
Soft Computing manuscript No.
(will be inserted by the editor)

Solving Complex Multi-UAV Mission Planning
Problems using Multi-objective Genetic Algorithms

Cristian Ramirez-Atencia · Gema
Bello-Orgaz · Maŕıa D. R-Moreno ·
David Camacho ·

Received: date / Accepted: date

Abstract Due to recent booming of UAVs technologies, these are being used
in many fields involving complex tasks. Some of them involve a high risk to
the vehicle driver, such as fire monitoring and rescue tasks, which make UAVs
excellent for avoiding human risks. Mission Planning for UAVs is the pro-
cess of planning the locations and actions (loading/dropping a load, taking
videos/pictures, acquiring information) for the vehicles, typically over a time
period. These vehicles are controlled from Ground Control Stations (GCSs)
where human operators use rudimentary systems. This paper presents a new
Multi-Objective Genetic Algorithm for solving complex Mission Planning Pro-
blems (MPP) involving a team of UAVs and a set of GCSs. A hybrid fitness
function has been designed using a Constraint Satisfaction Problem (CSP)
to check if solutions are valid and Pareto-based measures to look for optimal
solutions. The algorithm has been tested on several datasets optimizing dif-
ferent variables of the mission, such as the makespan, the fuel consumption,
distance, etc. Experimental results show that the new algorithm is able to
obtain good solutions, however as the problem becomes more complex, the
optimal solutions also become harder to find.

Keywords Unmanned Air Vehicles, Mission Planning, Multi-Objective
Optimization, Genetic Algorithms, Constraint Satisfaction Problems

Cristian Ramirez-Atencia · Gema Bello-Orgaz · David Camacho
Departamento de Informática, Universidad Autonónoma de Madrid
E-mail: cristian.ramirez@inv.uam.es, E-mail: gema.bello@uam.es, E-mail:
david.camacho@uam.es

Maŕıa D. R-Moreno
Departamento de Automática, Universidad de Alcalá
E-mail: mdolores@aut.uah.es

ar
X

iv
:2

40
2.

06
50

4v
1

 [
cs

.N
E

]
 9

 F
eb

 2
02

4

2 Cristian Ramirez-Atencia et al.

1 Introduction

Nowadays, Unmanned Air Vehicles (UAVs) or drones have become very pop-
ular in many potential applications including surveillance [30], disaster and
crisis management [45], and agriculture or forestry [26] among others. For this
reason, many research works related to this field have been developed over the
past 20 years [21] [24] [34].

The rapid development of the vehicles capabilities has caused their incor-
poration into many areas to perform complex tasks which involve a high risk
to the vehicle driver, such as detecting forest fires or rescue tasks. So using
UAVs avoid risking human lives while their manageability permits to reach
areas of hard access.

The process of mission planning for a team of UAVs involves generating tac-
tical goals, commanding structure, coordination, and timing. Currently, UAVs
are controlled remotely by human operators from Ground Control Stations
(GCSs), using rudimentary planning systems, such as following preplanned or
manually provided plans. In order to perform more complex tasks and coordi-
nated missions, these systems require more advanced capabilities.

Mission planning problems (MPPs) are a big challenge in actual NP-hard
optimization problems. Classic planners are based on graph search or use a
logic engine. But this kind of planners have several limitations, probably the
most important is the big computational cost that their algorithms need to
solve these missions. These missions have a lot of requirements that need
to be considered and it is also necessary to coordinate all the UAVs. These
requirements generate search graphs that need a huge process capabilities to
find a solution. In addition, Multi-UAV missions usually require the use of
several GCSs for controlling all the UAVs involved. This generates a new
Multi-GCS approach that makes this problem even harder to solve.

Another critical issue in MPP is that there are several parameters which
can be used to define the quality of a solution, such as the fuel consumption,
the makespan, the cost of the mission, etc. In these cases, a Pareto Optimal
Frontier (POF) can be computed in order to get the best solutions optimiz-
ing different objectives at the same time. Due to mission planning is based
on search problems, an option to solve this type of problems could be using
Multi-Objective Evolutionary Algorithms (MOEAs). In this work, we extend
a previous work [5] in order design and implement a Multi-Objective Genetic
Algorithm (MOGA) to solve this problem. For this purpose, a fitness function
consisting of two phases has been designed. Firstly, modelling the MPP as a
CSP, the fitness function checks that the solution plans fulfill all the cons-
traints given by the different capabilities of the UAVs and the GCSs involved.
Afterwards, using the validated plans, a Pareto-based function is calculated
to optimize different quality parameters of the solutions.

The rest of the paper is structured as follows. Section 2 describes the related
work concerning mission planning, CSPs and GAs. Section 3 presents the
Misison planning problem, while section 4 presents the CSP approach used to
model it. Section 5 presents the MOGA-CSP approach, the encoding designed

Solving Complex Multi-UAV MPPs using MOGAs 3

and the fitness function implemented to solve Multi-GCS MPP. Section 6
provides a description of the dataset employed, the setup employed in the
MOGA-CSP and a complete experimental evaluation of it. Finally, in Section
7 the conclusions and some future research lines of the work are presented.

2 Related Work

This section starts with a general introduction to Mission Planning techniques.
After this brief introduction, an overview of Constraint Satisfaction Problems
is presented showing the different methods used in the literature to solve them.
Finally, a description of Genetic Algorithms (GAs) and their applications to
optimization problems has been carried out.

2.1 Mission Planning

Planning has been an area of research in Artificial Intelligence (AI) for over
three decades. A variety of tasks including robotics [12], web-based information
gathering [22], autonomous agents [10] and mission control [42] have benefited
from planning techniques. Moreover, mission planning is a common problem in
AI. A mission can be described as a set of goals that are achieved by performing
some task with a group of resources over a period of time. The whole problem
can be summed up in finding the correct schedule of resource-task assignments
that satisfies the proposed constraints.

In the literature there are some attempts to implement mission planning
systems. Doherty et al. [13] presents an architectural framework for Mission
Planning and execution monitoring, using temporal action logic (TAL). Fabi-
ani et al. [14] modelled the problem for search and rescue scenarios using
Markov Decision Process (MDP) and solve it with dynamic programming al-
gorithms. German Aerospace Centre (DLR) also developed a mission manage-
ment system based on the behaviour paradigm [1] which has been integrated
onboard the ARTIS helicopter and validated in different scenarios, including
waypoints following and search and track missions.

An essential concept in Mission Planning is cooperation or collaboration,
which occurs at a higher level when various UAVs work together in a common
mission sharing data and controlling actions together. There are few contribu-
tions that deal with Multi-UAV problems in a deliberative paradigm (coop-
erative task assignment and mission planning). Bethke et al. [8] proposed an
algorithm for cooperative task assignment that extends the receding-horizon
task assignment (RHTA) algorithm to select the optimal sequence of tasks for
each UAS. Another approach by Kvarnstrom et al. [23] propose a new mis-
sion planning algorithm for collaborative UAVs based on combining ideas from
forward-chaining planning with partial-order planning. This approach led to a
new hybrid partial-order forward-chaining (POFC) framework that meets the
requirements on centralization, abstraction, and distribution found in realistic
emergency services settings.

4 Cristian Ramirez-Atencia et al.

Finally, other approaches formulate the mission planning problem as a
Constraint Satisfaction Problem (CSP), where the tactic mission is modelled
and solved using constraint satisfaction techniques [32].

2.2 Constraint Satisfaction Problems

The MPP can be summed up in finding the correct schedule of resource-task
assignments which satisfies the proposed constraints, like a CSP. It can be
defined as follows [3]:

– A set of variables V = v1, ..., vn.
– For each variable, a finite set of possible values Di (its domain).
– A set of constraints Ci restricting the values that variables can simultane-

ously take.

A CSP is usually represented as a graph where the pairs <Variable,Value>
are the nodes and the constraints are the edges. Although there are other
representations as those presented in [18] for Ant Colony Optimization and
videogames. In the literature, there are many proposed methods to search
the space of solutions for CSPs, such as Backtracking (BT), Backjumping
(BJ) or look-ahead techniques (i.e. Forward Checking (FC) [7]) among others.
These algorithms are usually combined with other techniques like consistency
techniques [6] (domain consistency, arc consistency or path consistency) to
modify the CSP and ensure its local consistency conditions.

In many real-life applications it is necessary to find a good solution, and not
the complete space of possible solutions. For this purpose, combining a CSP
with an optimization function results in a Constraint Satisfaction Optimization
Problem (CSOP). In these approaches the optimization function maps every
solution (complete labelling of variables) to a numerical value measuring the
quality of the solution. The most widely used algorithm for finding optimal
solutions is called Branch & Bound (B&B) [33]. This algorithm searches for
solutions in a depth first manner pruning the sub-tree under the current partial
labelling when it exceeds the bound of the best value so far. In the case of
Multi-Objective Optimization, an extension of this method, known as Multi-
objective Branch & Bound (MOBB) [35] is used to find the Pareto Optimal
Frontier (POF) composed of all non-dominated solutions of the problem. Other
methods for solving CSOP include Russian doll search [37], Bucket elimination
[36], Genetic algorithms [15] and Swarm intelligence [17].

A TCSP is a particular class of CSP where variables represent times
(time points, time intervals or durations) and constraints represent sets of
allowed temporal relations between them [39]. Different classes of constraints
are characterized by the underlying set of basic temporal relations (BTR).
Most types of TCSPs can be represented using Point Algebra (PA), with BTR
= {∅, <,=, >,≤,≥, ?}. A commonly used approach is Allen’s Interval Alge-
bra [2], which defines several relations between time intervals, with BTR =
{<,>,m,mi, o, oi, s, si, d, di, f, fi,=}.

Solving Complex Multi-UAV MPPs using MOGAs 5

In the related literature, Mouhoub [27] proved that on real-time or Maximal
TCSPs (MTCSPs), the best methods for solving TCSPs are Min-Conflict-
Random-Walk (MCRW) for under-constrained and middle-constrained pro-
blems, and Tabu search and Steepest-Descent-Random-Walk (SDRW) in the
over-constrained case. In this work, the author also developed a temporal
model (TemPro [28]) which was based on interval algebra, to translate an ap-
plication involving temporal information into a CSP. A TCSP can perfectly
represent a Multi-UAV mission as a set of temporal constraints over the time
the tasks in the mission start and end.

2.3 Genetic Algorithms

Genetic Algorithms (GAs) have been traditionally used in a large number of
different domains, mainly related to optimization problems [20]. These stochas-
tic methods are inspired by natural evolution and genetics, and the complexity
of the algorithm depends on the codification and the operations used to re-
produce, cross, mutate and select the different individuals of the population.

There is a wide range of applications where GAs have been successful, from
optimization [9] to Data Mining [4] [25]. GAs have demonstrated to be robust,
able to find satisfactory solutions in highly multidimensional problems with
complex relationships between the variables. In recent works [19] [31], GAs
have been used to represent CSPs.

Regarding the application of GAs to solve MPPs, there are several works in
the literature. The Soliday et al. [40] approach developed a GA to solve UAV
missions under complex constraints. The GA was constructed using a novel
representation based on the nearest neighbour search, being each allele the N
nearest neighbour, and uses a qualitative fitness function based on the number
of mission objectives and the time permitted. Tang [41] created a nested GA
for military planning (resource allocation and task scheduling) based on the
robustness measure (RM) and test it with different probabilities and durations.
In Geng et. al. [16] work, the authors designed a graph based representation
for mission planning of UAVs to carry out a series of tasks. The flying space for
these tasks was constrained with the presence of flight prohibited zones (EPZs)
and enemy radar sites. Finally, in Savurant et. al. [38], authors presented a
GA for the Capacity Mobile Depot Vehicle Routing Problem, improving the
GA process using Insertion Local Search (ILS) and 2-opt local search.

In MPPs for Multi-UAVs can be taken into account several criteria to
measure the quality of a solution, such as the fuel consumption, the makespan
or the cost of the mission, among others. Therefore, it can be interesting to
optimize simultaneously different objectives in order to get the best solutions.
This type of problems could solved using Multi-Objective Genetic Algorithms
(MOGAs) [46] [48] based on Pareto optimization techniques. The most known
approaches are SPEA2 [11] and NSGA-II [49].

Finally, in order to evaluate the performance of the algorithms, there are
some performance metrics such as the Hypervolume [47] or the Generational

6 Cristian Ramirez-Atencia et al.

distance [43] which can be used. The Hypervolume of a set of solutions with
n objective variables consists of the n-dimensional volume comprised between
these solutions (the approximated POF) and the optimal POF of the problem
(see Figure 1). When the optimal POF is obtained, the hypervolume is 0.
Otherwise, the higher the hypervolume, the worse the approximated POF.

Fig. 1 Hypervolume for two optimization variables. The optimal POF is represented in red,
the solutions obtained using a specific algorithm are represented in blue, and the hypervol-
ume comprised between them is represented in yellow.

On the other hand, it is also necessary to decide when the algorithm has
reached a good POF and the problem must stop. For this, there exist several
stopping criteria [44] in the literature. One of the stopping criteria most used
consists of a comparison function which will stop the execution if the POF
remains changeless for a number of generations.

3 Description of the Multi-UAV Mission Planning Problem

A UAV mission is typically defined as a number n of tasks, T = {t0, t1, ...tn},
performed by a team of m UAVs, U = {u0, u1, ...um}, at a specific time
interval. Each mission should be performed in a specific geographic zone. In
addition, in this approach, there exist a number l of GCSs,G = {g0, g1, ..., gl},
controlling these UAVs. A solution for a mission planning problem should be
the assignment of each task to a specific UAV, and each UAV to a specific
GCS, ensuring that the mission can be successfully performed.

In Figure 2, a Mission Scenario with 7 tasks (represented in green), 5 UAVs
and 3 GCSs is presented. As can be seen in this figure, the zone of the mission
could contain some No Flight Zones (NFZs), represented in red. These zones
must be avoided in the trajectories of the UAVs during the mission.

In this section, we define the different components of a mission and the
computations that must be achieved to obtained the different times related
to the assignments of tasks. First, we will define the types and characteristics
of Tasks, UAVs and GCSs. Then, we will describe the computations that are
performed in the process of task assignments.

Solving Complex Multi-UAV MPPs using MOGAs 7

Fig. 2 Mission with 7 tasks (2 of them Multi-UAV), 5 UAVs and 3 GCSs.

3.1 Task Description

There exists different kinds of task, such as monitoring a zone or photographing
a target in a specific point. These tasks are performed using the sensors
available by the UAVs of the mission: EO/IR sensors, SAR radars, ISAR
radars and MPR radars.

Definition 1 Given a task t ∈ T , the set of sensors that can be used to
perform a task is represented as sensors(t).

The different tasks considered in this approach and the sensor or sensors
required to perform each task are represented in Table 1.

ID Name Description
Multi-
UAV

Sensors needed

MON
Monitoring a

zone
Fly circling in a zone
during a specific time

No
– Videotracking

EO/IR sensor
– ISAR radar

ES
Escorting a

path
Follow a path No

– Thermal EO/IR
sensor

– SAR radar

TP
Target

photographing
Go to a point and take

a photo
No – EO/IR sensor

MAP
Mapping a

zone

Travel a zone
performing a step &

stare pattern
Yes

– SAR radar
– ISAR radar
– MPR radar

Table 1 Type of tasks. For each task, a description is given, as well as the sensors that
could be used to perform it and whether this task can be performed by several UAVs or not.

8 Cristian Ramirez-Atencia et al.

In addition, each task has a time interval, which could be specified with
a start and end time for the task, or just with the task duration. In the
last case, the start and end times will be obtained at the planning process.

On the other hand, a mission can have some task dependencies. There
exist two types of task dependencies: vehicle dependencies, which impose
if two tasks must be performed by the same or by different UAVs, and time
dependencies, which constraint the relation of the time intervals of two tasks.
These time dependencies are represented using Allen’s Interval Algebra[2].

Definition 2 Given two tasks t1, t2 ∈ T , vehicle dependency sameUAV (t1, t2)
constraints both tasks to be performed by the same UAV.

Definition 3 Given two tasks t1, t2 ∈ T , vehicle dependency diffUAV (t1, t2)
constraints both tasks to be performed by different UAVs.

3.2 UAV Description

The UAVs of a mission, u ∈ U , have some features that must be considered
when checking if a plan is correct. These features are presented in Table 2.

On the other hand, during the mission, the UAV will be positioned in
different points at each moment.

Definition 4 Given a UAV u ∈ U , the position of u at any time t ∈ R is
represented as pos(u, t).

Each type of UAV, type(u), will have different values for these features.
In this approach, four basic types of UAVs have been considered. These are
described in Table 3.

3.3 GCS Description

To solve Multi-UAV missions, it is necessary to use several GCSs controlling
the UAVs. Therefore, the problem is Multi-GCS, and it should be checked that
each UAV is controlled by an appropriate GCS. Every GCS g ∈ G has some
features to be considered that are represented in Table 4.

In Figure 2, the coverage is represented for each GCS in translucent orange.
It can be appreciated that GCS3 has a low coverage, while GCS1 and GCS2
have a higher range.

3.4 Task Assignment Processes

In figure 3, an assignment of a UAV u to two tasks i and j is represented,
and it can be seen the different times computed in the process. In this assign-
ment process, it is necessary to compute several variables related to time, fuel

Solving Complex Multi-UAV MPPs using MOGAs 9

Feature Description Symbol

Initial Position
The position of the UAV at the

beginning of the mission
posu

Initial Fuel
The fuel of the UAV at the
beginning of the mission

fuel(u)

Available sensors The sensors contained in the UAV sensors(u)

Range
The maximum distance that the
UAV can traverse in the mission

range(u)

Autonomy
The maximum time that the UAV

can stay in fly
autonomy(u)

Cost
The cost per hour of use of the

UAV
cost(u)

Max. Speed
The maximum speed attainable

by the UAV
maxspeed(u)

Max. Altitude
The higher altitude that the UAV

can reach
maxalt(u)

Max. Fuel
The maximum fuel capacity of the

UAV tank
maxfuel(u)

Flight profiles (FP)
One or more profiles that specify
at each moment the fly features of

the UAV
fps(u)

FP Speed
Speed of the UAV for a flight

profile
speed(fpu)

FP
Fuel

Consumption
Ratio

Fuel consumption by hour of the
UAV for a flight profile

fuelRatio(fpu)

FP Altitude
Altitude of the UAV when using a

route flight profile
altitude(fpu)

FP Angle
Angle of the UAV when using a

climb/descent flight profile
angle(fpu)

Table 2 Different UAV features considered.

Name
Range
(NM)

Autonomy
(h)

Cost/h
Max.
Speed
(kt)

Max.
Altitude

(ft)

Max.
Fuel
(kg)

Available Sensors

URAV 1000 20 5 120 20000 500

– Videotracking
and thermal
EO/IR sensor

MALE 5000 30 10 250 40000 2500
– EO/IR sensor
– MPR radar

HALE 15000 40 15 400 65000 6000
– Videotracking

EO/IR sensor
– ISAR radar

UCAV 1500 15 25 450 35000 9000
– EO/IR sensor
– SAR radar

Table 3 Different types of UAVs considered and their features.

10 Cristian Ramirez-Atencia et al.

Feature Description Symbol

Position The position of the GCS posg

Max. Number of UAVs
The maximum number of UAVs

that the GCS can control
maxNum(g)

Permitted Types
The permitted types of UAVs
that the GCS can control

types(g)

Coverage The within range of the GCS coverage(g)

Table 4 Basic features considered for a GCS.

Fig. 3 Example of assignment of a UAV to two tasks. The path to each task, the task
performance, the loiter and the return phases are represented, as well as every time point
and duration related.

consumption and distance traversed, in order to validate that the task can be
fulfilled at its time interval using the assigned UAV.

The variables related to time that must be computed in this task assign-
ment process are:

– The departure time when the vehicle starts moving to the task zone. In
Figure 3, it is represented as tdi for task i, and tdj for task j.

– The duration of the path between the departure of the UAV and the
start of the task. In order to compute this duration, the path flight profile
used by the UAV in this path must be set. With the speed (vi) provided
by this profile and the distance from the UAV departure position to the
task zone, it is possible to compute the duration of the path (du→i).

– The start time of the task. This time could be fixed in the definition of the
task. If not, it is computed during the assignment process. It is represented
as si in Figure 3 for task i.

– The duration of the task (τi). This time could be given (e.g. in monitor-
ing tasks) or must be computed (e.g. in mapping tasks). In the second case,
it is necessary to know the speed (vi) of the UAV in the task performance.
This is given by the sensor used by the UAV to perform the task, which
provides the optimum speed and altitude for its use.

– The end time of the task. This time could be fixed in the definition of the
task. If not, it is computed during the assignment process. It is represented
as ei in Figure 3 for task i.

– The duration of the loiter. When start and end times of tasks are fixed,
it may happen that the time when a UAV finishes a task does not meet
the time when the UAV departs for the next task. The difference between
these two times is known as the loiter duration for the second task.

Solving Complex Multi-UAV MPPs using MOGAs 11

– The duration of the return. In order to compute this duration, the
return flight profile used by the UAV in this return must be set. With
the speed (vu) provided by this profile and the distance from the zone of
the last task of the UAV to its initial position, it is possible to compute
the duration of the return (dj→u).

– The return time when the UAV has returned to its initial position. It is
computed as the sum of the end time of the last task performed by the
UAV and the duration of the return.

On the other hand, there are some variables related to fuel consumption
that must be computed in this task assignment process. These variables are
computed using the previous durations and the fuel consumption ratio given
by the flight profile used in each case. Specifically, these variables are: The fuel
consumption of the path; The fuel consumption of the task; The fuel
consumption of the loiter; and the fuel consumption of the return.

Finally, the variables related to the distance traversed are computed as the
sums of distances between the points of the path employed in each case. These
variables are: The distance of the path; The distance of the task; The
distance of the loiter; and the distance of the return.

Definition 5 Given two points p1, p2 ∈ R3 in 3D geographical coordinates
(longitude, latitude, altitude), we define the distance function distance(p1, p2)
between them as the 3D distance in WGS84 system.

4 Modelling the MPP as a CSP

In this section, we define how the MPP can be modelled using a CSP. First, we
define which are the variables of the CSP and their domain. Then, we explain
the different constraints considered for the MPP.

4.1 CSP variables

Looking at the assumptions explained so far in the previous section, the vari-
ables of the CSP that we have considered are as follows:

– Assignments (assign) of tasks to UAVs. As some tasks could be Multi-
UAV, these variables are represented as a binary array of size n ×m. An
assignment assign[t, u] = 1 means that task t is assigned to UAV u.

– Orders (order), which define the order in which each UAV performs the
tasks assigned to it. These variables are necessary when start and end times
of tasks are not fixed, and they are represented as an array of size n×m.
Their domain is [−1..n−1], where −1 is only assigned when the UAV does
not perform the task.

– Assignments of UAVs to GCSs (gcss). There are m variables of this
type, and their domain is [−1..l − 1], where −1 is only assigned when the
UAV is not assigned to any task.

12 Cristian Ramirez-Atencia et al.

– Path Flight Profiles (fpPath), setting the flight profile that the vehicle
must take for the path performance. These variables are represented as a
n × m array, and their domain are the flight profiles of the UAV in the
column: fpPath[t, u] ∈ fps(u).

– Return Flight Profiles (fpReturn), similar to the previous set of vari-
ables but for the return path of each UAV. There are m variables of this
type, and their domain is the same as the previous variables: fpReturn[u] ∈
fps(u).

– Sensor used in the task performance (sensTask). These variables
set the sensor of the vehicle that will be used during the task perfor-
mance. It will be necessary to consider these variables just in the case
that the vehicle performing the task has several sensors that could perform
that task. These variables are represented as a n×m array, and their do-
main are the sensors of the task and UAV available for that assignment:
sensTask[t, u] ∈ sensors(t) ∩ sensors(u).

On the other hand, there are some extra variables that will be computed
during the propagation phase of the CSP. These variables are directly related
to the variables computed in section 3.4: departure, durPath, start, durTask,
end, durLoiter, durReturn, returnT ime, fuelPath, fuelTask, fuelLoiter,
fuelReturn, distancePath, distanceTask, distanceLoiter and distanceReturn.

4.2 CSP constraints

Now, we define the different constraints of the CSP, which consider all the
specifications explained so far:

1. Sensor constraints: they check if a UAV has the sensor needed to perform
its assigned tasks. Let sensors(u) denote the sensors available for UAV u
and sensors(t) the sensors that could perform the task t then:

∀t ∈ T ∀u ∈ U assign[t, u] = 1 ⇒ |sensors(t) ∩ sensors(u)| > 0 (1)

2. Order constraints: they assure that the values of the order variables are
less than the number of tasks assigned to the UAV performing that task:

∀t ∈ T ∀u ∈ U assign[t, u] = 1 ⇒
order[t, u] < ♯ {τ ∈ T |assign[τ, u] = 1} (2)

and if two tasks are assigned to the same UAV, they have different orders:

∀i, j ∈ T ∀u ∈ U assign[i, u] = assign[j, u] = 1 ⇒
order[i, u] ̸= order[j, u] (3)

Solving Complex Multi-UAV MPPs using MOGAs 13

3. GCS constraints: they assure that the GCSs assignments are correct.
First, it is necessary to assure that the UAVs assigned to the GCS are of a
type supported by that GCS (both in initial assignment and during tasks
performance):

∀u ∈ U ∀g ∈ G gcss[u] = g ⇒ type(u) ⊂ types(g) (4)

Then, a constraint assures that the maximum number of UAVs that a GCS
can handle is not overpassed at any moment:

∀g ∈ G ♯ {u ∈ U |gcss[u] = g} < maxNum(g) (5)

Finally, it is necessary to check that GCS can coverage the UAV during
the mission:

∀u ∈ U ∀g ∈ G gcss[u] = g ⇒
∀t ∈ R distance(pos(u, t), posg) ≤ coverage(g) (6)

4. Temporal constraints: they assure the consistency of all the time vari-
ables considered. First, it is necessary to assure that the start time of the
task equals the sum of the departure time and the duration for the path:

∀t ∈ T ∀u ∈ U assign[t, u] = 1 ⇒
departure[t, u] + durPath[t, u] = start[t, u] (7)

and that end time is the sum of the start time and the duration of the
task:

∀t ∈ T ∀u ∈ U assign[t, u] = 1 ⇒ start[t, u] + durTask[t, u] = end[t, u]
(8)

Then, the duration of the path is computed as the distance traversed in
the path divided by the speed given by the path flight profile:

∀t ∈ T ∀u ∈ U assign[t, u] = 1 ⇒ durPath[t, u] =
distancePath[t, u]

speed(fpPath[t, u])
(9)

If tasks have fixed start and end times, then it is necessary to compute the
duration of the loiter as the difference between the end of a task and the
departure for its consecutive task:

∀i, j ∈ T ∀u ∈ U assign[i, u] = assign[j, u] = 1

∧ order[i, u] = order[j, u]− 1

⇒ durLoiter[j, u] = departure[j, u]− end[i, u] (10)

14 Cristian Ramirez-Atencia et al.

On the other hand, the duration of the return is computed as the distance
traversed in the return path divided by the speed given by the return flight
profile:

∀u ∈ U durReturn[u] =
distanceReturn[u]

speed(fpReturn[u])
(11)

Once we have computed the return path duration, we can compute the
return time as the sum of the end of the last task performed by the UAV
and this return duration:

∀t ∈ T ∀u ∈ U assign[t, u] = 1

∧ order[t, u] = ♯ {τ ∈ T |assign[τ, u] = 1} − 1

⇒ returnT ime[u] = end[t, u]− durReturn[u] (12)

Finally, it is necessary to assure that two tasks that collide in time are
never assigned to the same UAV:

∀i, j ∈ T ∀u ∈ U assign[i, u] = assign[j, u] = 1

∧ order[i, u] < order[j, u] ⇒ end[i, u] ≤ departure[j, u] (13)

5. Dependency Constraints: these constraints are related to the time and
vehicle dependencies mentioned before. The time dependency constraints,
based on Allen’s Interval Algebra [2], for each pair of tasks i and j, assuming
∀i, j ∈ T ∀u ∈ U assign[i, u] = assign[j, u] = 1, are as follow:

i < j ⇒ end[i, u] ≤ start[j, u] (14)

i m j ⇒ end[i, u] = start[j, u] (15)

i o j ⇒


start[i, u] ≤ start[j, u]

end[i, u] ≥ start[j, u]

end[i, u] ≤ end[j, u]

(16)

i s j ⇒

{
start[i, u] = start[j, u]

end[i, u] ≤ end[j, u]
(17)

i d j ⇒

{
start[i, u] ≥ start[j, u]

end[i, u] ≤ end[j, u]
(18)

i f j ⇒

{
start[i, u] ≥ start[j, u]

end[i, u] = end[j, u]
(19)

i = j ⇒

{
start[i, u] = start[j, u]

end[i, u] = end[j, u]
(20)

Solving Complex Multi-UAV MPPs using MOGAs 15

On the other hand, vehicle dependencies imply the following constraints:

∀i, j ∈ T sameUAV (i, j) ⇒ ∀u ∈ U assign[i, u] = assign[j, u] (21)

∀i, j ∈ T diffUAV (i, j) ⇒ ∀u ∈ U assign[i, u] ̸= assign[j, u] (22)

6. Autonomy constraints: they assure that the total flight time for each
vehicle is less than its autonomy:

∀u ∈ U flightT ime[u] =
∑
t∈T

assign[t]=u

(durPath[t] + durTask[t] + durLoiter[u])

+ durReturn[u] < autonomy(u) (23)

7. Distance constraints: they assure that the distance traversed by each
vehicle is less than its range:

∀u ∈ U distance[u] =
∑
t∈T

assign[t]=u

(distancePath[t] + distanceTask[t]

+ distanceLoiter[u]) + distanceReturn[u] < range(u) (24)

To compute these distances, we have used GeographicLb1 for the computa-
tion of distance and points in Geographic coordinates; and Theta* [29] to
perform a path between these points avoiding No Flight Zones (NFZ) and
terrain obstacles. The elevation of the terrain has been read from DTED
maps using GDAL2.

8. Fuel constraints: they assure that the fuel consumed by each vehicle is
less than its initial fuel fuelu:

∀u ∈ Ufuel[u] =
∑
t∈T

assign[t]=u

(fuelPath[t] + fuelTask[t]) + fuelReturn[u]

< fuel(u) (25)

Each one of these fuel consumptions is computed as the product of its
associated duration and fuel consumption ratio. For example, the fuel con-
sumption for the path is computed multiplying the fuel consumption ratio
given by the path flight profile and the duration of the path:

∀t ∈ T ∀u ∈ U assign[t, u] = 1 ⇒
fuelPath[t, u] = durPath[t, u]× fuelRatio(fpPath[t, u]) (26)

1 http://geographiclib.sourceforge.net/
2 http://www.gdal.org/

16 Cristian Ramirez-Atencia et al.

5 MOGA-CSP Algorithm for Multi-UAV Mission Planning
Problems

Given the big amount of solutions that the problem can generate and the huge
amount of constraints involved in the search of solutions, we have decided to
use a hybrid approach based on MOGAs and CSPs to solve MPPs. In this new
approach, the constraints of the problem have been applied as penalty func-
tion in the evaluation phase of the genetic algorithm. This section describes
this algorithm, including the encoding, the fitness function designed, and the
genetic operators implemented.

5.1 Encoding

To encode the Multi-UAV MPP, a representation based on six different alleles
have been designed (see Figure 4). Each allele is used to encode the features
that have been described in previous sections representing a complete solution
that will be optimized by MOGA algorithm. Next, a short description for each
allele is given:

1. UAVs assigned to each task. If the Ti task is Multi-UAV, then this cell
contains a vector representing the different UAVs assigned to this task.

2. Permutation of the task orders. These values indicate the absolute
order of the tasks. It is only used if there are several tasks assigned to the
same UAV and some of them do not have the start and end times fixed.

3. GCSs controlling each UAV.
4. Flight profiles used for each UAV to each assigned task. As in the

first allele, some of the cells could contain a vector if the corresponding
task is performed by several UAVs.

5. Sensors used for the task performance by each UAV.
6. Flight Profiles used by each UAV to return to the base.

An example of this representation is shown in Figure 4. Firstly, this figure
shows a mission with 5 tasks. Assuming that there is not any task with start
and end time fixed, it is necessary to use the permutation allele for the task
orders (2). Using together, this allele and the allele of UAV assignments (1),
we have that UAV 1 performs tasks 1, 4 and 5 in this order; UAV 2 performs
tasks 2, 1, 4 and 3; and UAV 3 performs tasks 1, 4 and 3. On the other hand,
according to allele of GCCs information (3), we have that UAVs 1 and 3 are
controlled by GCS 1, while UAV2 is controlled by GCS 2. Furthermore, in the
allele of Flight profiles per task (4), we can see that UAV 1 uses minimum
consumption flight profile for all its assigned tasks; UAV 2 uses minimum
consumption profile for task 1, and maximum speed profile for the rest of tasks,
and UAV 3 uses minimum consumption profile for task 3, while maximum
speed profile for the rest of tasks. Regarding the sensors used (5), it can be
seen that task 1 is performed by UAV 1 using MPR radar (mR) sensor, while
UAV 2 uses an ISAR radar (iR), and UAV 3 uses a SAR radar (sR); task 2 is

Solving Complex Multi-UAV MPPs using MOGAs 17

performed using EO/IR sensor (eiS), etc. Finally, the last allele (6) represents
that UAVs 1 and 2 use minimum consumption profile for their return path,
while UAV 3 uses maximum speed profile.

Fig. 4 Example of an individivual that represents a possible solution for a problem with 5
tasks, 3 UAVs and 2 GCSs.

A key point in this representation is that only a valid sensor to perform the
task assigned could be used for the allele of sensors used per task. With this,
the algorithm is avoiding some invalid solutions due to sensor constraints.

5.2 Fitness Function

Evaluation is computed in terms of a fitness function composed by two check
steps. First, for a given solution, it handles that all constraints are fulfilled. If
not, it acts as a penalty function, giving the solution the worst possible value so
it would not be evolved in future generations. If all constraints are fulfilled, the
fitness function works as a multi-objective function minimizing the objectives
of the problem. For this purpose, we have considered the optimization variables
described in Table 5.

Variable Description Formula

Nuavs
The number of UAVs used in

the mission
♯ {u ∈ U |∃t ∈ T assign[t] = u}

totalF lightT ime
The total flight time of all the

UAVs during the mission

∑
u∈U flightT ime[u]

totalFuel
The total fuel consumed by all
the UAVs during the mission

∑
u∈U fuelConsumed[u]

totalDistance
The total distance traversed

by all the UAVs in the mission

∑
u∈U distance[u]

totalCost
The total cost of the mission,
computed as the sum of the
individual cost of each UAV

∑
u∈U cost(u)× flightT ime[u]

makespan
The time when the mission

ends (all UAVs have returned)
maxu∈U returnT ime[u]

Table 5 Optimization variables used in the fitness function by MOGA-CSP algorithm.

18 Cristian Ramirez-Atencia et al.

The multi-objective fitness function compares the solution evaluated with
the stored solutions in order to obtain the Pareto-Optimality Frontier (POF)
based on the NSGA-II approach [11].

5.3 Algorithm

In this new approach, as can be seen in Algorithm 1, after evaluating the
individuals of the population with the fitness previously explained (Line 8), a
N elitist selection is performed. It means, that a number N of best individuals
in the population is retained (Line 9). Then, a roulette wheel selection over
these N individuals (Line 12) selects those that will be applied the genetic
operators.

Algorithm 1: Hybrid MOGA-CSP algorithm for Mission Planning
Problems
Input: A mission M = (T, U,G) where T is a set of tasks to perform denoted by

{t1, . . . , tn}, U is a set of UAVs denoted by {u1, . . . , um} and G is a set of
GCSs denoted by {g1, . . . , gl}. And positive numbers generations,
population, µ, λ, mutprobability and stopGeneration

Output: POF obtained with best solutions
1 S ← randomly generated set of population of p chromosomes with 6 alleles

representing the tasks assignments to UAVs, the orders, the UAVs assignments to
GCSs, the path flight profiles, the sensors used and the return flight profiles

2 i← 1
3 convergence← 0
4 pof ← createPOF (S)
5 while i ≤ generations ∧ convergence < stopGenerations do
6 F ← ∅
7 for j ← 1 to p do
8 F ← Fitness(Sj)

9 Sbest← SelectNBest(µ, F)
10 newS ← Sbest
11 for j ← µ to λ do
12 p1, p2← RouleWheelSelection(Sbest)
13 i1, i2← Crossover(p1, p2)
14 i1←Mutation(i1,mutprobability)
15 i2←Mutation(i2,mutprobability)
16 newS ← newS ∪ {i1, i2}
17 NSGA2UpdatePopulation(S, newS)
18 newpof ← createPOF (S)
19 if newpof = pof then
20 convergence← convergence+ 1

21 pof = newpof
22 i← i+ 1

23 return pof

Next, we use a proper crossover operator (Line 13) to combine the chromo-
somes of each pair of parents to generate a new pair of children. This operator

Solving Complex Multi-UAV MPPs using MOGAs 19

consists of a specific crossover operation for each of the alleles of the represen-
tation. The first allele performs a 2-point crossover, and the same cross points
used for this allele are reused for the fourth and fifth allele in order to maintain
the size for Multi-UAV tasks and the consistency of the sensors used. On the
other hand, in the second allele, as it is a permutation, is applied a Partially-
Matched Crossover (PMX). This passes a swatch of values from one parent
to the other and then performs a replacement of the invalid values of the new
child based on its previous parent. Finally, in the third and sixth alleles are
applied another 2-point crossover (with different points than the previous).
Figure 5 shows an example of this crossover operation, where the first, fourth
and fifth allele have selected points 2 and 4 for the 2-point crossover. In the
second allele a swatch composed of task T2..T3 has been selected for the PMX
crossover, and finally, the third and sixth allele have selected points 1 and 2
for the 2-point crossover.

Fig. 5 Example of crossover of two parents with 5 tasks, 3 UAVs and 2 GCSs. Each allele is
performed a different type of crossover: UAV, FpPath and SensUsed are performed a 2-point
crossover; Order is applied a PMX crossover, and GCS and FpReturn are applied another
2-point crossover.

Once the new pair of individuals has been generated from crossover oper-
ation, a mutation operator (Line 14) will be applied to them depending on a
probability Pm (usually low, ∼ 5%). This genetic operator helps to avoid that
the obtained solutions stagnate at local minimums. This mutation operator is
designed to perform an uniform mutation over the same genes for the first,
fourth and fifth allele in order to maintain the size of Multi-UAV tasks and

20 Cristian Ramirez-Atencia et al.

avoid invalid solutions accomplishing sensor constraints. On the other hand,
the second allele is applied an Insert Mutation, which will select two random
positions from the permutation and move the second one next to the first one.
Finally, the third and sixth allele are performed another uniform mutation.
Figure 6 presents an example of this mutation, where T4 has been mutated for
the first, fourth and fifth allele, the insert mutation has moved the value of T4

next to T1, and the third and sixth allele have mutated the value of U1.

Fig. 6 Example of Mutation for an individual with 5 tasks, 3 UAVs and 2 GCSs. Each allele
is performed a different type of mutation: UAV, FpPath and SensUsed are performed an
uniform; Order is applied an Insert mutation, and GCS and FpReturn are applied another
uniform mutation.

Finally, after the population is updated by NSGA-II (Line 16), the stopping
criteria designed for this algorithm compares the POF obtained so far in each
generation with the POF from the previous generation (Line 18). If this POF
remains unchangeable for a number of generations, then the algorithm will
stop and return this POF.

6 Experiments

In this section we explain the experiments carried out to test the functionality
of the new MOGA-CSP approach for MPP. For this purpose, we have designed
several missions with different configurations of tasks, UAVs, GCSs and NFZs
in order to check the different characteristics of the model. These datasets are
described in Table 6 which shows the characteristics of the model that are
checked for each one.

The first experiment shows the results obtained when the different objec-
tives are optimized individually and by pairs, and compare it with their op-
timization all together. From this experiment, we will obtain which variables
are the most appropriate to use for this problem for the MOGA-CSP.

Finally, all datasets are tested using the objective variables obtained in the
previous experiment. In order to evaluate the performance of the algorithm

Solving Complex Multi-UAV MPPs using MOGAs 21

the Hypervolume metric is calculated. To apply this metric, it is necessary
to compute the optimal POF using the MOBB algorithm for each dataset.
For this purpose MOBB algorithm, provided from Rodriguez-Fernandez et.
al. approach [35] is applied. Then, the solutions returned by the MOGA-CSP
are compared with the MOBB results to analyse their optimality.

Dataset
Tasks UAVs GCSs NFZs

Task Times
Id. Description Fixed Unfixed Deps.

1 Simple mission with
fixed times

– 2 MON
– 2 ES
– 2 TP

– 1 HALE
– 1 MALE
– 1 UCAV
– 1 URAV

1 0 6 0 0

2 Path avoidance

– 2 MON
– 2 ES
– 2 TP

– 1 HALE
– 1 MALE
– 1 UCAV
– 1 URAV

1 1 6 0 0

3 Multi-UAV tasks – 3 MAP
– 1 HALE
– 1 MALE

1 0 0 3 0

4a Multi-GCS with fixed
times

– 2 MON
– 2 ES
– 2 TP

– 1 HALE
– 1 MALE
– 1 UCAV
– 2 URAV

2 2 6 0 0

4b Multi-GCS with half
fixed times

– 2 MON
– 2 ES
– 2 TP

– 1 HALE
– 1 MALE
– 1 UCAV
– 2 URAV

2 2 3 3 0

4c
Multi-GCS with half
fixed times and depen-
dencies

– 2 MON
– 2 ES
– 2 TP

– 1 HALE
– 1 MALE
– 1 UCAV
– 2 URAV

2 2 3 3 1

4d Multi-GCS with un-
fixed times

– 2 MON
– 2 ES
– 2 TP

– 1 HALE
– 1 MALE
– 1 UCAV
– 2 URAV

2 2 0 6 0

4e Multi-GCS with unfixed
times and dependencies

– 2 MON
– 2 ES
– 2 TP

– 1 HALE
– 1 MALE
– 1 UCAV
– 2 URAV

2 2 0 6 3

5 Complex mission with
all assets at a time

– 2 MON
– 1 ES
– 2 TP
– 2 MAP

– 2 MALE
– 1 UCAV
– 2 URAV

3 3 4 3 1

Table 6 Features of the different datasets designed.

6.1 Experimental setup

Table 7 shows the parameters used throughout the experimental phase, being
µ+λ the selection criteria used, where λ is the number of offspring (population
size), and µ the elitism size, i.e. the number of the best parents that survive
from current generation to the next. Each problem is run 10 times and the
best of these 10 executions is selected.

22 Cristian Ramirez-Atencia et al.

Mutation probability 0.1
Generations 300
Population size 1000
Selection criteria (µ+ λ) 100 + 1000
Stopping criteria generations 10

Table 7 Experimental setup for the MOGA-CSP.

6.2 Comparative Assessment of objective variables

There are several parameters which can be used to measure the quality of a
solution, such as the fuel consumption, the makespan, the cost of the mission,
etc. As can be shown in section 5.2, this new algorithm considers 6 different
optimization variables: number of UAVs, total flight time, total fuel consump-
tion, total distance traversed, total cost and the makespan. To tune up the
fitness function designed for the new algorithm, a comparative assessment of
these variables is carried out. For this purpose the mission from dataset 1 has
been chosen to study the behaviour of the algorithm according to the variables
which are being optimized.

In these experiments, when obtaining several solutions in an execution,
the average of the each optimization variable is computed. Then, in order to
compare different executions (of different optimization variables), a weighted
average over the values of the optimization variables is employed as rating
value:

Rating(sol) =
∑

v∈OptV ar

v(sol)−min(v)

max(v)−min(v)
(27)

First, each variable is optimized individually. The results obtained for each
optimization variable are shown in Table 8. Analysing the results, it can be
noticed that there are many different optimal solutions for the variables Num-
ber of UAVs and Makespan. In fact, none of them got to converge because
new solutions were still being obtained at generation 300.

Variable N. Sol. N. Gen. UAVs Fuel(L) F. Time(h) Dist.(NM) Cost Mak.(h) Rating
Distance 1 13 4 754.12 3.02 939.09 47.66 3.64 1.611
F. Time 4 14 4 771.08 3.02 949.74 47.66 3.64 2.031
Cost 4 14 4 771.08 3.02 949.74 47.66 3.64 2.031
Fuel 1 13 4 751.57 3.24 939.17 49.69 3.67 2.828
Makespan 1000 300 3 810.06 3.21 1021.35 52.71 3.59 3.355
UAVs 1000 300 3 798.44 3.52 1018.49 52.84 3.64 4.332

Table 8 Comparative assessment of optimization variables using each variable individually.
The values of the optimization variables presented here are the average of their values in all
the solutions obtained. The best result for each optimization variable is marked in bold.

Regarding the rest of variables, it can be seen that optimizing the cost
or flight time gave the same results. However, the fuel consumption and

Solving Complex Multi-UAV MPPs using MOGAs 23

the distance traversed gave different results. In the case of the distance, it
can be appreciated that it also got the best optimization value for Cost, and
nearly optimal value for flight time (with a difference of 10−6 respect to the
best value). In fact, optimizing the distance obtained the best rating, so it is a
potential candidate to use in the fitness function of the MOGA-CSP approach.

Afterwards, the MOGA-CSP algorithm has been run optimizing each pair
of the previous variables. The results obtained can be seen in Table 9.

Variables N. Sol. N. Gen. UAVs Fuel(L) F. Time(h) Dist.(NM) Cost Mak.(h) Rating
Distance

3 16 4 757.57 3.02 939.32 47.66 3.64 1.396
F. Time
Distance

4 15 4 759.39 3.02 941.50 47.66 3.64 1.450
Cost
Distance

2 15 3.5 769.57 3.10 965.57 49.48 3.61 1.681
Makespan
Distance

2 17 3.5 769.57 3.10 965.57 49.48 3.61 1.681
UAVs
F. Time

4 15 4 771.08 3.02 949.74 47.66 3.64 1.729
Cost
Cost

13 14 4 753.50 3.11 939.17 48.47 3.66 1.741
Fuel
Distance

20 14 4 752.67 3.12 939.12 48.50 3.66 1.745
Fuel
F. Time

12 15 4 753.48 3.11 939.18 48.58 3.66 1.784
Fuel
Fuel

4 15 3.5 767.52 3.25 965.62 50.76 3.63 2.179
Makespan
Cost

9 18 3.11 805.22 3.16 1004.30 50.89 3.59 2.529
Makespan
Cost

9 16 3.11 805.22 3.16 1004.30 50.89 3.59 2.529
UAVs
Makespan

1000 300 3 808.92 3.21 1020.69 52.65 3.58 3.046
UAVs
F. Time

18 16 3.11 815.64 3.12 1027.05 51.97 3.59 3.121
Makespan
F. Time

18 20 3.11 815.64 3.12 1027.05 51.97 3.59 3.121
UAVs
Fuel

2 14 3.5 757.53 3.87 977.82 51.96 3.75 3.879
UAVs

Table 9 Comparative assessment of optimization variables using each pair of variables. The
values of the optimization variables presented here are the average of their values in all the
solutions obtained. The best result for each optimization variable is marked in bold.

In these results, it is appreciable that the two best combinations obtained
according to the rating (i.e. the optimization of the distance and the flight time,
and the distance and the cost) obtained good results for four of the variables
(the cost, the distance, the fuel and the flight time) but poor results for the
rest (the makespan and the number of UAVs). On the other hand, the third
and fourth best combinations according to the rating (i.e. the optimization of
the distance and the makespan, and the distance and the number of UAVs)
obtained medium results for all the variables.

So, in order to find good solutions optimizing all the variables, the variables
selected to optimize are the distance and the makespan, which gave medium
values for all the optimization variables. Other possibility would have been
using the number of UAVs instead of the makespan, but as the makespan is a

24 Cristian Ramirez-Atencia et al.

float value, it will be better for optimizing problems with very similar solutions
(e.g. all the best solutions when optimizing any variable uses 1 UAV because
the mission can be performed with just one and other available UAVs are far
away from the tasks of the mission).

Finally, the MOGA-CSP algorithm is executed with this problem trying to
optimize all the six objective variables, and the results obtained can be seen in
Table 10. As can be seen, the average obtained here for all objective variables
are worst than the ones obtained in the previously proposed combination of
distance and makespan, as well as the rating value. This corroborates the
assumption of selecting this combination, which will be used in the fitness of
the MOGA-CSP in the next experiment when solving the different datasets.

Variable N. Sol. N. Gen. UAVs Fuel(L) F. Time(h) Dist.(NM) Cost Mak.(h) Rating
All 46 20 3.52 772.76 3.15 970.13 50.13 3.62 2.077

Table 10 Comparative assessment of optimization variables using all variables. The values
of the optimization variables presented here are the average of their values in all the solutions
obtained.

6.3 Evaluation of the algorithm results

Once the fitness function of the algorithm has been tuned up, and the bet-
ter optimization variables (distance and makespan) have been selected, the
MOGA-CSP algorithm is tested using them for each dataset described in Table
6. To evaluate the results obtained, the real POF of each dataset is computed
using MOBB algorithm. Then, it is compared with the solutions provided by
the new MOGA-CSP approach using the hypervolume metric. As was men-
tioned in section 2.3, when the hypervolume is 0, the obtained solutions are
optimal. On the other hand, as this value increases, the result obtained dis-
tances from the optimal result. Table 11 shows the results obtained from this
experiment. This table presents the hypervolumes obtained and the number
of generations needed to converge for each dataset.

Problem Hypervolume Generations

1 0 15
2 0 14
3 0 12
4a 0 39
4b 0 43
4c 0 56
4d 0.99 57
4e 0 62
5 0.01 122

Table 11 Hypervolume and number of generations needed for convergence of the MOGA-
CSP solver for the 9 MPP datasets provided.

Solving Complex Multi-UAV MPPs using MOGAs 25

As can be appreciated, the datasets with 1 GCS (from 1 to 3) converge
very fast, independently of the NFZs needed to avoid or the Multi-UAV tasks.
On the other hand, the datasets with 2 GCS (from 4 to 5) converge near
generation 50, being easier to converge the problems with more fixed times
tasks and harder for the problems with more unfixed tasks. The dataset 4d did
not get a hypervolume so good as the others datasets. Figure 7 represents the
Distance vs. Makespan POFs for the solutions obtained with both algorithms
(MOGA-CSP and MOBB) in this problem. There, it is appreciable that the
MOGA-CSP approach did not get to obtain the best solution optimizing the
distance (left of the POF), and this made the hypervolume (represented in
yellow) higher in this problem.

450 500 550

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Distance (NM)

M
ak

es
pa

n
(h

)

MOBB POF
MOGA-CSP POF
Hypervolume

Hypervolume for dataset 4d

Fig. 7 Hypervolume for the solutions obtained with MOGA-CSP optimizing the distance
and the makespan in dataset 4d.

Finally, the complex solution with 7 tasks, 5 UAVs and 3 GCSs, i.e. mission
5, got to converge at generation 122, and its hypervolume resulted quite good,
very close to the optimum POF.

In conclusion, the MOGA-CSP approach with the distance and the make-
span used as optimization variables approximates quite well the POF in most
cases. As the problem becomes more complex, specially in number of GCSs,
the algorithm needs more generations to converge.

7 Discussion

In this paper, the Multi-UAV Mission Planning Problem has been presented,
with a special consideration as a Multi-GCS problem. This problem involves

26 Cristian Ramirez-Atencia et al.

a complex characteristic management during the process of task assignment,
such as task dependencies, NFZ avoidance and time computations.

The problem has been modelled as a Temporal Constraint Satisfaction Pro-
blem, where six sets of variables have been considered for the CSP: the task
assignments, the orders, the GCS assignments, the path flight profiles, the re-
turn flight profiles and the sensors used. On the other hand, a wide range of
constraints have been presented, including GCS constraints, temporal cons-
traints, dependency constraints, autonomy constraints or distance constraints
among others.

Finally, a hybrid MOGA-CSP approach has been presented for solving the
MPP problem. This approach uses a fitness function divided in two phases.
Firstly, a penalty function uses the CSP to check if the solutions are valid.
Then a multi-objective function tries to approach the Pareto Optimal Fron-
tier of the problem minimizing the optimization variables (number of UAVs
employed, makespan of the mission, total fuel consumption, etc...). In addi-
tion, the crossover and mutation operators, and also the stopping criteria have
been specifically designed and implemented for this approach.

The experiments presented have been performed using varied datasets of
different complexity. First, a comparative assessment of the optimization vari-
ables has been performed in order to tune up the fitness function designed.
The results show that the best combination in order to obtain good results for
all the variables is optimizing the distance and the makespan.

Afterwards, the MOGA-CSP approach using the previous combination of
variables in the fitness function has been tested with all the datasets designed.
Analysing the experimental results, it can be seen that the MOGA-CSP al-
gorithm obtains good results for all the proposed datasets, converging to the
optimal POF in most of them. Nevertheless, as the problems become more
complex, the MOGA-CSP approach needs more generations to reach an op-
timal or near-optimal solution. In order to outperform these results, it can
be interesting to extend the new approach applying some constraints in the
operators of the GA in order to avoid some invalid solutions before the CSP
check.

In future works, the approach will be compared using other Multiobjective
Algorithms, such as SPEA2, in order to find the best performing combina-
tion for this approach. In order to find an optimum configuration, a Meta-
Evolutionary algorithm will be implemented and used to optimize the different
parameters of the approach. On the other hand, this problem will be extended
adding a decision making layer that will interact with a UAV Mission opera-
tor. This new feature will allow the operator to decide which variables must
be optimized and which of the obtained solutions are the most suitable.

Acknowledgements This work is supported by: Spanish Ministry of Science and Ed-
ucation and Competitivity and European Regional Development Fund (FEDER) under
project TIN2014-56494-C4-4-P, Comunidad Autónoma de Madrid under project CIBER-
DINE S2013/ICE-3095 and Savier Project (Airbus Defence & Space, FUAM-076915). The
authors would like to acknowledge the support obtained from Airbus Defence & Space, spe-

Solving Complex Multi-UAV MPPs using MOGAs 27

cially from Savier Open Innovation project members: José Insenser, César Castro, Gemma
Blasco and Inés Moreno.

References

1. Adolf, F., Andert, F.: Onboard mission management for a VTOL UAV using sequence
and supervisory control, chap. 19, pp. 301–316. InTech (2010)

2. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of the
ACM 26(11), 832–843 (1983)

3. Barták, R.: Constraint programming: In pursuit of the holy grail. In: Week of Doctoral
Students, pp. 555–564 (1999)

4. Bello-Orgaz, G., Camacho, D.: Evolutionary clustering algorithm for community detec-
tion using graph-based information. In: Evolutionary Computation (CEC), 2014 IEEE
Congress on, pp. 930–937. IEEE (2014)

5. Bello-Orgaz, G., Ramirez-Atencia, C., Fradera-Gil, J., Camacho, D.: Gampp: Genetic
algorithm for uav mission planning problems. In: Intelligent Distributed Computing IX,
pp. 167–176. Springer International Publishing (2015)

6. Bessière, C.: Constraint propagation. Handbook of constraint programming pp. 29–83
(2006)

7. Bessière, C., Meseguer, P., Freuder, E., Larrosa, J.: On forward checking for non-binary
constraint satisfaction. In: J. Jaffar (ed.) Principles and Practice of Constraint Pro-
gramming â€“ CPâ€™99, Lecture Notes in Computer Science, vol. 1713, pp. 88–102.
Springer Berlin Heidelberg (1999)

8. Bethke, B., Valenti, M., How, J.P.: UAV Task Assignment. IEEE Robotics and Au-
tomation Magazine 15(1), 39–44 (2008)

9. Bin, X., Min, W., Yanming, L., Yu, F.: Improved genetic algorithm research for route
optimization of logistic distribution. In: Proceedings of the 2010 International Con-
ference on Computational and Information Sciences, ICCIS ’10, pp. 1087–1090. IEEE
Computer Society, Washington, DC, USA (2010)

10. Camacho, D., Fernandez, F., Rodelgo, M.A.: Roboskeleton: An architecture for coordi-
nating robot soccer agents. Eng. Appl. of AI 19(2), 179–188 (2006)

11. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: NSGA-II. Evolutionary Computation 6(2), 182–197 (2002)

12. Diaz, D., Cesta, A., Oddi, A., Rasconi, R., R-Moreno, M.D.: Efficient Energy Man-
agement for Autonomous Control in Rover Missions. IEEE Computational Intelligence
Magazine 8(4), 12–24 (2013). Special Issue on Computational Intelligence for Space
Systems and Operations

13. Doherty, P., Kvarnström, J., Heintz, F.: A temporal logic-based planning and execution
monitoring framework for Unmanned Aircraft Systems. Autonomous Agents and Multi-
Agent Systems 19(3), 332–377 (2009)

14. Fabiani, P., Fuertes, V., Piquereau, A., Mampey, R., Teichteil-Konigsbuch, F.: Au-
tonomous flight and navigation of VTOL UAVs: from autonomy demonstrations to
out-of-sight flights. Aerospace Science and Technology 11(2-3), 183 – 193 (2007)

15. Fonseca, C., Fleming, P.: Multiobjective optimization and multiple constraint handling
with evolutionary algorithms. A unified formulation. Systems, Man and Cybernetics,
IEEE Transactions on 28(1), 26–37 (1998)

16. Geng, L., Zhang, Y., Wang, J., Fuh, J., Teo, S.: Cooperative task planning for multiple
autonomous uavs with graph representation and genetic algorithm. In: Control and
Automation (ICCA), 10th IEEE International Conference on, pp. 394–399 (2013)

17. Gonzalez-Pardo, A., Camacho, D.: A new CSP graph-based representation for ant colony
optimization. In: IEEE Conference on Evolutionary Computation (CEC 2013), vol. 1,
pp. 689–696 (2013)

18. Gonzalez-Pardo, A., Palero, F., Camacho, D.: An empirical study on Collective Intel-
ligence algorithms for Video Games problem-solving. Computing and Informatics 34,
233–253 (2014)

19. Hao, X., Liu, J.: A multiagent evolutionary algorithm with direct and indirect combined
representation for constraint satisfaction problems. Soft Computing pp. 1–13 (2015)

28 Cristian Ramirez-Atencia et al.

20. Holland, J.H.: Adaptation in Natural and Artificial Systems. MIT Press, Cambridge,
MA, USA (1992)

21. Kendoul, F.: Survey of advances in guidance, navigation, and control of unmanned
rotorcraft systems. J. Field Robot. 29(2), 315–378 (2012)

22. Kuter, U., Sirin, E., Parsia, B., Nau, D., Hendlerb, J.: Information gathering during
planning for web service composition. Web Semantics: Science, Services and Agents
on the World Wide Web 3(2-3), 183 – 205 (2005). Selcted Papers from the Interna-
tional Semantic Web Conference, 2004 ISWC, 2004 3rd. International Semantic Web
Conference, 2004

23. Kvarnström, J., Doherty, P.: Automated planning for collaborative UAV systems. In:
Control Automation Robotics & Vision, pp. 1078–1085 (2010)

24. Lee, Y.i., Kim, Y.G.: Comparison of fuzzy implication operators by means of fuzzy
relational products used for intelligent local path-planning of auvs. Soft Computing
13(6), 535–549 (2008)

25. Menendez, H.D., Barrero, D.F., Camacho, D.: A co-evolutionary multi-objective ap-
proach for a k-adaptive graph-based clustering algorithm. In: Evolutionary Computa-
tion (CEC), 2014 IEEE Congress on, pp. 2724–2731. IEEE (2014)

26. Merino, L., Caballero, F., Mart́ınez-de Dios, J.R., Ferruz, J., Ollero, A.: A cooperative
perception system for multiple uavs: Application to automatic detection of forest fires.
Journal of Field Robotics 23(3-4), 165–184 (2006)

27. Mouhoub, M.: Solving temporal constraints in real time and in a dynamic environment.
Tech. Rep. WS-02-17, AAAI (2002)

28. Mouhoub, M.: Reasoning with numeric and symbolic time information. Artif. Intell.
Rev. 21(1), 25–56 (2004)

29. Nash, A., Daniel, K., Koenig, S., Felner, A.: Thetaˆ*: Any-angle path planning on grids.
In: Proceedings of the National Conference on Artificial Intelligence. Menlo Park, CA;
Cambridge, MA; London; AAAI Press; MIT Press; 1999 (2007)

30. Pereira, E., Bencatel, R., Correia, J., Félix, L., Gonçalves, G., Morgado, J., Sousa,
J.: Unmanned air vehicles for coastal and environmental research. Journal of Coastal
Research pp. 1557–1561 (2009)

31. Ramirez-Atencia, C., Bello-Orgaz, G., R-Moreno, M.D., Camacho, D.: A Hybrid
MOGA-CSP for Multi-UAV Mission Planning. In: Proceedings of the Companion Pub-
lication of the 2015 on Genetic and Evolutionary Computation Conference, pp. 1205–
1208. ACM (2015)

32. Ramirez-Atencia, C., Bello-Orgaz, G., R-Moreno, M.D., Camacho, D.: Performance
Evaluation of Multi-UAV Cooperative Mission Planning Models. In: Computational
Collective Intelligence, pp. 203–212. Springer International Publishing (2015)

33. Rasmussen, S., Shima, T.: Branch and bound tree search for assigning cooperating uavs
to multiple tasks. In: American Control Conference, pp. 6–14 (2006)

34. Rodŕıguez-Fernández, V., Menéndez, H.D., Camacho, D.: Automatic profile generation
for uav operators using a simulation-based training environment. Progress in Artificial
Intelligence 5, 37–46 (2015)

35. Rodriguez-Fernandez, V., Ramirez-Atencia, C., Camacho, D.: A multi-uav mission plan-
ning videogame-based framework for player analysis. In: Evolutionary Computation
(CEC), 2015 IEEE Congress on, pp. 1490–1497. IEEE (2015)

36. Rollon, E., Larrosa, J.: Bucket Elimination for Multiobjective optimization problems.
Journal of Heuristics 12(4-5), 307–328 (2006)

37. Rollon, E., Larrosa, J.: Multi-objective Russian doll search. In: Proceedings Of The Na-
tional Conference On Artificial Intelligence, pp. 249–254. Menlo Park, CA; Cambridge,
MA; London; AAAI Press; MIT Press; 1999 (2007)

38. Savuran, H., Karakaya, M.: Efficient route planning for an unmanned air vehicle de-
ployed on a moving carrier. Soft Computing pp. 1–16 (2015)

39. Schwalb, E., Vila, L.: Temporal constraints: A survey. Constraints 3(2-3), 129–149
(1998)

40. Soliday, S.W., et al.: A genetic algorithm model for mission planning and dynamic
resource allocation of airborne sensors. In: Proceedings, 1999 IRIS National Symposium
on Sensor and Data Fusion. Citeseer (1999)

Solving Complex Multi-UAV MPPs using MOGAs 29

41. Tang, L., Zhu, C., Zhang, W., Liu, Z.: Robust mission planning based on nested genetic
algorithm. In: Advanced Computational Intelligence (IWACI), 2011 Fourth Interna-
tional Workshop on, pp. 45–49 (2011). DOI 10.1109/IWACI.2011.6159972

42. Vachtsevanos, G., Tang, L., Drozeski, G., Gutierrez, L.: From mission planning to flight
control of unmanned aerial vehicles: Strategies and implementation tools. Annual Re-
views in Control 29(1), 101 – 115 (2005)

43. Van Veldhuizen, D., Lamont, G.B., et al.: On measuring multiobjective evolutionary
algorithm performance. In: Evolutionary Computation, 2000. Proceedings of the 2000
Congress on, vol. 1, pp. 204–211. IEEE (2000)

44. Wagner, T., Trautmann, H., Mart́ı, L.: A taxonomy of online stopping criteria for multi-
objective evolutionary algorithms. In: Evolutionary Multi-Criterion Optimization, pp.
16–30. Springer (2011)

45. Wu, J., Zhou, G.: High-resolution planimetric mapping from uav video for quick-
response to natural disaster. In: Geoscience and Remote Sensing Symposium, 2006.
IGARSS 2006. IEEE International Conference on, pp. 3333–3336. IEEE (2006)

46. Zhou, A., Qu, B.Y., Li, H., Zhao, S.Z., Suganthan, P.N., Zhang, Q.: Multiobjective
evolutionary algorithms: A survey of the state of the art. Swarm and Evolutionary
Computation 1(1), 32–49 (2011)

47. Zitzler, E., Brockhoff, D., Thiele, L.: The hypervolume indicator revisited: On the design
of pareto-compliant indicators via weighted integration. In: Evolutionary multi-criterion
optimization, pp. 862–876. Springer (2007)

48. Zitzler, E., Laumanns, M., Bleuler, S.: A tutorial on evolutionary multiobjective opti-
mization. In: Metaheuristics for multiobjective optimisation, pp. 3–37. Springer (2004)

49. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolution-
ary algorithm. In: Evolutionary Methods for Design, Optimisation, and Control, pp.
95–100 (2002)

	Introduction
	Related Work
	Description of the Multi-UAV Mission Planning Problem
	Modelling the MPP as a CSP
	MOGA-CSP Algorithm for Multi-UAV Mission Planning Problems
	Experiments
	Discussion

