
Noname manuscript No.
(will be inserted by the editor)

Feature Selection for High Dimensional Classification
using A Competitive Swarm Optimizer

Shenkai Gu · Ran Cheng · Yaochu Jin

Received: date / Accepted: date

Abstract When solving many machine learning problems such as classifica-
tion, there exists a large number of input features. However, not all features are
relevant for solving the problem, and sometimes, including irrelevant features
may deteriorate the learning performance. Therefore, it is essential to select
the most relevant features, which is known as feature selection. Many feature
selection algorithms have been developed, including evolutionary algorithms
or particle swarm optimization (PSO) algorithms, to find a subset of the most
important features for accomplishing a particular machine learning task. How-
ever, the traditional PSO does not perform well for large scale optimization
problems, which degrades the effectiveness of PSO for feature selection when
the number of features dramatically increases. In this paper, we propose to use
a very recent PSO variant, known as competitive swarm optimizer (CSO) that
was dedicated to large-scale optimization, for solving high-dimensional feature
selection problems. In addition, the CSO, which was originally developed for
continuous optimization, is adapted to performing feature selection that can
be considered as a combinatorial optimization problem. An archive technique
is also introduced to reduce computational cost. Experiments on six bench-
mark datasets demonstrate that compared to the canonical PSO based and
a state-of-the-art PSO variant for feature selection, the proposed CSO-based

Shenkai Gu
Department of Computer Science, University of Surrey, Guildford, Surrey, GU2 7XH, United
Kingdom

Ran Cheng
Department of Computer Science, University of Surrey, Guildford, Surrey, GU2 7XH, United
Kingdom

Yaochu Jin
1 Department of Computer Science, University of Surrey, Guildford, Surrey, GU2 7XH,
United Kingdom
2 School of Management Science and Engineering, Dalian University of Technology, Dalian,
China; 116023
E-mail: yaochu.jin@surrey.ac.uk



2 Shenkai Gu et al.

feature selection algorithm not only selects a much smaller number of features,
but result in better classification performance as well.

Keywords Feature selection · High dimensionality · Large-scale optimiza-
tion · Classification · Competitive swarm optimization

1 Introduction

In machine learning and data mining, the target concepts of a dataset is usually
described by a group of features. To build reliable models for solving problems
such as classification, it is expected that the features contain as much useful
information as possible, and the number of features can be as small as possible.
However, since there is often little priori knowledge on the dataset, it is difficult
to distinguish which features are relevant and which are not. As a consequence,
there are usually a large number of features to be taken into consideration,
including many irrelevant and redundant features. Unfortunately, irrelevant
and redundant features will not only reduce the training efficiency, but also
negatively influence the performance of machine learning thus trained with
them, which is mainly caused by the curse of dimensionality [16].

To eliminate the negative impact of the irrelevant and redundant features,
various feature selection methods have been proposed [6]. The main target of
feature selection is to choose relevant features from a large feature set [24,17].
From the optimization point of view, feature selection is a difficult combina-
torial optimization problem [16]. Firstly, since the size of the feature subset is
not known a priori, the dimensionality of the decision space is non-reducible.
Secondly, since the features may have complementary or contradictory inter-
actions with each other, the decision space is non-separable. Thus, given an
m-dimensional feature set, the number of all possible feature subsets is as
large as 2m, which makes it very unlikely (if not impossible) to solve it with
traditional exhaustive search approaches.

Due to the inefficiency of traditional search approaches in solving complex
combinatorial optimization problems, various metaheuristics have been pro-
posed, such as genetic algorithms (GAs) [19], differential evolution (DE) [31],
and particle swarm optimization (PSO) [4], among many others [5]. Among
various metaheuristics, PSO is well known for its algorithmic simplicity and
computational efficiency. Recently, some researchers have proposed to apply
PSO to feature selection [36,13]. However, canonical PSO has many limi-
tations for feature selection [41,42]. Firstly, PSO was originally proposed for
continuous optimization problems, while feature selection is a combinatorial
optimization problem. Secondly, although PSO shows promising performance
on low-dimensional problems, it suffers from the curse of big dimensional-
ity [43]. Very recently, Cheng and Jin have proposed a PSO variant, known as
competitive swarm optimizer (CSO), for large-scale optimization [10]. In CSO,
both the global best position and the personal best position are removed. In-
stead of learning from the global and personal best positions, the particles in



Feature Selection for High Dimensional Classification using A CSO 3

CSO learn from randomly selected competitors. CSO shows promising perfor-
mance on a variety of continuous test problems of a dimension up to 5000, in
comparison with some state-of-the-art algorithms for large-scale optimization.

In this work, we propose to adopt CSO for high-dimensional feature selec-
tion. To this end, CSO is modified to be suited for combinatorial optimization.
The modified CSO variant is then embedded in a wrapper feature selection
approach. The remainder of this paper is organized as follows. Section 2 briefly
describes related work, including the canonical PSO algorithm and its relevant
variants. Section 3 details the proposed method. We present the experimental
results and discussions in Section 4. Finally, Section 5 concludes this paper.

2 Background

2.1 The Canonical PSO Algorithm

The canonical PSO algorithm was developed by Kennedy and Eberhart in
1995 to solve optimization problems by emulating social swarm behaviors of
animals like bird flocking [21].

In PSO, each particle maintains a position and a velocity in an n-dimensional
search space, representing a candidate solution and direction to a potentially
better solution. To search for the position of the global optimum, each particle
is iteratively updated as follows:

vt+1
i = ωvti + φ1R

t
1(ĝt − xti) + φ2R

t
2(x̂ti − xti) (1)

xt+1
i = xti + vt+1

i (2)

where t denotes the generation number, xti and vti denote the position and
velocity of the i-th particle in the t-th generation, respectively, ω is termed
inertia weight [33], φ1 and φ2 are acceleration coefficients, Rt

1 and Rt
2 are two

randomly generated vectors within the range [0, 1]n, ĝt is the best solution
found by all particles so far, also known as the global best position, and x̂ti is
the best solution found by i-th particle so far, also known as the personal best
position.

Although PSO has witnessed a great success over the past two decades,
its performance is still limited when the optimization problem has a high-
dimensional and complex search space [25,11]. In order to enhance the per-
formance of PSO, a number of PSO variants have been proposed, including
the parameter adaptation based variants [44,20], the new topological structure
based variants [26,9], and the hybridization based variants [7,37], to name a
few.

2.2 The CSO Algorithm

Despite many PSO variants have been proposed, not much work has been done
on developing PSO for large-scale optimization. The performance improvement



4 Shenkai Gu et al.

of most existing PSO variants is at the cost of higher computational complex-
ity and more complex algorithmic implementation. In addition, existing PSO
variants attempt to modify the global or personal best positions, resulting in
only limited performance improvement for large-scale optimization.

The recently proposed CSO [10] has shown to be efficient for large-scale
optimization. In CSO, the particles learn from randomly selected competitors,
instead of from the global or the personal best position. In each iteration,
the swarm is randomly divided into two groups and pairwise competitions are
carried out between the particles from each group. After each competition, the
winner particle is directly passed to the next iteration, while the loser particle
will update its position and velocity by learning from the winner particle:

vt+1
l = Rt

1v
t
l +Rt

2(xtw − xtl) + φRt
3(x̄t − xtl) (3)

xt+1
l = xtl + vt+1

l (4)

where t is the iteration counter, Rt
1, Rt

2, Rt
3 are three randomly generated vec-

tors within [0, 1]n, xtw and xtl denote the winner particle and the loser particle,
respectively, x̄t denotes the mean position of current swarm in iteration t, and
φ controls the influence of x̄t. The detailed procedure of CSO is summarized
in Algorithm 1.

Algorithm 1 The CSO algorithm

1: t← 0
2: for all particle pti =

〈
xti, v

t
i

〉
in swarm P t do

3: initialize position xti and velocity vti
4: end for
5: while termination criteria is not met do
6: for all particle pti do
7: calculate fitness f(xti)
8: end for
9: P t+1 ← ∅

10: while P t 6= ∅ do
11: randomly chose two different particles ptr1 and ptr2 from P t

12: if f(xtr1) is better than f(xtr2) then
13: ptw ← ptr1, ptl ← ptr2
14: else
15: ptw ← ptr2, ptl ← ptr1
16: end if
17: vt+1

l = Rt
1v

t
l +Rt

2(xtw − xtl) + φRt
3(x̄t − xtl)

18: xt+1
l = xtl + vt+1

l

19: P t+1 ← P t+1 ∪ {ptw, p
t+1
l }

20: P t ← P t \ {ptr1, ptr2}
21: end while
22: t← t+ 1
23: end while



Feature Selection for High Dimensional Classification using A CSO 5

2.3 Metaheuristics for Feature Selection

Traditional feature selection approaches can be roughly categorized into two
classes, filter approaches and wrapper approaches. Filter approaches are inde-
pendent of any specific learning algorithms [22,2], while wrapper approaches
involve learning algorithms as part of the evaluation procedure [39,23]. Some
representative wrapping methods include Sequential Floating Selection (SFS) [39],
Sequential Forward Floating Selection (SFFS) [32] and sparse logistic regres-
sion based methods [27,29,14,34].

Using metaheuristics for feature selection has been popular recently. For
example, Zhu et al. have proposed to use a GA combined with local search
in a hybrid wrapper and filter feature selection algorithm [45]. Neshatian and
Zhang designed a genetic programming (GP) based multi-objective algorithm
for filter feature selection in [30]. Chen et al. have applied ant colony opti-
mization (ACO) together with rough set theory for feature selection [8]. In
particular, PSO, as a popular metaheuristics, has also been widely adopted
for feature selection [40]. Chuang et al. have developed an improved binary
PSO algorithm for feature selection using gene expression data [12]. Wang et
al. have suggested a filter feature selection approach based on rough set and
PSO [38]. Li and Chen have reported a wrapper feature selection algorithm
based on PSO and a linear discrimination analysis (LDA) algorithm, known as
the PSOLDA [28]. Xue et al. have presented a multi-objective PSO algorithm
for feature selection in [41]. In spite of the various metaheuristics applied to
feature selection, however, little study has been dedicated to selecting a subset
from a large-scale feature except some recent works [15,35].

3 Proposed Method

In our proposed method, feature selection can be formulated as the following
minimization problem:

min
x

f(x)

s.t. x ∈ X
(5)

where X ∈ RN denotes the feasible solution set. To represent the selected
feature sets, x is encoded by a number of N binary bits, where N is the
total number of features in the original feature set. For each bit in x, ‘1’ and
‘0’ denotes that the corresponding feature is or is not selected, respectively.
In this way, feature selection becomes a combinatorial optimization problem
where the objective is to find the best feature subset x∗ to minimize the error
rate of the classification models thus trained with the selected features, which
is represented by the fitness function f(x).

To solve high-dimensional feature selection problem presented in (5), CSO
algorithm is employed in this work. However, in feature selection, the search
landscape is discrete, while the original CSO algorithm has been proposed for
continuous optimization. In order to address this issue, we use a threshold



6 Shenkai Gu et al.

parameter λ to determine whether a feature is selected or not, as shown in
Algorithm 2.

Algorithm 2 Converting continuous values to discrete (binary) values for
feature selection
1: S ← ∅, S is the selected feature subset;
2: for all di ∈ x, i = 1, . . . , N do, x is the particle, di is the i-th dimension of x;
3: if di > λ then
4: S ← S ∪ {i};
5: end if
6: end for

It is worth noting that since training a classifier model with large amount of
data is usually highly time-consuming, fitness evaluations in a high-dimensional
feature selection is computationally very expensive. As we found empirically
that many particles may have the similar positions, it is possible to avoid some
computationally expensive fitness evaluations that will result in the same se-
lected feature subset. For this purpose, an archive is designed to record the
historical fitness values of all previous selected feature subset such that we can
check if a certain feature selection result has already been evaluated before
performing real fitness evaluation for it.

1. Lookup the archive H if the current selected feature has been evaluated;
2. If it has been evaluated, extract the fitness value and assign it to the

particle;
3. If it has not been evaluated, build the classifier model with selected fea-

tures, and test its error rate. Assign the fitness, i.e., the average error rate,
to the particle and add the selection and fitness into H.

Our empirical tests show that this simple strategy has significantly reduced
the time consumption in the search, especially when the swarm is converging
and many particles have a similar position.

The proposed CSO based feature selection method together with the above
two strategies is summarized in Algorithm 3, where H denotes the archive that
records the fitness values of all the particles in history.

4 Experimental Studies

4.1 Experimental Settings

To assess the performance of proposed algorithm, we conducted a set of ex-
periments on several datasets from UCI Machine Learning Repository [3]. The
properties of datasets are listed in Table 1.

For each dataset, we use 70% samples in the dataset as training data, and
the rest for testing. The selection of training and test sets is randomized, while
the original ratio of class distribution is preserved in both sets.



Feature Selection for High Dimensional Classification using A CSO 7

Algorithm 3 The proposed algorithm

1: t← 0,H ← ∅
2: for all particle pti =

〈
xti, v

t
i

〉
in swarm P t do

3: initialize position xti and velocity vti
4: end for
5: while termination criteria not met do
6: for all particle pti do
7: Sti ← ∅
8: for all di,ta ∈ xti, a = 1 . . . N do

9: if di,ta > λ then
10: Sti ← Sti ∪ a
11: end if
12: end for
13: if

〈
Sti , ∗

〉
∈ H then

14: extract f(Sti ) from H
15: else
16: calculate fitness f(Sti ) by n-fold cross validation
17: H ← H∪ {

〈
Sti , f(Sti )

〉
}

18: end if
19: end for
20: P t+1 ← ∅
21: while P t 6= ∅ do
22: randomly chose two different particles ptr1 and ptr2 from P t

23: if f(xtr1) is better than f(xtr2) then
24: ptw ← ptr1, ptl ← ptr2
25: else
26: ptw ← ptr2, ptl ← ptr1
27: end if
28: vt+1

l = Rt
1v

t
l +Rt

2(xtw − xtl) + φRt
3(x̄t − xtl)

29: xt+1
l = xtl + vt+1

l

30: P t+1 ← P t+1 ∪ {ptw, p
t+1
l }

31: P t ← P t \ {ptr1, ptr2}
32: end while
33: t← t+ 1
34: end while

Table 1: Dataset characteristics

Dataset Features Size Class

movement 90 360 15
musk 167 6598 2
arrhythmia 279 452 16
madelon 500 2600 2
isolet5 617 1559 26
InterAd 1588 3279 2

The algorithms are implemented on Java SE 8 (revision 1.8.0 45), using
Weka [18] data mining library version 3.7.12 for the base classification algo-
rithm.

In order to test the effectiveness of the feature selection, we chose to use
only simple classification models, i.e., the k-nearest-neighbour (kNN) classi-
fier [1] with k = 5. In order to reduce the risk of overfitting, we use the average



8 Shenkai Gu et al.

error rates of n-fold cross-validation (with n = 10) on training data as the fit-
ness function. PSO, four variants of PSO proposed in Xue’s paper for feature
selection [41] and the principal component analysis (PCA) are compared with
the proposed algorithm, along with classification with all features.

To make comparisons between CSO and PSO-based feature selection, we
accordingly modify the PSO algorithm to be suited for feature selection. The
modification consists of the conversion from continuous values into discrete
values for feature selection and the archive strategy. The swarm size is set to
100 for both algorithms, and the maximal number of generations is set as 200.
Note that, as CSO only updates half of the population in each iteration, it only
generates a half of new solutions that the PSO-based algorithms generate.

The PSO variants in Xue’s paper are denoted as Xue1-kNN, Xue2-kNN,
Xue3-kNN and Xue4-kNN, respectively. The major difference between Xue’s
algorithms is the number of features selected in the initial population, while
Xue1-kNN uses the traditional initialization strategy in which about half of
the features are selected in each individuals, Xue2-kNN uses small initializa-
tion strategy where only about 10% features are selected in each individuals,
Xue3-kNN uses large initialization strategy where more than half (we used
about 2/3 in the experiment) of the features are selected in each individuals,
and Xue4-kNN uses a combined initialization where a major (we used 2/3 in
the experiment) of the individuals are initialized with the mall initialization
strategy (about 10% features in the experiment), while the rest are initialized
with the large initialization strategy (about 2/3 features in the experiment).
Another main difference between Xue’s algorithms and traditional PSO-based
algorithms is that in Xue’s algorithm, the threshold parameter λ is set to 0.6
while the traditional algorithm uses 0.5 as the threshold parameter.

Other parameters of the training algorithms are: w in the PSO-kNN is
set to 0.7298, and both c1 and c2 are 1.49618; φ in the CSO-kNN is set
to 0.1. The particles in all algorithms are randomly initialized between [0, 1]
and the threshold parameter λ = 0.5 is applied on CSO-kNN and PSO-kNN
while λ = 0.6 is applied on Xue’s algorithms. The variance covered in PCA-
based feature selection (PCA-kNN) is 0.95. To obtain statistical results, each
algorithm is run for 30 times independently.

4.2 Results

4.2.1 Error rate

The ultimate target of classification is to improve generalization ability, which
means a lower error rate on unseen data. Therefore we firstly examine the
average error rate of all compared algorithms. The results are summarized in
Table 2. We also adopted the Wilcoxon rank sum test to compare the results
obtained by the CSO-kNN algorithm and other compared algorithms at a
significance level of 0.05. The result is also listed in Table 2, where symbol ‘+’
denotes the particular algorithm is significantly outperformed by the CSO-



Feature Selection for High Dimensional Classification using A CSO 9

kNN algorithm according to the Wilcoxon rank sum test, while ‘-’ denotes
the particular algorithm is significantly better than the CSO-kNN algorithm,
and ‘=’ denotes that there is no statistically significant difference between the
results obtained by the CSO-kNN algorithm and the particular algorithm.

Table 2: Average error rate

Dataset CSO-kNN PSO-kNN Xue1-kNN Xue2-kNN Xue3-kNN Xue4-kNN PCA-kNN SC-kNN

movement 0.2394 0.2850+ 0.2850+ 0.2896+ 0.2832+ 0.2869+ 0.2630+ 0.2801

(± 0.0326) (± 0.0392) (± 0.0399) (± 0.0415) (± 0.0409) (± 0.0327) (± 0.0369) (± 0.0351)

musk 0.0011 0.0034+ 0.0033+ 0.0015= 0.0039+ 0.0016+ 0.0033+ 0.0134

(± 0.0009) (± 0.0016) (± 0.0017) (± 0.0009) (± 0.0019) (± 0.0009) (± 0.0020) (± 0.0028)

arrhythmia 0.3240 0.4059+ 0.4076+ 0.3593+ 0.4098+ 0.3564+ 0.4588+ 0.4270

(± 0.0225) (± 0.0221) (± 0.0203) (± 0.0335) (± 0.0243) (± 0.0294) (± 0.0079) (± 0.0173)

madelon 0.1572 0.4111+ 0.4066+ 0.2704+ 0.4168+ 0.3736+ 0.4829+ 0.4371

(± 0.0374) (± 0.0189) (± 0.0210) (± 0.1006) (± 0.0230) (± 0.1027) (± 0.0161) (± 0.0124)

isolet5 0.1491 0.1875+ 0.1855+ 0.1917+ 0.1922+ 0.1954+ 0.4385+ 0.2140

(± 0.0124) (± 0.0118) (± 0.0141) (± 0.0157) (± 0.0172) (± 0.0149) (± 0.0184) (± 0.0134)

InterAd 0.0289 0.0404+ 0.0406+ 0.0403+ 0.0411+ 0.0401+ 0.0721+ 0.0452

(± 0.0044) (± 0.0071) (± 0.0058) (± 0.0055) (± 0.0056) (± 0.0050) (± 0.0054) (± 0.0057)

win/lose/tie - 6/0/0 6/0/0 5/0/1 6/0/0 6/0/0 6/0/0 -

The experimental results show that the CSO-kNN has achieved a statisti-
cally lower error rate than all other compared algorithms on all the six datasets.
On some datasets, e.g., the musk dataset and the madelon dataset, the error
rate achieved by the CSO-kNN is even smaller than half of that achieved by
most other algorithms. Compared with the kNN, the CSO-kNN is always bet-
ter while all other algorithms have instances on which they performed worse
than kNN. From these results, we can also see that PCA-kNN is the least ef-
fective algorithm as most results it has obtained are worse than those of kNN.
This can be attributed to the fact that PCA is sensitive to noises and outliers,
in other words, PCA is less efficient in reducing the accuracy degradation of
class-irrelevant attributes.

4.2.2 Performance

In the proposed algorithm, the fitness function is to minimize the average error
rate on the training data. The fitness convergence profiles of the algorithms
are plotted in Fig. 1. In the figure, X-axes and Y-axes are the generations and
the fitness values, respectively.

From Fig. 1, it can be seen that the CSO-kNN is able to always find better
solutions, although it may be a bit slower at the early search stage. The PSO-
kNN and Xue’s algorithms tend to be trapped in a premature convergence
around generation 20. The only exception is found on the first dataset, where
the difference between the CSO-kNN and compared algorithms is negligible,
which might be due to the fact that the dimension of this dataset is relatively
low (only 90), on which the difference in search performance between PSO and
CSO is minor.

As fitness selection is a combinatorial optimization problem, small changes
in the particle positions may not result in a change in the selected features.



10 Shenkai Gu et al.

generation
50 100 150 200

fit
ne

ss

0

0.05

0.1

0.15

0.2

0.25

0.3

CSO
PSO
Xue1
Xue2
Xue3
Xue4

(a) movement

generation
50 100 150 200

fit
ne

ss

#10 -3

0

1

2

3

4

5

6

7

CSO
PSO
Xue1
Xue2
Xue3
Xue4

(b) musk

generation
50 100 150 200

fit
ne

ss

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

CSO
PSO
Xue1
Xue2
Xue3
Xue4

(c) arrhythmia

generation
50 100 150 200

fit
ne

ss

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

CSO
PSO
Xue1
Xue2
Xue3
Xue4

(d) madelon

generation
50 100 150 200

fit
ne

ss

0

0.05

0.1

0.15

0.2

CSO
PSO
Xue1
Xue2
Xue3
Xue4

(e) isolet5

generation
50 100 150 200

fit
ne

ss

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

CSO
PSO
Xue1
Xue2
Xue3
Xue4

(f) InterAd

Fig. 1: Average fitness of the best particle respect to each generation.

Thus, it is easy to understand that many new solutions are found at the begin-
ning of the evolutionary optimization. As the evolution proceeds, the number
of new solutions that can be found may dramatically reduce. Thus, the num-
ber of new solutions found can be used as another indicator for convergence,
which are presented in Fig. 2.

The plots in Fig. 2 visually show that the PSO-based algorithms seem
to converge faster than the CSO-kNN, since the PSO-based algorithms have
found only few solutions at the later stage of evolution. However, a slower con-
vergence rate of CSO-kNN than the PSO variants is expected, which indicates
that CSO-kNN has better exploration ability that helps maintain a better
swarm diversity, which has also been confirmed by the empirical analyses pre-
sented in [10]. Comparing these plots with those in Fig. 1, we can see that
the fitness of the PSO-based algorithms improves much more slowly than that
of the CSO-kNN. The best fitnesses achieved by the PSO-based algorithms
were always worse than those by the CSO-kNN, which strongly indicates that
the PSO-based algorithms have got trapped in a local optimum. By contrast,
the CSO-kNN can always find better solutions in term of the fitness value.
The only exception was on the first dataset, i.e., the dataset movement. Both
PSO-based algorithms and CSO-kNN have found a small number of new solu-
tions probably because of the low dimensionality of this dataset. The fact that
CSO-kNN continues to find new better feature subsets implies that feature
selection is naturally a multi-modal optimization problem, i.e., many different
combinations of feature subsets may have similar or the same generalization
performance.



Feature Selection for High Dimensional Classification using A CSO 11

generation
50 100 150 200

nu
m

be
r 

of
 n

ew
 s

ol
ut

io
ns

0

10

20

30

40

50

60

70

80

90

100

CSO
PSO
Xue1
Xue2
Xue3
Xue4

(a) movement

generation
50 100 150 200

nu
m

be
r 

of
 n

ew
 s

ol
ut

io
ns

0

10

20

30

40

50

60

70

80

90

100

CSO
PSO
Xue1
Xue2
Xue3
Xue4

(b) musk

generation
50 100 150 200

nu
m

be
r 

of
 n

ew
 s

ol
ut

io
ns

0

10

20

30

40

50

60

70

80

90

100

CSO
PSO
Xue1
Xue2
Xue3
Xue4

(c) arrhythmia

generation
50 100 150 200

nu
m

be
r 

of
 n

ew
 s

ol
ut

io
ns

0

10

20

30

40

50

60

70

80

90

100

CSO
PSO
Xue1
Xue2
Xue3
Xue4

(d) madelon

generation
50 100 150 200

nu
m

be
r 

of
 n

ew
 s

ol
ut

io
ns

0

10

20

30

40

50

60

70

80

90

100

CSO
PSO
Xue1
Xue2
Xue3
Xue4

(e) isolet5

generation
50 100 150 200

nu
m

be
r 

of
 n

ew
 s

ol
ut

io
ns

0

10

20

30

40

50

60

70

80

90

100

CSO
PSO
Xue1
Xue2
Xue3
Xue4

(f) InterAd

Fig. 2: Number of new solutions found in each generation.

It also worth mentioning that, apart from the CSO-kNN on the last two
datasets, most other experiments have many identical solutions produced dur-
ing search, meaning that many fitness evaluations may be redundant. As fitness
evaluations are very time-consuming for high-dimensional feature selection, it
would have taken significantly more time if we do not use the archive mecha-
nism proposed in the proposed algorithm.

4.2.3 Selected features

The second target of feature selection is to remove irrelevant features to en-
hance classification performance. Therefore, we have also taken a look at the
average number of selected features obtained the PSO-based algorithms and
the CSO-kNN. The results are presented in Table 3.

In this comparison, we can see that CSO-kNN selects statistically fewer
features than most compared algorithms, except for Xue2-kNN, which initial-
izes its population with only 10% of the total features. We found that the
number of features selected by the PSO-based algorithms are proportional to
the number of features initialized at the first generation. In other words, if
particles are initialized with a large number of features, the number of fea-
tures selected in the final population will be larger, and vice versa. Therefore,
Xue2-kNN is more likely to outperform CSO-kNN in terms of the number of
selected features. Furthermore, as Xue4-kNN has a mixed initialization, de-
pending on the characteristics of the dataset, the best particle may be evolved
from those particles initialized with a small or large number of features. As
a result, the best solution in the final population selects either much more or



12 Shenkai Gu et al.

Table 3: Average number of selected features

Dataset CSO-kNN PSO-kNN Xue1-kNN Xue2-kNN Xue3-kNN Xue4-kNN PCA-kNN #Features

movement 49.40 41.70− 44.10− 24.27− 54.93+ 42.20= 9− 90

(± 6.56) (± 5.15) (± 5.77) (± 8.01) (± 9.01) (± 18.52)

musk 12.57 70.33+ 71.13+ 16.63= 75.93+ 16.43+ 122+ 167

(± 4.83) (± 6.00) (± 6.65) (± 7.79) (± 11.14) (± 6.44)

arrhythmia 16.23 132.97+ 133.00+ 21.40= 157.73+ 27.97+ 103+ 279

(± 6.67) (± 8.84) (± 11.21) (± 12.40) (± 15.68) (± 31.24)

madelon 6.90 249.07+ 256.10+ 33.17= 324.17+ 261.03+ 426+ 500

(± 1.81) (± 12.58) (± 15.34) (± 50.73) (± 30.97) (± 147.09)

isolet5 137.40 304.73+ 311.87+ 195.47+ 372.37+ 371.10+ 182+ 617

(± 30.20) (± 11.25) (± 16.85) (± 46.21) (± 31.06) (± 62.56)

InterAd 269.97 761.40+ 766.27+ 391.30+ 904.97+ 930.40+ 300= 1558

(± 94.97) (± 21.72) (± 37.90) (± 127.37) (± 88.46) (± 170.62)

win/lose/tie - 5/1/0 5/1/0 2/1/3 6/0/0 5/0/1 4/1/1 -

less features than CSO-kNN does. By contrast, CSO-kNN is not sensitive to
the initialization, which can always find the optimal feature subset regardless
the number of features selected during the initialization.

generation
50 100 150 200

nu
m

be
r 

of
 s

el
ec

te
d 

fe
at

ur
es

0

10

20

30

40

50

60

70

80 CSO
PSO
Xue1
Xue2
Xue3
Xue4

(a) movement

generation
50 100 150 200

nu
m

be
r 

of
 s

el
ec

te
d 

fe
at

ur
es

0

20

40

60

80

100

120
CSO
PSO
Xue1
Xue2
Xue3
Xue4

(b) musk

generation
50 100 150 200

nu
m

be
r 

of
 s

el
ec

te
d 

fe
at

ur
es

0

50

100

150

200

CSO
PSO
Xue1
Xue2
Xue3
Xue4

(c) arrhythmia

generation
50 100 150 200

nu
m

be
r 

of
 s

el
ec

te
d 

fe
at

ur
es

0

100

200

300

400

500
CSO
PSO
Xue1
Xue2
Xue3
Xue4

(d) madelon

generation
50 100 150 200

nu
m

be
r 

of
 s

el
ec

te
d 

fe
at

ur
es

0

100

200

300

400

500

600
CSO
PSO
Xue1
Xue2
Xue3
Xue4

(e) isolet5

generation
50 100 150 200

nu
m

be
r 

of
 s

el
ec

te
d 

fe
at

ur
es

0

500

1000

1500
CSO
PSO
Xue1
Xue2
Xue3
Xue4

(f) InterAd

Fig. 3: Average number of selected features over generations.

Further observations regarding the number of features that have been se-
lected during the search procedure by each algorithm can be found in Fig. 3.
We can see that CSO-kNN not only finds smaller feature subsets than the
PSO-based algorithms on large-scale problems, but the number of selected
features also decreases much faster. The only exception is again the Xue2-
kNN algorithm due to the same reason that we have discussed above.



Feature Selection for High Dimensional Classification using A CSO 13

From Table 2 and Fig. 3, we can conclude that CSO-kNN performs higher
degree of exploration than the PSO-based algorithms, which enables it to
explore the search space to find a solution that selects a smaller number of
features and better performance.

ge
ne

ra
tio

n

feature #

Zoom
6x

(a) CSO-kNN

ge
ne

ra
tio

n
feature #

Zoom
6x

(b) PSO-kNN

ge
ne

ra
tio

n

feature #

Zoom
6x

(c) Xue1-kNN

ge
ne

ra
tio

n

feature #

Zoom
6x

(d) Xue2-kNN

ge
ne

ra
tio

n

feature #

Zoom
6x

(e) Xue3-kNN

ge
ne

ra
tio

n

feature #

Zoom
6x

(f) Xue4-kNN

Fig. 4: Graphics showing that the selected features (x-axes) of the best indi-
vidual over generations (y-axes) on dataset movement. The darkness of each
block represents the frequency of the corresponding feature that has been se-
lected in the respective generation across different experiments - a darker color
represents a higher frequency, and vice versa.

In addition to the number of features that have been selected, it is also of
interests to see what features have exactly been selected. To this end, we have
also plotted the number of selected features over the generations during the
evolution in Fig. 4 and 5.

Fig. 4 shows the results on the movement dataset, which has the least num-
ber of features among the six tested datasets. On this dataset, all algorithms
seem to have found a reasonable feature subset that gives the lowest testing



14 Shenkai Gu et al.

ge
ne

ra
tio

n

feature #

(a) CSO-kNN

ge
ne

ra
tio

n

feature #

(b) PSO-kNN

ge
ne

ra
tio

n

feature #

(c) Xue1-kNN

ge
ne

ra
tio

n

feature #

(d) Xue2-kNN

ge
ne

ra
tio

n

feature #

(e) Xue3-kNN

ge
ne

ra
tio

n

feature #

(f) Xue4-kNN

Fig. 5: Graphics showing that the selected features (x-axes) of the best indi-
vidual over generations (y-axes) on dataset arrhythmia.



Feature Selection for High Dimensional Classification using A CSO 15

error possible (refer to Table 2 and Fig 3), and a similar number of features
is selected, which is indicated by the similar overall darkness of in the plots.
However, there are still visible differences between Xue2-kNN and Xue3-kNN,
as the initial numbers of selected features are significantly different. Further-
more, these figures also show that CSO-kNN explores much more potential
solutions in comparison to other compared algorithms.

Fig. 5 presents the results on the arrhythmia dataset, where the CSO-
kNN has selected much fewer features and achieved a considerably lower error
rate than the compared algorithms. In general, the darkness of the plot for
CSO-kNN is much lighter than that of the PSO-kNN, Xue1-kNN and Xue3-
kNN, which implies that the general number of features selected by CSO-
kNN is much smaller than the these algorithms in all independent runs. It is
also seen that the overall darkness among CSO-kNN, Xue2-kNN and Xue4-
kNN are similar. However, by close inspection, we can find that the early
populations of CSO-kNN are much darker than the other two algorithms,
and during the population evolves, the overall darkness becomes lighter. By
contrast, all PSO-based algorithms have a similar overall darkness across the
generations. This difference indicates that the CSO-kNN is capable of escaping
from local optima due to its better exploration ability than the PSO-based
algorithms. Nevertheless, a few clearly discernible vertical dark lines can be
seen in the plots, especially in the CSO-kNN, Xue2-kNN and Xue4-kNN. These
lines represent the most commonly selected features over all independent runs,
while most other lines remain light indicating the scarcely (or even never)
selected features. The plots clearly show that the PSO-based algorithms tend
to select many other features, which are mostly not helpful, if not harmful to
improve the generalization ability.

5 Conclusion

This paper aims to propose an efficient feature selection algorithm to select a
small feature subset from a large number of features while maintaining similar
or even better classification performance than using all features. The objective
has been successfully achieved by adapting the competitive swarm optimiza-
tion algorithm to feature selection.

Our experimental results demonstrate that the proposed CSO-kNN outper-
forms the conventional PCA-based method, the PSO-kNN, and a few recently
reported PSO variants on all large-scale datasets with a significant margin.
Furthermore, we find that the number of new solutions found by CSO-kNN
is considerably larger than that found by the PSO-based methods. Unlike the
PSO-based methods whose final optimal results heavily rely on the initializa-
tion in term of the number of selected features, the purposed method performs
consistently well and is less sensitive to initialization.

In the future, we will investigate further the selection mechanism of the
metaheuristics, for example by introducing the multi-objective approach that



16 Shenkai Gu et al.

simultaneously maximizes the classification performance and minimizes the
number of selected features.

Acknowledgements This work was supported in part by National Natural Science Foun-
dation of China (No. 71533001), the Joint Research Fund for Overseas Chinese, Hong Kong
and Macao Scholars of the National Natural Science Foundation of China (No. 61428302)
and an EPSRC grant (No. EP/M017869/1).

References

1. Aha, D., Kibler, D., Albert, M.: Instance-based learning algorithms. Machine Learning
6(1), 37–66 (1991)

2. Almuallim, H., Dietterich, T.G.: Learning boolean concepts in the presence of many
irrelevant features. Artificial Intelligence 69(1), 279–305 (1994)

3. Bache, K., Lichman, M.: UCI machine learning repository (2013). URL http://

archive.ics.uci.edu/ml

4. Banks, A., Vincent, J., Anyakoha, C.: A review of particle swarm optimization. part ii:
hybridisation, combinatorial, multicriteria and constrained optimization, and indicative
applications. Natural Computing 7(1), 109–124 (2008)

5. Bianchi, L., Dorigo, M., Gambardella, L.M., Gutjahr, W.J.: A survey on metaheuristics
for stochastic combinatorial optimization. Natural Computing 8(2), 239–287 (2009)

6. Chandrashekar, G., Sahin, F.: A survey on feature selection methods. Computers &
Electrical Engineering 40(1), 16–28 (2014)

7. Chen, W.N., Zhang, J., Lin, Y., Chen, N., Zhan, Z.H., Chung, H.S.H., Li, Y., Shi, Y.H.:
Particle swarm optimization with an aging leader and challengers. IEEE Transactions
on Evolutionary Computation 17(2), 241–258 (2013)

8. Chen, Y., Miao, D., Wang, R.: A rough set approach to feature selection based on ant
colony optimization. Pattern Recognition Letters 31(3), 226–233 (2010)

9. Cheng, R., Jin, Y.: Demonstrator selection in a social learning particle swarm optimizer.
In: 2014 IEEE Congress on Evolutionary Computation, pp. 3103–3110. IEEE (2014)

10. Cheng, R., Jin, Y.: A competitive swarm optimizer for large scale optimization. IEEE
Transactions on Cybernetics 45(2), 191–204 (2015)

11. Cheng, R., Jin, Y.: A social learning particle swarm optimization algorithm for scalable
optimization. Information Sciences 291, 43–60 (2015)

12. Chuang, L.Y., Chang, H.W., Tu, C.J., Yang, C.H.: Improved binary pso for feature
selection using gene expression data. Computational Biology and Chemistry 32(1),
29–38 (2008)

13. Chuang, L.Y., Tsai, S.W., Yang, C.H.: Improved binary particle swarm optimization
using catfish effect for feature selection. Expert Systems with Applications 38(10),
12,699–12,707 (2011)

14. Fei, H., Huan, J.: Boosting with structure information in the functional space: An appli-
cation to graph classification. In: Proceedings of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 643–652. ACM, New York,
NY, USA (2010)

15. Fong, S., Wong, R., Vasilakos, A.V.: Accelerated PSO swarm search feature selection
for data stream mining big data. IEEE Transactions on Services Computing 9(1), 33–45
(2016)

16. Gheyas, I.A., Smith, L.S.: Feature subset selection in large dimensionality domains.
Pattern recognition 43(1), 5–13 (2010)

17. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. The Journal
of Machine Learning Research 3, 1157–1182 (2003)

18. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka
data mining software: an update. ACM SIGKDD explorations newsletter 11(1), 10–18
(2009)

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


Feature Selection for High Dimensional Classification using A CSO 17

19. Han, K.H., Kim, J.H.: Quantum-inspired evolutionary algorithm for a class of combi-
natorial optimization. IEEE Transactions on Evolutionary Computation 6(6), 580–593
(2002)

20. Hu, M., Wu, T.F., Weir, J.D.: An adaptive particle swarm optimization with multiple
adaptive methods. IEEE Transactions on Evolutionary Computation 17(5), 705–720
(2013)

21. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Neural Networks, 1995.
Proceedings., IEEE International Conference on IS - SN -, pp. 1942–1948 vol.4 (1995)

22. Kira, K., Rendell, L.A.: A practical approach to feature selection. In: Proceedings of
the International Workshop on Machine Learning, pp. 249–256 (1992)

23. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artificial Intelligence
97(1), 273–324 (1997)

24. Kwak, N., Choi, C.H.: Input feature selection for classification problems. IEEE Trans-
actions on Neural Networks 13(1), 143–159 (2002)

25. Li, X., Yao, X.: Cooperatively coevolving particle swarms for large scale optimization.
IEEE Transactions on Evolutionary Computation 16(2), 210–224 (2012)

26. Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive learning particle
swarm optimizer for global optimization of multimodal functions. IEEE Transactions
on Evolutionary Computation 10(3), 281–295 (2006)

27. Liao, J.G., Chin, K.V.: Logistic regression for disease classification using microarray
data: model selection in a large p and small n case. Bioinformatics 23(15), 1945–1951
(2007)

28. Lin, S.W., Chen, S.C.: PSOLDA: A particle swarm optimization approach for enhancing
classification accuracy rate of linear discriminant analysis. Applied Soft Computing 9(3),
1008–1015 (2009)

29. Liu, Z., Jiang, F., Tian, G., Wang, S., Sato, F., Meltzer, S.J., Tan, M.: Sparse logis-
tic regression with Lp penalty for biomarker identification. Statistical Applications in
Genetics and Molecular Biology 6(1) (2007)

30. Neshatian, K., Zhang, M.: Pareto front feature selection: using genetic programming
to explore feature space. In: Proceedings of the Annual Conference on Genetic and
Evolutionary Computation, pp. 1027–1034. ACM (2009)

31. Price, K., Storn, R.M., Lampinen, J.A.: Differential evolution: a practical approach to
global optimization. Springer Science & Business Media (2006)

32. Pudil, P., Novovičová, J., Kittler, J.: Floating search methods in feature selection. Pat-
tern Recognition Letters 15(11), 1119–1125 (1994)

33. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Evolutionary Compu-
tation Proceedings, 1998. IEEE World Congress on Computational Intelligence., The
1998 IEEE International Conference on IS - SN - VO -, pp. 69–73 (1998)

34. Tan, M., Tsang, I.W., Wang, L.: Minimax sparse logistic regression for very high-
dimensional feature selection. IEEE Transactions on Neural Networks and Learning
Systems 24(10), 1609–1622 (2013)

35. Tran, B., Xue, B., Zhang, M.: Bare-Bone Particle Swarm Optimisation for Simulta-
neously Discretising and Selecting Features for High-Dimensional Classification. In:
G. Squillero, P. Burelli (eds.) Applications of Evolutionary Computation: 19th Euro-
pean Conference, EvoApplications 2016, Porto, Portugal, March 30 – April 1, 2016,
Proceedings, Part I, pp. 701–718. Springer International Publishing (2016)

36. Unler, A., Murat, A.: A discrete particle swarm optimization method for feature se-
lection in binary classification problems. European Journal of Operational Research
206(3), 528–539 (2010)

37. Wang, H., Sun, H., Li, C., Rahnamayan, S., Pan, J.S.: Diversity enhanced particle swarm
optimization with neighborhood search. Information Sciences 223, 119–135 (2013)

38. Wang, X., Yang, J., Teng, X., Xia, W., Jensen, R.: Feature selection based on rough sets
and particle swarm optimization. Pattern Recognition Letters 28(4), 459–471 (2007)

39. Whitney, A.W.: A direct method of nonparametric measurement selection. IEEE Trans-
actions on Computers C-20(9), 1100–1103 (1971)

40. Xue, B., Zhang, M., Browne, W., Yao, X.: A survey on evolutionary computation ap-
proaches to feature selection. IEEE Transactions on Evolutionary Computation PP(99),
1–1 (2016)



18 Shenkai Gu et al.

41. Xue, B., Zhang, M., Browne, W.N.: Particle swarm optimization for feature selection
in classification: A multi-objective approach. IEEE Transactions on Cybernetics 43(6),
1656–1671 (2013)

42. Xue, B., Zhang, M., Browne, W.N.: Particle swarm optimisation for feature selection in
classification: Novel initialisation and updating mechanisms. Applied Soft Computing
18, 261–276 (2014)

43. Zhai, Y., Ong, Y.S., Tsang, I.W.: The emerging ”Big Dimensionality”. Computational
Intelligence Magazine, IEEE 9(3), 14–26 (2014)

44. Zhan, Z.H., Zhang, J., Li, Y., Chung, H.S.H.: Adaptive particle swarm optimization.
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 39(6),
1362–1381 (2009)

45. Zhu, Z., Ong, Y.S., Dash, M.: Wrapper–filter feature selection algorithm using a memetic
framework. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
37(1), 70–76 (2007)


	Introduction
	Background
	Proposed Method
	Experimental Studies
	Conclusion

