebras, h2 is a homomorphism of MV-

algebras, and h preserves the operation s — that is,

the following diagram commutes:

E1 D1

E2 D2

s

h1 h2

s

Elementwise, for all a ∈ E1 we have

h2(s(a)) = s(h1(a)).

As in the classical, single-sorted case, free algebras al-

ways exist in equationally defined classes of multi-sorted

algebras. We now state the defining universal property

of free state algebras, which is obtained from the usual

one for single-sorted algebras by replacing the category

of sets with the category of two-sorted sets.

Definition 3 (Free state algebras) Let ι : (S1, S2)→
(E,D) be a two-sorted function, where (S1, S2) is a two-

sorted set, and (E,D) is (the underlying two-sorted set

of) a state algebra. We say ι is free (with respect to

the class of all state-algebras) if for every two-sorted

function η : (S1, S2) → (E′, D′), where (E′, D′) is (the

underlying two-sorted set of) a state algebra, there is

exactly one homomorphism of state algebras

h : (E,D) −→ (E′, D′)

that makes the following diagram commute.

(S1, S2) (E,D)

(E′, D′)

ι

η
h

In standard algebraic usage, one refers to (E,D) in Defi-

nition 3 as an algebra “freely generated by the two-sorted

set” (S1, S2), omitting reference to ι. It can indeed be

shown that (ι1[S1], ι2[S2]), where ι := (ι1, ι2), does gen-

erate (E,D). However, care is needed with the notion



Generalised states and probability 7

of generating system in the multi-sorted case. We will

see, for instance, that even when (ι1[S1], ι2[S2]) freely

generates (E,D), ι2[S2] need not generate — let alone

freely generate — the MV-algebra D. This is in fact

a general phenomenon about subalgebras in the two-

sorted setting, and has nothing to do with freeness; we

illustrate it by the simplest possible example.

Example 1 Let F1 be the Boolean algebra freely gen-

erated by x1 ∈ F1, and consider the generalised state

s : F1 → F1 given by the identity homomorphism. Then

(F1, F1) is a state algebra. The two-sorted subset ({x1},
{x1}) obviously generates (F1, F1), because x1 gener-

ates the Boolean algebra F1. Note, however, that also

the two-sorted subset ({x1}, ∅) generates (F1, F1). In-

deed, apply first the Boolean operations in the sort

of events to obtain F1 from x1. Then apply the op-

eration s to x1, obtaining an element s(x1) ∈ F1 in

the sort of probability degrees. Since s is the identity,

s(x1) = x1 ∈ F1; therefore, applying the MV-algebraic

operations in the sort of probability degrees to x1 yields

the whole F1.

It is easy to describe the state-algebras (E,D) freely

generated by a two-sorted set (∅, S2), for S2 an arbitrary

set. Indeed, let FMV (S2) denote the MV-algebra freely

generated by S2, and let 2 be the two-element Boolean

algebra, and consider the state algebra (2, FMV (S2))

whose operation s : 2→ FMV (S2) is given by the only

possible choice — 2 is the initial object in the category

of MV-algebras. We leave it to the reader to verify that

(2, FMV (S2)) is the state algebra freely generated by

(∅, S2).

5 Representation theorem for free state

algebras

In this section we prove our main result. For each inte-

ger n ≥ 0, we let Fn denote the Boolean algebra freely

generated by the generators x1, . . . , xn. Thus, F0 = 2,

the two-element Boolean algebra. We shall obtain a rep-

resentation theorem for the state algebras freely gen-

erated by a multi-sorted set ({x1, . . . , xn}, ∅) in terms

of Fn and an appropriate generalised state of Fn. The

state algebra freely generated by (∅, ∅) is immediately

seen to be (2,2) with s : 2 → 2 the only possible such

generalised state, namely, the identity. Thus we assume

n ≥ 1 throughout.

In order to formulate and prove our result concisely,

we will assume familiarity with basic polyhedral geom-

etry, McNaughton functions, the geometric representa-

tion theory of finitely generated free MV-algebras, and

the MV-algebraic theory of Schauder hats. The needed

background can be found in [16].

In the Euclidean n-dimensional linear space Rn, let

e1, . . . , en denote the standard orthonormal basis, let

[0, 1]n ⊆ Rn denote the unit n-cube, and let ∆n :=

conv {e1, . . . , en} denote the standard (n − 1)-simplex,

the convex hull of the standard basis. Let us further

write πi : [0, 1]n → [0, 1] for the projection functions,

i = 1, . . . , n, and let C ([0, 1]n) be the MV-algebra of all

continuous [0, 1]-valued functions on the unit n-cube.

(Cfr. Section 3.2.) By M n we denote the MV-subalgebra

of C ([0, 1]n) generated by {πi}ni=1. Then it is known

that M n is in fact freely generated by {πi}ni=1, and

consists precisely of the McNaughton functions, that is,

the continuous piecewise-linear functions whose affine

linear pieces have integer coefficients. For any subset

X ⊆ [0, 1]n we write

M n (X)

for the MV-algebra obtained by restricting the elements

of M n to X. Writing

r : M n −→M n (X)

for the restriction map, r is a surjective MV-homomor-

phism whose kernel ker r := {f ∈M n | r(f) = 0} is the

ideal of all McNaughton functions vanishing over X, or

equivalently (by continuity), over the closure of X. We

specifically consider the MV-algebra

Sn := M n (∆n),

which we call the MV-algebra dual to the standard n-

simplex. It will be useful to have an explicit description

of the kernel of

ρ : M n −→ Sn. (†)

We already used the standard fact that, in any MV-

algebraM with enveloping lattice-ordered Abelian group

with unit (G, 1), and for any x, y ∈ M , the equality

x ⊕ y = x + y holds if, and only if, x � y = 0. This

shows that the condition x + y = 1 is equationally ex-

pressible in MV-algebraic language by the system of

equations{
x⊕ y = 1

x� y = 0.

It is an MV-algebraic exercise to extend this from two

to n summands. For an explicit description of the MV-

algebraic relations3 needed, please see [15]. What mat-

ters for us is that the partition of unity condition

x1 + · · ·+ xn = 1, (*)

3 Since universal algebraists reserve the name ‘equation’ for
fully invariant identities, in the following we use ‘relation’ to
mean an equality between two MV-algebraic terms that holds
for given elements of a given MV-algebra.
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for x1, . . . , xn ∈ M , while a priori only meaningful

in (G, 1), is in fact expressible in the MV-algebra M

by finitely many equivalent relations in the variables

x1, . . . , xn. Since it is elementary that any finite set of

MV-algebraic relations is equivalent to a single one of

the form τ = 0, for τ an appropriate MV-algebraic

term, we shall write σ(x1, . . . , xn) for a term in the

variables x1, . . . , xn that satisfies

σ(x1, . . . , xn) = 0

in M if, and only if, (*) holds in (G, 1).

We can now consider the principal ideal

In := 〈σ(π1, . . . , πn)〉

of M n generated by the element σ(π1, . . . , πn) ∈M n,

along with the quotient MV-algebra

M n

In
.

Our discussion above of the definition of In shows that

the zero set of In — the set of points in [0, 1]n where

the functions in In jointly vanish — is precisely the

standard simplex ∆n ⊆ [0, 1]n. It follows immediately

(by the contravariant Galois correspondence between

zero sets and ideals) that the restriction map ρ in (†)
factors through the natural quotient map M n → Mn

In
.

But since In is principal, an application of the Hay-

Wójcicki Theorem yields that the second component of

this factorisation — i.e., the comparison map between

quotient objects — is in fact an isomorphism Mn

In
→

Sn. Thus, in conclusion,

ker ρ = In, (])

which provides the promised explicit description of the

kernel of ρ.

Next, let us consider Fn, the Boolean algebra freely

generated by the set {x1, . . . , xn}. Let us display the 2n

atoms of Fn as

m1, . . . ,m2n ;

the usual convention is that mj is the unique atom of

Fn such that the binary expansion of j−1 has 1 in its ith

digit if, and only if, mj lies below the generator xi in the

underlying order of Fn. To each mj there corresponds

a uniquely determined vertex of the standard simplex

∆2n , namely, the unit vector ej .

Lemma 2 Fix an integer n ≥ 1. Each generalised state

s : Fn → D is uniquely determined by its action on the

set {m1, . . . ,m2n} of atoms of Fn.

Proof Indeed, by elementary Boolean algebra, for each

b ∈ Fn there is a unique Jb ⊆ {1, . . . , 2n} such that

b =
⋃
j∈Jb

mj .

Now mj ∩mk = ⊥ whenever j 6= k. By Lemma 1, using

addition of the enveloping lattice-group of D, we have

s(b) =
∑
j∈Jb

s(mj),

and the statement is proved. ut

We supplement the preceding lemma with a simple but

crucial existence result:

Lemma 3 Fix an integer n ≥ 1. Consider a function

s : {m1, . . . ,m2n} −→ D

from the set of atoms of the Boolean algebra Fn freely

generated by {x1, . . . , xn} to an MV-algebra D. The fol-

lowing are equivalent.

1. There is a unique extension of s to a generalised

state s : Fn → D.

2. In the (essentially unique) Abelian lattice-group G

with unit 1 such that Γ (G, 1) = D, we have

2n∑
j=1

s(mj) = 1.

Proof The implication from item 1 to item 2 is given by

Lemma 1. For the converse implication, suppose item 2

holds. For each b ∈ Fn, set

s(b) :=
∑
j∈Jb

s(mj),

where Jb is as in Lemma 2. Then the function s : Fn →
D extends s because Jmj

= {mj} for each j = 1, . . . , 2n.

Now, if b1∩b2 = ⊥, it must be the case that Jb1 ∩Jb2 =

∅, and then

Jb1∪b2 = Jb1 ∪ Jb2 , (t)
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where the union is disjoint. Therefore,

s(b1 ∪ b2) = s

 ⋃
j∈Jb1

mj ∪
⋃
j∈Jb2

mj


= s

 ⋃
j∈(Jb1∪Jb2)

mj


= s

 ⋃
j∈Jb1∪b2

mj

 (By (t))

=
∑

j∈Jb1∪b2

s(mj) (By def. of s.)

=
∑

j∈(Jb1∪Jb2)

s(mj) (By (t))

=
∑
j∈Jb1

s(mj) +
∑
j∈Jb2

s(mj)

= s(b1) + s(b2), (By def. of s)

and s is additive. By Lemma 1, it remains to show that

s is normalised, i.e. satisfies s(>) = 1. But since > =⋃2n

j=1mj , this is a consequence of additivity together

with the assumption in item 2. ut

Remark 3 Although here we only need the case of finite

free algebras, it is clear that the statement in Lemma 2

holds for any finite Boolean algebra, with the same

proof — atoms determine finitely additive probabilities

in atomic Boolean algebras. For an extension of this ba-

sic fact to the (atomless!) free finitely generated MV-

algebras of many-valued events, see [13, Lemma 7.2].

Lemma 3 also allows for other generalisations which we

do not pursue here.

Next, to each vertex ej of ∆2n there corresponds

the Schauder hat Hj — the pyramidal function — with

apex at ej which is affine linear on each face of ∆2n . Of

course, {Hj}2
n

j=1 ⊆ S2n . Also, it is elementary that

2n∑
j=1

Hj = 1, ([)

where we use ‘1’ to denote the function constantly equal

to 1 over S2n .

Lemma 4 There exists exactly one generalised state

s : Fn → S2n that satisfies

s(mj) = Hj (5)

for each j = 1, . . . , 2n.

Proof There is at most one such state, by Lemma 2. In

light of ([) and Lemma 3, there is at least one. ut

Definition 4 For an integer n ≥ 1 we define the free

state algebra to be the state algebra (Fn,S2n), where

Fn is the Boolean algebra freely generated by n ele-

ments x1, . . . , xn, S2n is the MV-algebra dual to the

standard simplex ∆2n , and s : Fn → S2n is the unique

generalised state in Lemma 4.

Theorem 1 For each integer n ≥ 1, the free state al-

gebra (Fn,S2n) is freely generated by its multi-sorted

subset ({x1, . . . , xn}, ∅).

Proof Write ι : ({x1, . . . , xn}, ∅) → (Fn,S2n) for the

two-sorted inclusion function ι := (ι1, ι2) such that ι1 is

the inclusion map {x1, . . . , xn} ⊆ Fn, and ι2 : ∅ → S2n

is the only possible function. Let (E′, D′) be any state

algebra, and consider an arbitrary function

η1 : {x1, . . . , xn} −→ E′,

which yields the obvious two-sorted function

η : ({x1, . . . , xn}, ∅) −→ (E′, D′).

We define a function

h1 : {x1, . . . , xn} −→ E′

by setting

h1(xi) := η1(xi), i = 1, . . . , n. (E)

Since Fn is freely generated by {xi}ni=1, there is ex-

actly one homomorphism

h1 : Fn −→ E′

that extends h1. We define a second function

h2 : {s(m1), . . . , s(m2n)} −→ D′

by setting

h2(s(mj)) := s(h1(mj)), j = 1, . . . , 2n. (D)

(For the sake of clarity, let us stress that the symbol ‘s’

on the right-hand side of (D) denotes the generalised

state of (D′, E′), whereas the one on the left-hand side

is the generalised state in Lemma 4.) We show that h2,

too, has a unique extension to a homomorphism. By

(D) and Lemma 4 we have

h2(Hj) = s(h1(mj)), j = 1, . . . , 2n.

Further, let us prove

2n∑
j=1

s(h1(mj)) = 1.

Indeed, h1 is a Boolean homomorphism and {mj}2
n

j=1

is a pairwise disjoint set whose join is >, which implies
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that {h1(mj)}2
n

j=1 ⊆ E′ is a pairwise disjoint set that

joins to >; by the additivity of s,

2n∑
j=1

s(h1(mj)) = s

 2n⋃
j=1

h1(mj)

 = 1,

as was to be shown. Now, by the equality (]) and the

universal property of quotients, the set {Hj}2
n

j=1 gen-

erates the MV-algebra S2n freely4 subject to the re-

lation ([). Since that relation was just shown to hold

for {s(h1(mj))}2
n

i=1, there is a unique extension of h2 to

a homomorphism

h2 : D −→ D′.

Setting

h := (h1, h2) : (Fn,S2n) −→ (E′, D′)

yields one homomorphism of state algebras that sat-

isfies the universal property of free state algebras. The

proof of the fact that any such homomorphism coincides

with h is a straightforward direct verification, and is left

to the reader. ut

Remark 4 The reader can now check the following. Let

s′ : E → C (StE) be the affine representation of the

Boolean algebra E, as defined in Example 2 of Section 3.

Let D ⊆ C (StE) be the MV-subalgebra of C (StE)

generated by the image s′[E] of E under s′. Then we

have a factorisation

E C (StE)

D

s′

s ⊆

where s : E → D is a generalised state which yields

a state algebra (E,D). Set E := Fn in the foregoing,

for n ≥ 1 an integer. Then, as a corollary of Theo-

rem 1: The state algebra (E,D) is freely generated by

the multi-sorted set ({x1, . . . , xn}, ∅). Thus free state

algebras arise from affine representations of Boolean al-

gebras.

6 Further research

We briefly comment on a few research directions related

to the algebraic framework for states presented here.

4 The theory of the relations satisfied by Schauder bases,
which leads to the notion of abstract Schauder bases, was
developed in the two papers [11], [12]. We see here a simple
instance of that theory in action.

– Fuzzy Probability Logic FP( L) over infinite-valued

 Lukasiewicz logic was developed by Hájek in [10,

Chapter 8.4]. The purpose of FP( L) is to formalize

reasoning about properties of states. The distinc-

tive feature of FP( L) is its two-level syntax: prob-

ability assessments are syntactically represented in

the language by a unary modality read ‘Probably’,

which applies to Boolean formulas only. The class

of Boolean algebras and states provides a possible

complete semantics for FP( L). It would be desir-

able, however, to develop an equivalent algebraic se-

mantics in the varietal sense. State algebras seem to

provide such an equivalent (multi-sorted) algebraic

semantics for FP( L). We plan to give an account of

this in a further paper.

– The traditional use of MV-algebras is to model de-

grees of truth in  Lukasiewicz logic. In this note, how-

ever, MV-algebras are employed as abstract models

of degrees of probability — for the first time, as far

as we know. Like Janus, MV-algebras show one of

their two faces according as they are used by way

of domain or co-domain of a generalised state. This

phenomenon calls for further reflection and research.

– One can apply Robinson’s non-standard analysis in

order to introduce infinitesimal degrees of proba-

bility. This requires fairly heavy machinery from

first-order logic and model theory. In our Exam-

ple 1, by contrast, equational algebra only suffices:

MV-algebraic infinitesimals are considerably sim-

pler than Robinson’s infinitesimals. One is thus able

to formally develop a theory of “infinitesimal de-

grees of probability” using standard algebra only.

We plan to elaborate on this point in subsequent

investigation.
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