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Abstract We introduce a framework suitable for describ-1

ing standard classification problems using the mathematical1 2

language of quantum states. In particular, we provide a one-3

to-one correspondence between real objects and pure density4

operators. This correspondence enables us: (1) to represent5

the nearest mean classifier (NMC) in terms of quantum6

objects, (2) to introduce a quantum-inspired version of the7

NMC called quantum classifier (QC). By comparing the QC8

with the NMC on different datasets, we show how the first9

classifier is able to provide additional information that can be10

beneficial on a classical computer with respect to the second11

classifier.12
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1 Introduction 15

Quantum machine learning aims at merging the methods 16

from quantum information processing and pattern recogni- 17

tion to provide new solutions for problems in the areas of 18

pattern recognition and image understanding (Schuld et al. 19

2014a; Wittek 2014; Wiebe et al. 2015). In the first aspect, the 20

research in this area is focused on the application of the meth- 21

ods of quantum information processing (Miszczak 2012) for 22

solving problems related to classification and clustering Tru- 23

genberger (2002), Caraiman and Manta (2012). One of the 24

possible directions in this field is to provide a representa- 25

tion of computational models using quantum mechanical 26

concepts. From the other perspective, the methods for classi- 27

fication developed in computer engineering are used to find 28

solutions for problems such as quantum-state discrimination 29

(Helstrom 1976; Chefles 2000; Hayashi et al. 2005; Lu and 30

Braunstein 2014), which are tightly connected with the recent 31

developments in quantum cryptography. 32

Using quantum states for the purpose of representing patterns 33

is naturally motivated by the possibility of exploiting quan- 34

tum algorithms to boost the computational intensive parts of 35

the classification process. In particular, it has been demon- 36

strated that quantum algorithms can be used to improve the 37

time complexity of the k-nearest neighbor (kNN) method. 38

Using the algorithms presented in Wiebe et al. (2015), it is 39

possible to obtain polynomial reductions in query complex- 40

ity in comparison with the corresponding classical algorithm. 41

Such an approach has been exploited by various authors. In 42

Tanaka and Tsuda (2008), the authors propose an extension of 43

Gaussian mixture models by using the statistical mechanics 44

point of view. In their approach, the probability density func- 45

tions of conventional Gaussian mixture models are expressed 46

by density matrix representations. On the other hand, in 47

Ostaszewski et al. (2015), the authors utilize the quantum 48
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representation of images to construct measurements used for49

classification. Such approach might be particularly useful for50

the physical implementation of the classification procedure51

on quantum machines.52

In the last few years, many efforts have been made to apply53

the quantum formalism to non-microscopic contexts (Aerts54

and D’Hooghe 2009; Aerts et al. 2013; Chiang et al. 2013;55

Eisert et al. 1999; Nagel 1963; Nagy and Nagy 2016; Ohya56

and Volovich 2011; Schwartz et al. 2005; Sozzo 2015; Stapp57

1993) and to signal processing (Eldar and Oppenheim 2002).58

Moreover, some attempts to connect quantum information to59

pattern recognition can be found in Schuld et al. (2014a),60

Schuld et al. (2014b), Schuld et al. (2014c). An exhaustive61

survey and bibliography of the developments concerning the62

applications of quantum computing in computational intel-63

ligence are provided in Manju and Nigam (2014), Wittek64

(2014). Even if these results seem to suggest some possi-65

ble computational advantages of an approach of this sort, an66

extensive and universally recognized treatment of the topic67

is still missing (Schuld et al. 2014a; Lloyd et al. 2014, 2013).68

Also, this paper is motivated by the idea of using quantum69

formalism in a non-standard domain that consists in solving70

classification problems on datasets of classical objects. The71

main contribution of our work is the introduction of a new72

framework to encode the classification process by means of73

the mathematical language of density matrices (Beltrametti74

et al. 2014b, a). We show that this representation leads to75

two different developments: (i) It enables us to provide a76

representation of the nearest mean classifier (NMC) in terms77

of quantum objects; (ii) it can be used to introduce a quantum-78

inspired version of the NMC, that we call quantum classifier79

(QC), which can be considered (similarly as the NMC) to80

be a minimum distance classifier. This allows us a detailed81

comparison between NMC and QC. In particular, we will82

show that QC provides additional information about the data83

distribution and, in different cases, an improvement in the84

performance on a classical computer.85

The paper is organized as follows. In Sect. 2, the basic86

notions of quantum information and pattern recognition87

are introduced. In Sect. 3, we formalize a correspondence88

between arbitrary two-feature patterns and pure density oper-89

ators and we define the notion of density pattern. In Sect. 4,90

we provide a representation of NMC by using density pat-91

terns and by the introduction of an ad hoc definition of the92

distance between quantum states. Section 5 is devoted to93

the description of a new quantum classifier QC that does94

not have a classical counterpart in the standard classification95

process. Numerical simulations for both QC and NMC are96

presented, and particular benefits in favor of the first classifier97

are exploited. In Sect. 6, a geometrical idea to generalize the98

model to arbitrary n-feature patterns is proposed. Finally,99

Sect. 7 presents concluding remarks and suggests further100

developments.101

2 Representing classical and quantum information 102

quantities 103

In the standard quantum information theory (Bennett and 104

Shor 1998; Shannon 1948), the states of physical systems are 105

described by unit vectors and their evolution is expressed in 106

terms of unitary matrices (i.e., quantum gates). However, this 107

representation can be applied for an ideal case only, because 108

it does not take into account some unavoidable physical 109

phenomena, such as interactions with the environment and 110

irreversible transformations. In the modern quantum infor- 111

mation theory (Jaeger 2007, 2009; Wilde 2013), another 112

approach is adopted. The states of physical systems are 113

described by density operators—also called mixed states 114

(Aharonov et al. 1998; Chiara et al. 2004; Freytes et al. 115

2010)—and their evolution is described by quantum oper- 116

ations. The space Ωn of density operators for n-dimensional 117

system consists of positive semidefinite matrices with unit 118

trace. 119

A quantum state can be pure or mixed. We say that a state 120

of a physical system is pure if it represents “maximal” infor- 121

mation about the system, i.e., information that cannot be 122

improved by further observations. A probabilistic mixture 123

of pure states is said to be a mixed state. Generally, both pure 124

and mixed states are represented by density operators that 125

are positive and Hermitian operators (with unitary trace) liv- 126

ing in a n-dimensional complex Hilbert space H. Formally, 127

a density operator ρ is pure iff tr(ρ2) = 1 and it is mixed iff 128

tr(ρ2) < 1. 129

If we confine ourselves to the two-dimensional Hilbert 130

space H, a suitable representation of an arbitrary density 131

operator ρ ∈ Ω2 is provided by 132

ρ =
1

2
(I + r1σ1 + r2σ2 + r3σ3)

=
1

2

(

1 + r3 r1 − ir2

r1 + ir2 1 − r3

)

,

(1) 133

where σi are the Pauli matrices. This expression is useful 134

when providing a geometrical representation of ρ. Indeed, 135

each density operator ρ ∈ Ω2 can be geometrically rep- 136

resented as a point of a radius-one sphere centered in the 137

origin (the so-called Bloch sphere), whose coordinates (i.e., 138

Pauli components) are ri (with
∑

i r2
i ≤ 1). By using the 139

generalized Pauli matrices (Bertlmann and Krammer 2008; 140

Kimura 2003), it is also possible to provide a geometrical 141

representation for an arbitrary n-dimensional density oper- 142

ator, as it will be showed in Sect. 6. Again, by restricting 143

to a two-dimensional Hilbert space, points on the surface of 144

the Bloch sphere represent pure states, while inner points 145

represent mixed states. 146

Quantum formalism turns out to be very useful not only 147

in the microscopic scenario but also to encode classical 148
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data. This has naturally suggested several attempts to rep-149

resent the standard framework of machine learning through150

the quantum formalism (Lloyd et al. 2013; Schuld et al.151

2014a). In particular, pattern recognition (Webb and Copsey152

2011; Duda et al. 2000) is the scientific discipline which153

deals with theories and methodologies for designing algo-154

rithms and machines capable of automatically recognizing155

“objects” (i.e., patterns) in noisy environments. Some typical156

applications are multimedia document classification, remote-157

sensing image classification, and people identification using158

biometrics traits such as fingerprints.159

A pattern is a representation of an object. The object can160

be a concrete one (i.e., an animal), and the pattern recognition161

task could be to identify the kind of animal or an abstract one162

(i.e., a facial expression), and the task could be to identify163

the emotion expressed by the facial expression. The pattern is164

characterized via a set of measurements called features.1 Fea-165

tures can assume the forms of categories, structures, names,166

graphs, or, most commonly, a vector of real numbers (feature167

vector) x = (x1, x2, . . . , xd) ∈ Rd . Intuitively, a class is the168

set of all similar patterns. For the sake of simplicity, and with-169

out loss of generality, we assume that each object belongs to170

one and only one class, and we will limit our attention to171

two-class problems. For example, in the domain of “cats and172

dogs,” we can consider the classes Ccats (the class of all cats)173

and Cdogs (the class of all dogs). The pattern at hand is either174

a cat or a dog, and a possible representation of the pattern175

could consist of the height of the pet and the length of its tail.176

In this way, the feature vector x1 = (x11, x12) is the pattern177

representing a pet whose height and length of the tail are x11178

and x12, respectively.179

Now, let us consider an object xt whose membership class180

is unknown. The basic aim of the classification process is181

to establish which class xt belongs to. To achieve this goal,182

standard pattern recognition designs a classifier that, given183

the feature vector xt , has to determine the true class of the184

pattern. The classifier should take into account all available185

information about the task at hand (i.e., information about186

the statistical distributions of the patterns and information187

obtained from a set of patterns whose true class is known).188

This set of patterns is called “training set,” and it will be used189

to define the behavior of the classifier.190

If no information about the statistical distributions of the pat-191

terns is available, an easy classification algorithm that could192

be used is the nearest mean classifier (NMC) (Manning et al.193

2008; Hastie et al. 2001) or minimum distance classifier. The194

NMC195

1 Hence, as a pattern is an object characterized by the knowledge of its
features, analogously, in quantum mechanics a state of a physical system
is represented by a density operator, characterized by the knowledge of
its observables.

– computes the centroids of each class, using the patterns 196

on the training set µ∗
i = 1

ni

∑

x∈Ci
x, where ni is the 197

number of patterns of the training set belonging to the 198

class Ci ; 199

– assigns the unknown pattern xt to the class with the clos- 200

est centroid. 201

In the next section, we provide a representation of arbitrary 202

2D patterns by means of density matrices, while in Sect. 4, 203

we introduce a representation of NMC in terms of quantum 204

objects. 205

3 Representation of two-dimensional patterns 206

Let xi = (xi1, . . . , xik) be a generic pattern, i.e., a point in Rk . 207

By means of this representation, we consider all the k features 208

of xi as perfectly known. Therefore, xi represents a maximal 209

kind of information, and its natural quantum counterpart is 210

provided by a pure state. For the sake of simplicity, we will 211

confine ourselves to an arbitary two-feature pattern indicated 212

by x = (x, y).2 In this section, a particular one-to-one corre- 213

spondence between each pattern and its corresponding pure 214

density operator is provided. 215

The pattern x can be represented as a point in R2. The stere- 216

ographic projection (Coxeter 1969) allows to unequivocally 217

map any point r = (r1, r2, r3) on the surface of a radius-one 218

sphere S2 (except for the north pole) onto a point x = (x, y) 219

of R2 as 220

S P : (r1, r2, r3) %→
(

r1

1 − r3
,

r2

1 − r3

)

. (2) 221

The inverse of the stereographic projection is given by 222

S P−1 : (x, y) %→

(

2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,

x2 + y2 − 1

x2 + y2 + 1

)

.

(3) 223

Therefore, by using the Bloch representation given by Eq. (1) 224

and placing 225

r1 =
2x

x2 + y2 + 1
, r2 =

2y

x2 + y2 + 1
, 226

r3 =
x2 + y2 − 1

x2 + y2 + 1
, (4) 227

we obtain the following definition. 228

2 In the standard pattern recognition theory, the symbol y is generally
used to identify the label of the pattern. In this paper, for the sake of
simplicity, we agree with a different notation.
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Definition 1 (Density pattern) Given an arbitrary pattern229

x = (x, y), the density pattern (DP) ρx associated with x230

is the following pure density operator231

ρx =
1

2

(

1 + r3 r1 − ir2

r1 + ir2 1 − r3

)

232

=
1

x2 + y2 + 1

(

x2 + y2 x − iy

x + iy 1

)

. (5)233

It is easy to check that tr(ρ2
x ) = 1. Hence, ρx always repre-234

sents a pure state for any value of the features x and y.235

Following the standard definition of the Bloch sphere, it can236

be verified that ri = tr(ρx · σi ), with i ∈ {1, 2, 3} and σi are237

Pauli matrices.238

Example 1 Let us consider the pattern x = (1, 3). The cor-239

responding ρx reads240

ρx =
1

11

(

10 1 − 3i

1 + 3i 1

)

.241

One of the advantages of this encoding is based on the242

fact that it allows an easy visualization of an arbitrary two-243

feature dataset on the Bloch sphere, as it will be showed in244

the next section. The manner to encode a real pattern onto245

the space of the density operators is not unique and there246

is a risk of losing some information during the encoding.247

Taking into account the recent debates (Schuld et al. 2014a;248

Lloyd et al. 2013; Rebentrost et al. 2014), in order to encode249

a real vector to a quantum states without losing information,250

it is necessary to normalize the vector but maintain some251

information about the norm of the same vector at the same252

time. By following this procedure, we briefly show that it is253

alternatively possible to recover the stereographic encoding254

proposed in Eq. (5) also by simple analytical considerations.255

Let x = (x, y) be an arbitrary real vector.256

1. First, we map x onto a vector x′ whose first component257

is given by x + iy and the second component is given258

by the norm of x (|x| =
√

x2 + y2); i.e., x = (x, y) %→259

x′ = (x + iy,
√

x2 + y2).260

2. Now, we consider a second map: x′ %→ x′′ =261
(

x+iy√
x2+y2

,
√

x2 + y2
)

, obtained by normalizing the first262

component of x′.263

3. Then, we consider the norm of x′′, i.e., |x′′| =264
√

x2 + y2 + 1 and we normalize the vector x′′, i.e., x′′ %→265

x′′′ = x′′

|x′′| =
(

x+iy√
(x2+y2)(x2+y2+1)

,266

√

x2+y2

x2+y2+1

)

.267

4. Now, we consider the projector: P = x′′′ · (x′′′)† =268

1
x2+y2+1

(

1 x + iy

x − iy x2 + y2

)

.269

5. Finally, we apply the operator Not =
(

0 1

1 0

)

to P and we 270

recover: Not (P) = 1
x2+y2+1

(

x2 + y2 x − iy

x + iy 1

)

, that is 271

the same expression of the density pattern ρx introduced 272

in Eq (5). 273

The introduction of the density pattern leads to two differ- 274

ent developments. The first one is shown in the next section 275

and consists of the representation of the NMC in quantum 276

terms. Moreover, in Sect. 5, starting from the framework of 277

density patterns, it will be possible to introduce a quantum 278

classifier that exhibits an improvement in the performance (in 279

terms of decreasing of the error in the classification process) 280

with respect to the NMC. 281

4 Classification process for density patterns 282

As introduced in Sect. 2, the NMC is based on the computa- 283

tion of the minimum Euclidean distance between the pattern 284

to classify and the centroids of each class. In the previous 285

section, a quantum counterpart of an arbitrary (two feature) 286

“classical” pattern was provided. In order to obtain a quan- 287

tum counterpart of the standard classification process, we 288

need to provide a suitable definition of distance d between 289

DPs. In addition to satisfy the standard conditions of met- 290

ric, the distance d also needs to satisfy the preservation of 291

the order: Given three arbitrary patterns a, b, c such that 292

dE (a, b) ≤ dE (b, c), if ρa, ρb, ρc are the DPs related to 293

a, b, c, respectively, then d(ρa, ρb) ≤ d(ρb, ρc). In order to 294

fulfill all the previous conditions, we obtain the following 295

definition. 296

Definition 2 (Normalized trace distance) The normalized 297

trace distance d tr between two arbitrary density patterns ρa 298

and ρb is given by formula 299

d tr(ρa, ρb) = Ka,bdtr(ρa, ρb), (6) 300

where dtr(ρa, ρb) is the standard trace distance, dtr(ρa, ρb) = 301

1
2

∑

i |λi |, with λi representing the eigenvalues of ρa − ρb 302

(Barnett 2009; Nielsen and Chuang 2000), and Ka,b is a nor- 303

malization factor given by Ka,b = 2√
(1−ra3 )(1−rb3

)
, with ra3 304

and rb3 representing the third Pauli components of ρa and 305

ρb, respectively. 306

Proposition 1 Given two arbitrary patterns a = (xa, ya) 307

and b = (xb, yb) and their respective density patterns, ρa 308

and ρb, we have that 309

dtr(ρa, ρb) = dE (a, b). (7) 310
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Proof It can be verified that the eigenvalues of the matrix311

ρa − ρb are given by312

Eig(ρa − ρb) = ±
dE (a, b)

√

(1 + x2
a + y2

a )(1 + x2
b + y2

b )

. (8)313

Using the definition of trace distance, we have314

tr
√

(ρa − ρb)2 =
dE (a, b)

√

(1 + x2
a + y2

a )(1 + x2
b + y2

b )

. (9)315

By applying formula (4) to both ra3 and rb3 , we obtain that316

Ka,b =
2

√

(1 − ra3)(1 − rb3
)

=
√

(1 + x2
a + y2

a )(1 + x2
b + y2

b ).

(10)317

)*318

Using Proposition 1, one can see that the normalized trace319

distance d tr satisfies the standard metric conditions and the320

preservation of the order.321

Due to the computational advantage of a quantum algo-322

rithm able to faster calculate the Euclidean distance (Wiebe323

et al. 2015), the equivalence between the normalized trace324

distance and the Euclidean distance turns out to be poten-325

tially beneficial for the classification process we are going to326

introduce.327

Let us now consider two classes, CA and CB and the328

respective centroids3 a∗ = (xa, ya) and b∗ = (xb, yb). The329

classification process based on NMC consists of finding the330

space regions given by the points closest to the first centroid331

a∗ or to the second centroid b∗. The patterns belonging to332

the first region are assigned to the class CA, while patterns333

belonging to the second region are assigned to the class CB .334

The points equidistant from both the centroids represent the335

discriminant function (DF), given by336

fDF(x, y) = 2(xa −xb)x+2(ya −yb)y+(|b∗|2−|a∗|2) = 0.

(11)337

Thus, an arbitrary pattern c = (x, y) is assigned to the class338

CA (or CB) if fDF(x, y) > 0 (or fDF(x, y) < 0).339

Let us notice that the Eq. (11) is obtained by imposing340

the equality between the Euclidean distances dE (c, a∗) and341

dE (c, b∗). Similarly, we obtain the quantum counterpart of342

the classical discriminant function.343

3 Let us remark that, in general, a∗ and b∗ do not represent true cen-
troids, but centroids estimated on the training set.

Proposition 2 Let ρa∗ and ρb∗ be the DPs related to the 344

centroids a∗ and b∗, respectively. Then, the quantum dis- 345

criminant function (QDF) is defined as 346

fQDF(r1, r2, r3) = F(ra∗ , rb∗)T · r + K̃ 2 − 1 = 0 (12) 347

where r = (r1, r2, r3), {ra∗
i
}, {rb∗

i
} are Pauli components 348

of ρa∗ and ρb∗ , respectively, K̃ = K̃ (ra∗
3
, rb∗

3
) = Kc,a∗

Kc,b∗ = 349

√

1−ra∗
3

1−rb∗
3

, F(ra∗, rb∗) = (ra∗
1

− K̃ 2rb∗
1
, ra∗

2
− K̃ 2rb∗

2
, ra∗

3
− 350

K̃ 2rb∗
3
). 351

Proof In order to find the Q DF , we use the equality 352

between the normalized trace distances Kc,a∗dtr(ρc, ρa∗) and 353

Kc,b∗dtr(ρc, ρb∗), where ρc is a generic DP with Pauli com- 354

ponents r1, r2, r3. We have 355

Kc,a∗ dtr(ρc, ρa∗ ) =

√

√

√

√

(r1 − ra∗
1
)2 + (r2 − ra∗

2
)2 + (r3 − ra∗

3
)2

(1 − ra∗
3
)(1 − r3)

,

Kc,b∗ dtr(ρc, ρb∗ ) =

√

√

√

√

(r1 − rb∗
1
)2 + (r2 − rb∗

2
)2 + (r3 − rb∗

3
)2

(1 − rb∗
3
)(1 − r3)

.

(13) 356

The equality Kc,a∗dtr(ρc, ρa∗) = Kc,b∗dtr(ρc, ρb∗) reads 357

3
∑

i=1

r2
i +

3
∑

i=1

r2
a∗

i
− 2

3
∑

i=1

rira∗
i

358

=
1 − ra∗

3

1 − rb∗
3

(

3
∑

i=1

r2
i +

3
∑

i=1

r2
b∗

i
− 2

3
∑

i=1

rirb∗
i

)

. (14) 359

In view of the fact that ρa∗ , ρb∗ and ρc are pure states, we use 360

the conditions
∑3

i=1 r2
a∗

i
=

∑3
i=1 r2

b∗
i

=
∑3

i=1 r2
i = 1 and 361

we get 362

3
∑

i=1

(

ra∗
i

−
1 − ra∗

3

1 − rb∗
3

rb∗
i

)

ri +
1 − ra∗

3

1 − rb∗
3

− 1 = 0. (15) 363

)* 364

This completes the proof. 365

Similarly to the classical case, we assign the DP ρc 366

to the class CA (or CB) if fQDF(r1, r2, r3) > 0 (or 367

fQDF(r1, r2, r3) < 0). Geometrically, Eq. (12) represents 368

the surface equidistant from the DPs ρa∗ and ρb∗ . 369

Let us remark that, if we express the Pauli components 370

{ra∗
i
}, {rb∗

i
} and {ri } in terms of classical features by Eq. (4), 371

then Eq. (12) exactly corresponds to Eq. (11). As a conse- 372

quence, given an arbitrary pattern c = (x, y), if fDF(c) > 373

0 (or fDF(c) < 0), then its relative DP ρc will satisfy 374

fQDF(ρc) > 0 (or fQDF(ρc) < 0, respectively). 375
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G. Sergioli et al.

As an example, the comparison between the classical and376

quantum discrimination functions for the Moon dataset (com-377

posed of 200 patterns equally allocated in two classes) is378

made in Fig. 1. Plots in Fig. 1a, b present the classical and2 379

quantum discrimination, respectively.380

It is worth noting that the correspondence between the pat-381

tern expressed as a feature vector (according to the standard382

pattern recognition approach) and the pattern expressed as383

a density operator is quite general. Indeed, it is not related384

to a particular classification algorithm (NMC, in the previ-385

ous case) nor to the specific metric at hand (the Euclidean386

one). Therefore, it is possible to develop a similar correspon-387

dence by using other kinds of metrics and/or classification388

algorithms, different from NMC, adopting exactly the same389

approach.390

This result suggests potential developments which con-391

sist of finding a quantum algorithm able to implement the392

normalized trace distance between density patterns. So, it393

would correspond to implement the NMC on a quantum com-394

puter with the consequent well-known advantages (Wiebe395

et al. 2015). The next section is devoted to the exploration396

of another development that consists of using the framework397

of density patterns in order to introduce a “purely” quantum398

classification process (having no direct classical correspon-399

dence) called QC. It can be considered as a quantum-inspired400

version of the classical NMC because it substantially is a min-401

imum distance classifier among quantum objects. The main402

difference between them, as we will show by numerical sim-403

ulations, is that the NMC is a linear classifier which does not404

take into account the data dispersion, while the QC is not lin-405

ear, and conversely, it seems sensitive to the data dispersion.406

As it will be showed in the next section by involving some407

datasets, this fact seems to be particularly beneficial (with408

respect to the NMC) mostly in the cases where the classes409

are quite mixed, and hence, the NMC generates a consider-410

able error.411

5 Quantum classification procedure412

In Sect. 4, we have shown that the NMC can be expressed by413

means of quantum formalism, where each pattern is replaced414

by a corresponding density pattern and the Euclidean distance415

is replaced by the normalized trace distance. Representing416

classical data in terms of quantum objects seems to be par-417

ticularly promising in quantum machine learning. Quoting418

Lloyd et al. (2013) “Estimating distances between vectors419

in N -dimensional vector spaces takes time O(logN ) on420

a quantum computer. Sampling and estimating distances421

between vectors on a classical computer is apparently expo-422

nentially hard”. This convenience has already been exploited423

in machine learning for similar tasks (Wiebe et al. 2015; Gio-424

vannetti et al. 2008). Hence, finding a quantum algorithm for425

pattern classification using the proposed encoding could be 426

particularly beneficial to speed up the classification process 427

and it can suggest interesting developments. However, they 428

are beyond the scope of this paper. 429

What we propose in this section is to exhibit some explica- 430

tive examples to show how, on a classical computer, our 431

classification procedure, based on the minimum distance, 432

gives additional information with respect to the standard 433

NMC. 434

5.1 Description of the quantum classifier (QC) 435

In order to get a real advantage in the classification process, 436

we need to be not confined in a pure representation of the 437

classical procedure in quantum terms. For this reason, we 438

introduce a purely quantum representation where we con- 439

sider a new definition of centroid. The basic idea is to define 440

a quantum centroid not as the stereographic projection of the 441

classical centroid, but as a convex combination of density 442

patterns. 443

Trivially, given two real points x and y, the point z = 444

1
2 (x+y) has the property to minimize the quantity dE (x, z)+ 445

dE (z, y). In this case, dE (x, z) = dE (z, y) = 1
2 dE (x, y). 446

Similarly, let us consider two density operators ρ and σ 447

and let τ = 1
2 (ρ + σ ). It is straightforward to show that 448

dtr(ρ, τ ) = dtr(τ, σ ) = 1
2 dtr(ρ, σ ). In fact, dtr(ρ, τ ) = 449

dtr(ρ, 1
2 (ρ + σ )) = 1

2

∑

|Eigenvalues(ρ − 1
2ρ − 1

2σ )| = 450

1
2

∑

|Eigenvalues( 1
2 (ρ − σ ))| = 1

2 · 1
2

∑

|Eigenvalues(ρ − 451

σ )| = 1
2 dtr(ρ, σ ). Analogously, we prove that dtr(σ, τ ) = 452

1
2 dtr(ρ, σ ). 453

Following this argument, we reasonably introduce the fol- 454

lowing definition. 455

Definition 3 (Quantum centroid) Given a dataset {P1, . . . , 456

Pn} with Pi = (xi , yi ), let us consider the respective set 457

of density patterns {ρ1, . . . , ρn}. The Quantum centroid is 458

defined as: 459

ρQC =
1

n

n
∑

i=1

ρi . 460

Obviously, the reasonable ways to define a quantum version 461

of the classical centroid are not unique. We accord with this 462

definition because, as we show in the rest of the section, it 463

turns out to be beneficial in the reduction of the error during 464

some typical classification process. The reasons of this con- 465

venience are intuitively contained in the following argument. 466

Let us notice that ρQC is a mixed state that does not have any 467

counterpart in the standard pattern recognition. Indeed, the 468

quantum centroid may include some further information that 469

the classical centroid generally discards. In fact, the classical 470

centroid does not involve all the information about the disper- 471

sion of a given dataset, i.e., the classical centroid is invariant 472
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A quantum-inspired version of the nearest mean classifier

Fig. 1 Comparison between the discrimination procedures for the
Moon dataset in R2 (a) and in the Bloch sphere S2 (Banana). Green
and blue points represent the two classes in the real space and in the
Bloch sphere, respectively. The straight line in b represents the classical

discriminant function given by (11); on the other hand, the plane that
intersects the Bloch sphere in b represents the quantum discriminant
function given by (12)

under uniform scaling transformations of the data. Conse-473

quently, the classical centroid does not take into account any474

dispersion phenomena. Standard pattern recognition com-475

pensates for this lack by involving the covariance matrix476

(Duda et al. 2000).477

On the other hand, the quantum centroid is not invariant478

under uniform scaling. In what follows, we show how the479

general expression of the quantum centroid is dependent on480

an arbitrary rescaling of a given dataset.481

Let us consider the set of n points {P1, . . . , Pn}, where482

Pi = (xi , yi ) and let C = (cx , cy) = ( 1
n

∑n
j=1 x j ,483

1
n

∑n
j=1 y j ) be the respective classical centroid. A uniform484

rescaling of n points of the dataset corresponds to move485

each point Pi along the line joining itself with C , whose486

generic expression is given by: yxi = x−cx
xi −cx

(yi − cy) + cy .487

Let P̃i = (x̃i , yx̃i
) be a generic point on this line. Obviously,488

a uniform rescaling of Pi by a real factor α is represented by489

the map: P̃i = (x̃i , yx̃i
) %→ α P̃i = (α x̃i , yα x̃i

). Even if the490

classical centroid is not dependent on the rescaling factor α,491

on the other hand the expression of the quantum centroid is:492

ρQC =
1

n







∑n
i=1

(α x̃i )
2+(yα x̃i

)2

(α x̃i )2+(yα x̃i
)2+1

∑n
i=1

α x̃i −iyα x̃i

(α x̃i )2+(yα x̃i
)2+1

∑n
i=1

α x̃i +iyα x̃i

(α x̃i )2+(yα x̃i
)2+1

∑n
i=1

1
(α x̃i )2+(yα x̃i

)2+1






493

that, clearly, is dependent on α.494

According to the same framework used in Sect. 4, given495

two classes CA and CB of real data, let ρQCa and ρQCb496

be the respective quantum centroids. Given a pattern P 497

and its respective density pattern, ρP , P is assigned to 498

the class CA (or CB) if dtr (ρP , ρQCa) < dtr (ρP , ρQCb) 499

(or dtr (ρP , ρQCa) > dtr (ρP , ρQCb), respectively). Let us 500

remark that we no longer need any normalization parame- 501

ter to be added to the trace distance dtr , because the exact 502

correspondence with the Euclidean distance is no more a nec- 503

essary requirement in this framework. From now on, we refer 504

to the classification process based on density patterns, quan- 505

tum centroids, and trace distances as the Quantum Classifier 506

(QC). 507

We have shown that the quantum centroid is not indepen- 508

dent from the dispersion of the patterns and it could contain 509

some additional information with respect to the classical cen- 510

troid. Consequently, it is reasonable to expect that in different 511

cases QC could provide some better performance than the 512

NMC. The next subsection will be devoted to the exploita- 513

tion of the difference between the classification procedures 514

by means of numerical simulations on different datasets. 515

Before presenting the experimental results, let us briefly 516

introduce the main statistical indices widely used to evaluate 517

the performance of a supervised learning algorithm. 518

In particular, for each class, it is typical to refer to the 519

respective confusion matrix (Fawcet 2006). It is based on 520

four possible kinds of outcome after the classification of a 521

certain pattern: 522

– True positive (TP): pattern correctly assigned to its class; 523

– True negative (TN): pattern correctly assigned to another 524

class; 525

123

Journal: 500 MS: 2478 TYPESET DISK LE CP Disp.:2016/12/29 Pages: 15 Layout: Large

A
u

th
o

r 
P

ro
o

f



un
co

rr
ec

te
d

pr
oo

f

G. Sergioli et al.

– False positive (FP): pattern uncorrectly assigned to its526

class;527

– False negative (FN): pattern uncorrectly assigned to528

another class.529

According to above, it is possible to recall the following def-530

initions use to evaluate the performance of an algorithm.4531

True positive rate (TPR), or sensitivity or recall: TPR =532

TP
TP+FN ; false positive rate (FPR): FPR = FP

FP+TN ; true nega-533

tive rate (TNR): TNR = TN
TN+FP ; false negative rate (FNR):534

FNR = FN
FN+TP .535

Let us consider a dataset of C elements allocated in m dif-536

ferent classes. We also recall the following basic statistical537

notions:538

– Error: E = 1 − TP+TN
C ;539

– Precision: Pr = TP
TP+FP .540

Moreover, another statistical index that is very useful to541

indicate the reliability of a classification process is given by542

the Cohen’s k, that is k = Pr(a)−Pr(e)
1−Pr(e) , where Pr(a) = TP+TN

C543

and Pr(e) = (TP+FP)(TP+FN)+(FP+TN)(TN+FN)

C2 . The value of544

k is such that −1 ≤ k ≤ 1, where the case k = 1 corresponds545

to a perfect classification procedure and the case k = −1546

corresponds to the worst classification procedure.547

5.2 Implementing the quantum classifier548

In this subsection, we implement the QC on different datasets549

and show the difference between QC and NMC in terms of the550

values of error, accuracy, precision, and other probabilistic551

indices summarized above.552

We will show how our quantum classification procedure553

exhibits partial or significant convenience with respect to the554

NMC on a classical computer.555

In particular, we consider four datasets: Two of them (fol-556

lowing Gaussian distributions) called Gaussian and 3Class-557

Gaussian, where the first one is composed of 200 patterns558

allocated in two classes and the second one is composed of559

450 patterns allocated in three classes, and the other two,560

called Moon and Banana, composed of 200 and 5300 pat-561

terns (respectively) allocated in two different classes.562

The experiments have been conducted by randomly sub-563

dividing each dataset into a training set made up of 80% of564

instances and a test set containing the remaining instances.565

The results are reported in terms of averages of the computed566

statistical indices over 100 runs of the experiments.567

We denote the variables listed in the tables as follows: E =568

Error; Ei = Error on the class i ; Pr = Precision; k = Cohen’s569

4 For the sake of the simplicity, from now on, we indicate
∑C

j=1 TP j

with TP. Similarly for TN, FP, and FN.

k; TPR = True positive rate; FPR = False positive rate; TNR = 570

True negative rate; FNR = False negative rate. Let us remark 571

that i) the values listed in the table are referred to the mean 572

values over the classes; i i) in the case where the number of the 573

classes is equal to two, a pattern that is correctly classified as 574

belonging to a class corresponds to a pattern that is correctly 575

classified as not belonging to the other class; on this basis, 576

the mean value of TPR is equal to the mean value of TNR, 577

and similarly, the mean value of FPR is equal to the mean 578

value of FNR. 579

In order to provide a complete visualization of the dif- 580

ference between the two classification procedures, we also 581

represent in the figures below the results of both classifica- 582

tions by considering the whole dataset for both training and 583

test dataset.5 584

We stress that for some of the following datasets, the NMC 585

is clearly not the optimal classifier and there exist classifiers 586

that overcome it in terms of accuracy and performance. How- 587

ever, our aim in this context is confined the comparison of 588

two minimum distance classifiers (classical and quantum- 589

inspired version) trying to capture the main differences. 590

5.2.1 Gaussian dataset 591

This dataset consists of 200 patterns allocated in two classes 592

(of equal size), following Gaussian distributions whose 593

means are µ1 = (1, 1), µ2 = (2, 2) and covariance matrices 594

are Σ1 = diag(20, 50), Σ2 = diag(5, 5), respectively. 595

As depicted in Fig. 2, the classes appear particularly over- 596

lapped and the QC is able to classify a number of true positive 597

patterns that is significantly larger than the NMC. Hence, see 598

Table 1, the error of the QC is (about 20%) smaller than 599

the error of the NMC. In particular, the QC turns out to be 600

strongly beneficial in the classification of the patterns of the 601

second class. Moreover, the values related to accuracy, pre- 602

cision, and the other statistical indices also exhibit relevant 603

improvements with respect to the NMC.6 604

5.2.2 The 3ClassGaussian dataset 605

In this example, we consider an equally distributed three- 606

class dataset, consisting of 450 patterns. The classes are 607

distributed as Gaussian random variables whose means are 608

µ1 = (−3,−3), µ2 = (5, 5), µ3 = (7, 7) and covariance 609

matrices are Σ1 = diag(50, 100), Σ2 = diag(10, 5), and 610

Σ3 = diag(30, 70), respectively. 611 3

5 This make sense because it can be seen that for all the datasets we
deal with, the classification error is very similar both with and without
splitting training and test sets.
6 Let us remark that there are some patterns correctly classified by
the NMC which are neglected by the QC. On this basis, exploiting
their complementarity, in principle it also makes sense to consider a
combination of both classifiers.
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A quantum-inspired version of the nearest mean classifier

Fig. 2 Experimental results obtained for the Gaussian dataset: a dataset used in the experiments, b classification obtained using NMC, c classifi-
cation obtained using QC

Table 1 Gaussian dataset
E E1 E2 Pr k TPR FPR

NMC 0.457 ± 0.065 0.409 ± 0.108 0.503 ± 0.096 0.544 0.085 0.544 0.456

QC 0.246 ± 0.064 0.291 ± 0.096 0.203 ± 0.088 0.756 0.502 0.753 0.247

As for the two-class Gaussian dataset, the three classes612

appear quite overlapped, and once again, the computation of613

the error and the other statistical indices evaluated for both614

QC and NMC shows that the first one is more convenient615

especially for the classification of the first- and second-class616

patterns (Table 2).7617

7 In this case, by combining QC and NMC together, the mean error
decreases up to about 0.247 (±4.280).

5.2.3 The Moon dataset 618

This dataset consists of 200 patterns equally distributed in 619

two classes. In this case, we observe a mean error reduction 620

of about 4%. In particular, the classification error related to 621

the second class is very similar for both NMC and QC, while 622

we can note that the QC turns out to be particularly beneficial 623

in the classification of the first-class patterns (for which the 624

error decreases by about 10%). 625
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Table 2 3Gaussian dataset

E E1 E2 E3 Pr k TPR FPR TNR FNR

NMC 0.358 ± 0.046 0.385 ± 0.085 0.422 ± 0.094 0.272 ± 0.077 0.651 0.462 0.640 0.179 0.821 0.360

QC 0.288 ± 0.045 0.296 ± 0.097 0.310 ± 0.084 0.259 ± 0.083 0.723 0.567 0.712 0.144 0.856 0.288

5.2.4 The Banana dataset626

The Banana dataset presents a particularly complex distri-627

bution that is very hard to deal with the NMC. Indeed, the628

classification error we get by using the NMC is high and629

we would not use it in practice. Anyway, as we have already630

explained, we consider this particular dataset in order to show631

the substantial difference between two approaches (i.e., min-632

imum distance classifiers) having the same nature (Fig. 3;4 633

Table 3).634

This dataset consists of 5300 patterns unequally dis-635

tributed between the two classes (2376 patterns belonging636

to the first class and 2924 belonging to the second one). In637

this case, the QC turns out to be beneficial in terms of all sta-638

tistical indices and for both classes8 it exhibits a mean error639

reduction of about 3% (Figs. 4, 5; Table 4).640

Let us notice that, in accordance with the well known No641

Free Lunch Theorem (Duda et al. 2000), even if the previ-642

ous examples exhibit a (particular or partial) benefit of the643

QC with respect to the NMC, in general there is no classi-644

fier whose performance is better than all the others for any645

dataset. This paper is focused on the comparison between646

the NMC and the QC because these methods are exclusively647

based on the pattern-centroid distance. Anyway, a wide com-648

parison among the QC and other commonly used classifiers649

(such as the LDA—Linear Discriminant Analysis—and the650

QDA—Quadratic Discriminant Analysis) will be proposed651

for future works, where also other quantum metrics (such as652

the Fidelity, the Bures distance etc) instead of the trace dis-653

tance and alternative definitions of quantum centroids will654

be considered to provide an adaptive version of the quantum655

classifier.656

6 Geometrical generalization of the model657

In Sect. 3, we provided a representation of an arbitrary two-658

feature pattern x in terms of a point on the surface of the Bloch659

sphere S2, i.e., a density operator ρx. A geometrical extension660

of this model to the case of n-feature patterns inspired by661

quantum framework is possible.662

8 Similarly to the Gaussian case, also for the Banana dataset, the NMC
is able to correctly classify some points unclassified by the QC. Indeed,
by considering the combination of both classifiers, the mean error can
decrease up to 10%.

In this section, by generalizing the encoding proposed in 663

Sect. 2, we introduce a method for representing an arbitrary 664

n-dimensional real pattern as a point in the radius-one hyper- 665

sphere Sn , centered in the origin. 666

A quantum system described by a density operator ρ in 667

an n-dimensional Hilbert space H can be represented by a 668

linear combination of the n-dimensional identity I and n2 −1 669

(n ×n)-square matrices {σi } [i.e., generalized Pauli matrices 670

(Bertlmann and Krammer 2008; Kimura 2003)]: 671

ρ =
1

n
I +

1

2

n2−1
∑

i=1

riσi , (16) 672

where the real numbers {ri } are the Pauli components of ρ. 673

Hence, by Eq. (16), a density operator ρ acting on an n- 674

dimensional Hilbert space can be geometrically represented 675

as a (n2 − 1)-dimensional point P = (r1, r2, . . . , rñ) in 676

the Bloch hypersphere Sñ−1, with ñ = n2 − 1. Therefore, 677

by using the generalization of the stereographic projection 678

(Karlıǧa 1996), we obtain the vector x = (x1, x2, . . . , xñ−1) 679

that is the correspondent of P in Rn2−2. In fact, the general- 680

ization of Eqs. (2–3) is given by 681

S P(ñ) : (r1, r2, . . . , rñ) %→
(

r1

1 − rñ
,

r2

1 − rñ
, . . . ,

rñ−1

1 − rñ

)

682

= (x1, x2, . . . , xñ−1) (17) 683

S P−1
(ñ)

: (x1, x2, . . . , xñ−1) 684

%→

(

2x1
∑ñ

i=1 x2
i + 1

, . . . ,
2xñ−1

∑ñ
i=1 x2

i + 1
,

∑ñ
i=1 x2

i − 1
∑ñ

i=1 x2
i + 1

)

685

= (r1, r2, . . . , rñ). (18) 686

Hence, by Eq. (17), a two-dimensional density matrix is 687

determined by three Pauli components and it can be mapped 688

onto a two-dimensional real vector. Analogously, a three- 689

dimensional density matrix is determined by eight Pauli 690

components and it can be mapped onto a seven-dimensional 691

real vector. Generally, an n-dimensional density matrix is 692

determined by n2 −1 Pauli components and it can be mapped 693

onto an n2 − 2-dimensional real vector. 694

Now, let consider an arbitrary vector x = (x1, x2, . . . , xm) 695

with (n−1)2 −1 < m < n2 −2. In this case, Eq. (18) cannot 696

be applied because m ,= n2 − 2. In order to represent a in an 697

n-dimensional Hilbert space, it is sufficient to involve only 698

m + 1 Pauli components (instead of all the n2 − 1 Pauli 699

components of the n-dimensional space). Hence, we need to 700
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A quantum-inspired version of the nearest mean classifier

Fig. 3 Experimental results obtained for the 3ClassGaussian dataset: a dataset used in the experiments, b classification obtained using NMC, c
classification obtained using QC

Table 3 Moon dataset
E E1 E2 Pr k TPR FPR

NMC 0.211 ± 0.057 0.212 ± 0.094 0.210 ± 0.076 0.789 0.572 0.789 0.211

QC 0.174 ± 0.047 0.118 ± 0.075 0.226 ± 0.079 0.831 0.649 0.828 0.172

project the Bloch hypersphere Sn2−2 onto the hypersphere701

Sm . We perform this projection by using Eq. (18) and by702

assigning some fixed values to a number of Pauli components703

equal to n2 − m − 2. In this way, we obtain a representation704

in Sm that involves m + 1 Pauli components and it finally705

allows the representation of an m-dimensional real vector.706

Example 2 Let us consider a vector x = (x1, x2, x3). By Eq.707

(18), we can map x onto a vector rx = (r1, r2, r3, r4) ∈ S3.708

Hence, we need to consider a three-dimensional Hilbert space709

H. Then, an arbitrary density operator ρ ∈ Ω3 can be written710

as711

ρ =
1

3

(

I +
√

3

8
∑

i=1

riσi

)

(19) 712

with {ri } Pauli components such that
∑8

i=1 r2
i ≤ 1 and {σi } 713

generalized Pauli matrices. In this case, {σi } is the set of eight 714

3 × 3 matrices also known as Gell-Mann matrices, namely 715

σ1 =





0 1 0

1 0 0

0 0 0



 , σ2 =





0 −i 0

i 0 0

0 0 0



 , σ3 =





1 0 0

0 −1 0

0 0 0



 , 716
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Fig. 4 Experimental results obtained for the Moon dataset: a dataset used in the experiments, b classification obtained using NMC, c classification
obtained using QC

Table 4 Banana dataset
E E1 E2 Pr k TPR FPR

NMC 0.448 ± 0.017 0.425 ± 0.028 0.466 ± 0.021 0.554 0.107 0.554 0.446

QC 0.419 ± 0.015 0.387 ± 0.022 0.446 ± 0.023 0.583 0.165 0.584 0.416

717

σ4 =





0 0 1

0 0 0

1 0 0



 , σ5 =





0 0 −i

0 0 0

i 0 0



 , σ6 =





0 0 0

0 0 1

0 1 0



 ,

σ7 =





0 0 0

0 0 −i

0 i 0



 , σ8 =
1

√
3





1 0 0

0 1 0

0 0 −2



 .

(20)718

719

Consequently, the generic form of a density operator ρ in the 720

three-dimensional Hilbert space is given by 721

ρ =
1

3





√
3r3 + r8 + 1

√
3(r1 − ir2)

√
3(r4 − ir5)√

3(r1 + ir2) −
√

3r3 + r8 + 1
√

3(r6 − ir7)√
3(r4 + ir5)

√
3(r6 + ir7) 1 − 2r8



 .

(21) 722
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A quantum-inspired version of the nearest mean classifier

Fig. 5 Experimental results obtained for the Banana dataset: a dataset used in the experiments, b classification obtained using NMC, c classification
obtained using QC

Then, for any ρ, it is possible to associate an eight-723

dimensional Bloch vector r = (r1, . . . , r8) ∈ S7. However,724

by taking r j = 0 for j = 5, . . . , 8, we obtain725

ρx =
1

3





√
3r3 + 1

√
3(r1 − ir2)

√
3r4√

3(r1 + ir2) −
√

3r3 + 1 0√
3r4 0 1



 (22)726

that, by Eq. (18), can be seen as a point projected in S3, where727

S P−1
(4) (x) = rx728

=

(

2x1
∑3

i=1 x2
i + 1

,
2x2

∑3
i=1 x2

i + 1
,

2x3
∑3

i=1 x2
i + 1

,

∑3
i=1 x2

i − 1
∑3

i=1 x2
i + 1

)

.729

(23)730

The generalization introduced above allows the representa- 731

tion of arbitrary patterns x ∈ Rn as points ρx ∈ Sn as a 732

natural extension of the encoding proposed in Sect. 2. Also, 733

the classification procedure introduced in Sect. 4 can be nat- 734

urally extended for an arbitrary n-feature pattern where the 735

normalized trace distance between two DPs ρa and ρb can 736

be expressed using Eq. (17) in terms of the respective Pauli 737

components as 738

d tr(ρa, ρb) =

√

∑n
i=1[(rai − rbi

) − (rai ran+1 − rbi
ran+1)]2

(1 − ran+1)(1 − rbn+1
)

. 739

(24) 740

Analogously, also the QC could be naturally extended to a 741

n-dimensional problem (without loss of generality) by intro- 742

ducing a n-dimensional quantum centroid. 743
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7 Conclusions and further developments744

In this work, we have proposed a quantum-inspired version745

(QC) of the nearest mean classifier (NMC) and we have746

shown some convenience of the QC by comparing them747

on different datasets. Firstly, we have introduced a one-to-748

one correspondence between two-feature patterns and pure749

density operators by using the concept of density patterns.750

Starting from this representation, firstly we have described751

the NMC in terms of quantum objects by introducing an752

ad hoc definition of normalized trace distance. We have753

found a quantum version of the discrimination function by754

means of Pauli components. The equation of this surface was755

obtained by using the normalized trace distance between den-756

sity patterns. Geometrically, it corresponds to a surface that757

intersects the Bloch sphere. This result could be potentially758

useful because it suggests to find an appropriate quantum759

algorithm able to provide a quantum version of the NMC in760

a quantum computer, with a consequent significative reduc-761

tion in the computational complexity of the process (Lloyd762

et al. 2013; Wiebe et al. 2015).763

Secondly, a suitable definition of a quantum centroid that764

does not have a classical direct correspondence permits to765

introduce a quantum classifier, which can be considered as766

a quantum-inspired version of the NMC, i.e., a minimum767

distance classifier.768

The main implementative result of the paper consists of769

comparing the performance of NMC and QC on datasets with770

different properties. In particular, we found out that the QC771

may exhibit some better performance sensitive to the data772

dispersion. Then, the QC seems to be promising for classi-773

fying datasets whose classes have mixed distributions more774

difficult to treat by using the NMC. This also suggests to775

compare the QC with other standard classifiers as a further776

development. Further developments will be devoted to com-777

pare the QC with other commonly used classical classifiers.778

Finally, we have presented a generalization of our model779

that allows to express arbitrary n-feature patterns as points780

on the hypersphere Sn , obtained by using the generalized781

stereographic projection. However, even if it is possible to782

associate the points of a n-hypersphere to n-feature patterns,783

these points do not generally represent density operators. In784

Kimura (2003), Jakóbczyk and Siennicki (2001), Kimura and785

Kossakowski (2005), the authors found some conditions that786

guarantee the one-to-one correspondence between the points787

on particular regions of the hypersphere and density matri-788

ces. A full development of our work is therefore intimately789

connected to the study of the geometrical properties of the790

generalized Bloch sphere.791
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