Skip to main content
Log in

Forests of unstable hierarchical clusters for pattern classification

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Classification of patterns is a key ability shared by intelligent systems. One of the crucial components of a pattern classification pipeline is the classifier. There have been many classifiers that have been proposed in literature, and it has been shown recently that ensembles of decisions trees tend to perform and generalize well to unseen test data. In this paper, we propose a novel ensemble classifier that consists of a diverse group of hierarchical clusterings on data. The proposed algorithm is fast to train, fully automatic and outperforms existing decision tree ensemble techniques and other state-of-the-art classifiers. We empirically show the effectiveness of the algorithm by evaluating on four publicly available datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Boser BE, Guyon IM, Vapnik VN (1991) A training algorithm for optimal margin classifiers. In: Proceedings of the fifth annual workshop on Computational learning theory, pp 144–152. ACM

  • Breiman L (1996) Out-of-bag estimation. Technical Report, Citeseer

  • Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  MATH  Google Scholar 

  • Bylander T (2002) Estimating generalization error on two-class datasets using out-of-bag estimates. Mach Learn 48(1–3):287–297

    Article  MATH  Google Scholar 

  • Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    MATH  Google Scholar 

  • Dredze M, Gevaryahu R, Elias-Bachrach A (2007) Learning fast classifiers for image spam. In: CEAS

  • El Ayadi M, Kamel MS, Karray F (2011) Survey on speech emotion recognition: features, classification schemes, and databases. Pattern Recognit 44(3):572–587

    Article  MATH  Google Scholar 

  • Erdélyi M, Garzó A, Benczúr AA (2011) Web spam classification: a few features worth more. In: Proceedings of the 2011 Joint WICOW/AIRWeb Workshop on Web Quality, pp 27–34, ACM

  • Felzenszwalb P, McAllester D, Ramanan D (2008) A discriminatively trained, multiscale, deformable part model. In: IEEE Conference on, computer vision and pattern recognition, CVPR 2008. pp 1–8

  • Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7(2):179–188

    Article  Google Scholar 

  • Freund Y, Schapire RE (1995) A desicion-theoretic generalization of on-line learning and an application to boosting. In: Computational learning theory, pp 23–37, Springer, Berlin

  • Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Statist 29(5):1189–1232

  • Gualdi G, Prati A, Cucchiara R (2011) A multi-stage pedestrian detection using monolithic classifiers. In: IEEE international conference on advanced video and signal-based surveillance (AVSS), pp 267–272

  • Guyon I, Gunn S, Ben-Hur A, Dror G (2004) Result analysis of the NIPS 2003 feature selection challenge. In: Advances in neural information processing systems, pp 545–552

  • Ho TK, Kleinberg EM (1996) Building projectable classifiers of arbitrary complexity. In: Proceedings of the 13th international conference on pattern recognition, 1996, vol 2, pp 880–885

  • Htike KK, Hogg D (2014) Efficient non-iterative domain adaptation of pedestrian detectors to video scenes. In: 22nd International conference on, pattern recognition (ICPR), 2014, pp 654–659

  • Htike KK, Hogg D (2016) Adapting pedestrian detectors to new domains: a comprehensive review. Eng Appl Artif Intell 50:142–158

    Article  Google Scholar 

  • Juang BH, Hou W, Lee CH (1997) Minimum classification error rate methods for speech recognition. IEEE Trans Speech Audio Process 5(3):257–265

    Article  Google Scholar 

  • Kwon OW, Chan K, Hao J, Lee TW (2003) Emotion recognition by speech signals. In: INTERSPEECH. Citeseer

  • Liaw A, Wiener M (2002) Classification and regression by randomforest. R News 2(3):18–22

    Google Scholar 

  • Lichman M (2013) UCI machine learning repository. http://archive.ics.uci.edu/ml

  • Littlestone N (1988) Learning quickly when irrelevant attributes abound: a new linear-threshold algorithm. Mach Learn 2(4):285–318

    Google Scholar 

  • MacQueen J, et al (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley symposium on mathematical statistics and probability, vol 1, pp. 281–297. Oakland, CA, USA

  • Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 65(6):386

    Article  Google Scholar 

  • Rumelhart DE, Hinton GE, Williams RJ (1988) Learning representations by back-propagating errors. MIT Press, Cambridge, MA, USA

    MATH  Google Scholar 

  • Russell S, Norvig P, Intelligence A (1995) A modern approach. Artificial Intelligence. Prentice-Hall, Egnlewood Cliffs 25, 27

  • Sánchez J, Perronnin F, Mensink T, Verbeek J (2013) Image classification with the fisher vector: theory and practice. Int J Comput Vis 105(3):222–245

    Article  MathSciNet  MATH  Google Scholar 

  • Schapire RE, Singer Y (1999) Improved boosting algorithms using confidence-rated predictions. Machine learning 37(3):297–336

    Article  MATH  Google Scholar 

  • Szummer M, Picard RW (1998) Indoor-outdoor image classification. In: IEEE International workshop on, content-based access of image and video database, 1998. pp 42–51

  • Tzanetakis G, Cook P (2002) Musical genre classification of audio signals. IEEE Trans Speech Audio Process 10(5):293–302

    Article  Google Scholar 

  • Wagner A, Wright J, Ganesh A, Zhou Z, Mobahi H, Ma Y (2012) Toward a practical face recognition system: Robust alignment and illumination by sparse representation. IEEE Trans Pattern Anal Mach Intell 34(2):372–386

    Article  Google Scholar 

  • Walker SH, Duncan DB (1967) Estimation of the probability of an event as a function of several independent variables. Biometrika 54(1–2):167–179

    Article  MathSciNet  MATH  Google Scholar 

  • Wang J, Yang J, Yu K, Lv F, Huang T, Gong Y (2010) Locality-constrained linear coding for image classification. In: IEEE conference on, computer vision and pattern recognition (CVPR), 2010, pp 3360–3367

  • Yang J, Chu D, Zhang L, Xu Y, Yang J (2013) Sparse representation classifier steered discriminative projection with applications to face recognition. IEEE Trans Neural Networks and Learn Syst 24(7):1023–1035

    Article  Google Scholar 

  • Yang M, Zhang L, Shiu SC, Zhang D (2013) Gabor feature based robust representation and classification for face recognition with gabor occlusion dictionary. Pattern Recogn 46(7):1865–1878

    Article  Google Scholar 

  • Yu B, Xu Zb (2008) A comparative study for content-based dynamic spam classification using four machine learning algorithms. Knowl-Based Syst 21(4):355–362

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyaw Kyaw Htike.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Htike, K.K. Forests of unstable hierarchical clusters for pattern classification. Soft Comput 22, 1711–1718 (2018). https://doi.org/10.1007/s00500-016-2434-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-016-2434-1

Keywords

Navigation