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Abstract Nowadays, it is very popular to make friends,

share photos and exchange news throughout social net-

works. Social networks widely expand the area of peo-

ple’s social connections and make communication much

smoother than ever before. In a social network, there

are many social groups established based on common

interests among persons, such as learning group, family

group, reading group, etc. People often describe their

profiles when registering as a user in a social network.

Then social networks can organize these users into groups

of friends according to their profiles. However, an im-

portant issue must be considered, namely, many users’

sensitive profiles could have been leaked out during this

process. Therefore, it is reasonable to design a privacy
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preserving friends finding protocol in social network.

Toward this goal, we design a fuzzy interest matching

protocol based on private set intersection. Concretely,

two candidate users can first organize their profiles into

sets, then use Bloom filters to generate new data struc-

tures and finally find the intersection sets to decide

whether being friends or not in the social network. The

protocol is shown to be secure in the malicious model

and can be useful for practical purposes.

1 Introduction

Social network is a multi-function platform for mem-

bers to communicate with each other conveniently and

establish social relationship. There exist many kinds
of social network services, such as instant messaging,

photo sharing, news discussion, instant financial pay-

ing, etc. At present, Facebook, Twitter, Myspace, QQ,

WeChat and many other social network platforms has

all become extremely popular around the world. It is

estimated that the record number of sharing contents

everyday on Facebook is as high as 4 billion and that

number for twitter is about 340 million. Furthermore,

due to the fast development of mobile social networks,

people could publish information about videos, photos,

articles and so on at any time and any place, which

makes communication and sharing with friends very

convenient.

Usually social network users tend to build their on-

line social network from real social friends, such as rela-

tives, colleagues, classmates etc. [5,16]. But this might

not fully satisfy the requirements of online communica-

tion. For example, football fans would like to pay at-

tention to news and techniques around football. Thus

they would have more preferences on setting up a social
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group on discussing about football. Therefore, social

networks should provide a platform for people to com-

municate and add someone as friends according to their

will on purely on personal knowledge or personal rela-

tions. However, some sensitive information, such as per-

sonal attributes and locations, could be abused, which

can contribute to serious concerns. In order to preserve

the privacy of information sharing, we design a scenario

and adapt some measures to deal with the related se-

curity problems.

Let us consider the following scenario which can be

seen in Fig. 1: Alice and Bob are strangers in a so-

cial network. Alice finds that Bob’s interests are sim-

ilar with her interests, so she wants to be a friend to

Bob. However, Alice wouldn’t like to leak her privacy to

other people when facing strangers. Therefore, an ac-

cess for them to enable interaction in the social network

is needed.

Let us consider additionally the following scenario:

Alice and Bob are strangers in a social network. Alice

finds that Bob’s interests are similar with himself, so

she wants to be a friend to Bob. In some cases, Alice

wouldn’t like to leak his privacy to other people when

facing strangers. So, a secure access for them to interact

is a basic requirement.

A way to deal with this problem can be as follows:

actually, both parties can’t interact with each other di-

rectly in social networks. They need to get the help

of SNSP (social network service provider) to transmit

information. Alice and Bob can’t communicate inde-

pendently, while both of them can communicate with

SNSP, according to the following steps.

1. Assume that Alice wants to inquire friendship to

someone who has common interests with her and

makes a request to SNSP.

2. When SNSP obtains the request of Alice, it will se-

lect some users in accordance with the conditions

and make a set of interest for Alice. If Alice likes

reading novels, watching cartoons and seeing movies,

the set will be VAlice = {novel, cartoon,movie}.
Similarly, the interest set for Bob will be VBob =

{basketball,
novel, program}.

3. Alice and Bob will take a fuzzy matching, each with

its own set. If succeed, they will be friends. If not,

their friendship in the social network would not be

established.

1.1 Paper’s Contribution

In this paper, we present a variant of Private Set In-

tersection (PSI) and design a secure protocol of fuzzy

interest matching for friends finding in social networks.

This variant is shown secure in the malicious model,

based on Bloom filter and homomorphic encryption.

We then present an outsourced computation scheme in

which the client outsources his complex computation

tasks to a trusted powerful service provider P . This is

each time more commonplace in the cloud computing

where service providers can provide large number of re-

sources and powerful computation ability [21,27,28,26,

6].

Compared with the state of the art, our protocol has

some advantages that are drawn by evaluating its se-

curity and performance. Our protocol has the following

properties:

• Being more secure

– The PSI variant and the outsourced scheme are

provably secure in the malicious model. There-

fore, our protocols based on PSI are against ma-

licious adversary. The previous works presenting

secure schemes in the malicious model are [7,9,

13,14,15,17,20].

– Our scheme is secure in the standard model (with-

out random oracles). The only cryptographic as-

sumption is the decisional composite residuosity.

– Our scheme is client set-size independent. Al-

though we set the upper bound on the size of

the client set, this is not related to client set-size.

We check the server for the client set elements to

get the intersection. Therefore, the client doesn’t

need to meet the requirements of false positive.

• Being more efficient

– The PSI variant has linear complexity O(m),

where m denotes the size of Bloom filter. The

outsourced protocol is very efficient and the only

expensive cost is hash function, which can achieve

linear complexity O(n), where n represents the

number of set elements. Whereas, previous pro-

tocols with linear complexityO(v+w) [10], where

v and w also represent the number of elements

in the set.

– We encrypted Bloom filters by Paillier cryptosys-

tem with additive homomorphic property. The

server only performs modular multiplication rather

than expensive operations, such as modular ex-

ponentiations. In order to reduce the computa-

tion task of the client, we outsource complex

computation load to the service provider P .

– We used Bloom filter that is based on hash func-

tion to store elements of both sides. Note that

the hash functions are not full domain hash func-

tions.

• Supporting homomorphic computation
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Fig. 1: Interest matching for two social network users

Homomorphic encryption allows specific types of

computations to be carried out on ciphertexts and

generates an encrypted result. In this paper, we uti-

lize an additive homomorphic public key cryptosystem-

Paillier encryption. What the server operates are ci-

phertexts, which can guarantee the security of the

client. Practically, we want the server to perform

additive operation for plaintexts, but it couldn’t be

likely to execute on plaintexts. To achieve our goal,

the server only performs modular multiplication that

can compute what we need to get the intersection.

This is a main advantage of our protocol.

1.2 Paper Organization

The remainder of this paper is organized as follows:

In Section 2, we refer to related work on this research

topic. Some preliminaries concepts, definitions and ter-

minology are given in Section 3. In Section 4, we present

our proposal constructed by Paillier cryptosystem and

its additive homomorphic property, where we also prove

its security and analyse its efficiency and in Section 5 we

present the protocol. Further in Section 6, we present

an outsourced computation scheme. We summarize this

paper’s contributions and give an outlook to future

work in Section 7.

2 Related Work

In Eurocrypt’04, Freedman, Nissim and Pinkas [13] firstly

presented protocols based on homomorphic encryption

and balanced hashing for both semi-honest and mali-

cious environments. Since then, there have been pro-

posed a large number of private set intersection proto-

cols. These protocols can be classified into four kinds.

1. Based on oblivious polynomial evaluation. Oblivious

polynomial evaluation is an effective way to con-

struct private set intersection. It doesn’t need to

disclose the coefficients of a polynomial. The main

idea is considering the elements set as the roots of

the polynomial. One can evaluates it on the other

party’s set elements obliviously. The protocol pre-

sented by Freedman et al.[13] is based on oblivi-

ous polynomial evaluation. Cheielewski and Hoep-

man [4] considered that the construction proposed

by Freedman is incorrect, and proved that a client

can obtain server’s elements on the condition that

they don’t have the same elements. These protocols

are used by generic zero-knowledge proofs and se-

cure in the semi-honest model and malicious model.

Dachman et al. [7] don’t use generic zero-knowledge

proofs and presented an improved construction se-

cure against malicious adversaries. Hazay and Nis-

sim [15] also put forward private set intersection

protocols based on random oracle model in secure

and malicious environments, respectively.

2. Based on oblivious pseudo-random functions. The

main idea of oblivious pseudo-random functions is

that the client can evaluate a keyed and pseudo-

random function on its put. But the key is con-

trolled by the server. The goal is to compute the

intersection on the pseudo-random functions of the

set elements. Then, the client gets the result of the

pseudo-random function obliviously. Hazay and Lin-

dell [14] presented the first protocol, Jarecki, Liu [18]

and Decristofaro [10] et al. improved these protocols

later.

3. Based on Bloom filters. In 2012, Many, Burkhart

and Dimitropoulos [23] present a secure multiplica-

tion protocol based on Bloom filters and each party

obtains an intersection. But the intersection Bloom

filter leaks out information of other parties. Ker-

schbaum [19] constructs an outsourced private set

intersection protocol using Goldwasser-Micali ho-

momorphic encryption. But the protocol has high

communication overhead. Changyu Dong et al. [12]

proposed two protocols based on the semi-honest
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and malicious model, which are much faster. Deb-

nath and Dutta [11] proposed two constructions of

PSI-CA, one is secure in the standard model and the

other is secure in the random oracle model under the

Decisional Diffie-Hellman assumption against ma-

licious adversary. However, the ideas of their con-

struction are different with the prior work.

4. Based on blind signature. The idea of these protocols

based on blind signature is to present or aggregate

signatures set elements, hash the result of the verifi-

cation and compute the intersection on the hashes.

The advantage of using blind signatures is that the

client could obtain a signature without disclosing

it. In 2009, Camenisch and Zaverucha [3] presented

a private set intersection protocol that requires the

input set must be signed and certified by a trusted

party. De Cristofaro and Tsudik [7], presented pro-

tocols secure against semi-honest adversaries and

have linear complexity, which is the most efficient

protocol at present. Along this line, De Cristofaro

et al. [9] extended the protocols to the malicious

model.

3 Preliminaries and Notations

3.1 Fuzzy Private Matching

In Eurocrypt04, Freedman, Nissim and Pinkas first in-

troduced the private fuzzy matching problem. The prob-

lem is defined for two parties and each of them owns

a set respectively. Every set has T elements. The one

party computes the fuzzy set intersection of two sets.

If there exist at least t similar elements in the intersec-

tion, then the two set matches successfully. The process

to compute the intersection should guarantee the secu-

rity of the other party’s set and that won’t leak out any

information. At the same time, the other party won’t

learn anything about the content.

Let us suppose that the vectors of client’s set is C =

{a1, a2, · · · , aT } and the server’s set is S = {s1, s2, · · · , sT }.
When there are at least t common elements between C

and S, we denote C ≈t S.

3.2 Bloom Filters

A Bloom filter [1] is a compact data structure support-

ing for data storage and membership querying, as can

be seen Fig. 2. It is an array of m bits that can repre-

sent a set S = {s1, s2, · · · , sn) with at most n elements.

A Bloom filter couples with a set of k independent uni-

form hash functions H = (h0, h1, · · · , hk−1} such that

each hi maps elements to index numbers over the range

[0,m − 1] uniformly. We give a Create Algorithm for

client in Fig. 3. Further, we use BFs to denote a Bloom

filter that encodes the set S , and use BFs(i) to denote

the bit at index i in BFs. For example, in Fig. 2, when

initializing, all bits in the array are set to 0. To insert

an element x ∈ S into the filter, the element is hashed

using the k hash functions to get k index numbers. The

bits at all these indexes in the bit array are set to 1, set

BFs[hi(x)] = 1 for 0 ≤ i ≤ k−1. To check if an element

y is in S, y is hashed by the k hash functions and all

locations y hashes are checked. If any of the bits at the

locations is 0, y is not in S, otherwise y is probably in

the set S.

However, a Bloom filter could have false positive in

practice. It is possible that y is not in the set S, but all

locations of BFS [hi(y)] are all equal to 1. A particular

bit in the Bloom filter is set to 1, the probability of

which is p = 1−(1−1/m)kn. Bose, Guo and Kranakis [2]

proved the upper bound of the false positive probability

is:

ε = pk · (1 +O(
k

p

√
ln(m)− k ln(p)

m
))

which is negligible in k. Given T elements added into

Bloom filter and the maximum false positive rate 2−k,

the necessary size of Bloom filter m can be set to Tk
ln2 2

.

3.3 Paillier Encryption Scheme

In this section, we briefly introduce the Paillier encryp-

tion scheme. The paillier encryption scheme [25] is a

probalistic public-key algorithm, which is composed of

key generation, encryption, and decryption as follows:

1. Key Generation: Choose two large prime numbers p

and q randomly such that

gcd(pq, (p− 1)(q − 1)) = 1

compute

n = pq, λ = lcm(p− 1, q − 1)

where lcm stands for the least common multiple.

Select random integer g by checking the existence

of the following modular multiplicative inverse:

µ = (L(gλ(modn2)))−1(modn)

where function L is defined as L(u) = µ−1
n . Note

that the notation a/b denote the quotient of a di-

vided by b. Finally, the public (encryption) key is

(n, g) and the private (decryption) key is (λ, µ).

2. Encryption: Let m be a message to be encrypted and

m ∈ Zn. Select random r where r ∈ Z∗n, compute

the ciphertext c = gm · rn(modn2).
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Create Algorithm(n, m, C, BFC)

Input: n, m, a set C

Output: a Bloom filter BFC

1   for all x ∈C

2         for i = 0 to m-1

3               BFC[i]=0

4          End for

5          for i =0 to k-1

6                 j = hash(x)

7                 if BFC [j]==0  then

8                        BFC [j]=1

9                 End if

10         End for

11  End for

Fig. 3: Create Algorithm

Paillier Security: The paillier encryption scheme was proved

semantic security against chosen-plaintext attacks (IND-
CPA) under the decisional composite residuosity (D-
CR) assumption. In our scheme, we mainly encrypt 0
or 1. For the same 0 or 1, choosing different random r

could be encrypted into different numbers, which ben-
efit our construction to some extent.

4 Security model

Before introducing our new protocols, we briefly dis-
cuss the security models of adversaries for two-party
protocols[24]. Security of protocols in the real model is

evaluated by comparison to an ideal model. In the ideal
model, client and server submit their input to a trusted
third party that can execute PSI protocols and returns
the final result to the client. Goldreich gives definitions

of the semi-honest model and the malicious model.

In the malicious model, a malicious adversary can
behave arbitrary feasible deviated from the specified

program. We consider the real model in which a re-
al protocol is executed. A malicious party may follow

an arbitrary feasible strategy which gets an auxiliary

input. Particularly, the malicious party may refuse to
participate or abort the execution at any point in time,
which is different from the semi-honest party. But we
can simulate the same behavior of every adversary in

the ideal model.

5 Fuzzy matching protocol based on PSI

We exploit the properties of Paillier encryption to con-
struct our scheme, which includes five stages. Our fuzzy
matching protocol based on PSI is introduced in the

following. The similar elements between two sets are
obtained by PSI protocol and then the result of fuzzy
matching would be achieved.

5.1 Proposed Scheme Based on the Malicious Model

1. Encryption: First, the client will generate private key
and public key of Paillier encryption scheme. The

client encrypts BFC with public key.

E(BFC) = [E(BFC(0)), · · · , E(BFC(m− 1))]

Fig. 3: Create Algorithm

3. Decryption: Let c be the ciphertext to decrypt, where

c ∈ Z∗n2 . Compute the plaintext messages as m =

L(cλ(modn2)) · µ mod n.

Homomorphic Properties: Given two ciphertexts E(m1,

PK) = gm1rn1 (modn2) and E(m2, PK) = gm2rn1 (mod

n2), where r1 and r2 are randomly chosen from Z∗n, we

have

E(m1, pk) · E(m2, pk)

= (gm1rn1 )(gm2rn2 )(modn2) = gm1+m2(r1r2)n(modn2)

= E(m1 +m2, pk)

Paillier Security: The Paillier encryption scheme was

proved semantic secure against chosen-plaintext attacks

(IND-CPA) under the decisional composite residuosity

(DCR) assumption. In our scheme, we mainly encrypt

using 0 or 1. For the same 0 or 1, choosing different

random r could be encrypted into different numbers,

which benefit our construction to some extent.

4 Security model

Before introducing our new protocols, we briefly dis-

cuss the security models of adversaries for two-party

protocols [24]. Security of protocols in the real model is

evaluated by comparison to an ideal model. In the ideal

model, client and server submit their input to a trusted

third party that can execute PSI protocols and returns
the final result to the client. Goldreich gives definitions

of the semi-honest model and the malicious model.

In the malicious model, a malicious adversary can

behave arbitrary feasible deviated from the specified

program. We consider the real model in which a real

protocol is executed. A malicious party may follow an

arbitrary feasible strategy which gets an auxiliary in-

put. Particularly, the malicious party may refuse to

participate or abort the execution at any point in time,

which is different from the semi-honest party. But we

can simulate the same behaviour of every adversary in

the ideal model.

5 Fuzzy Matching Protocol based on PSI

We exploit the properties of Paillier encryption to con-

struct our scheme, which includes five stages. Our fuzzy

matching protocol based on PSI is introduced in the
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following. The similar elements between two sets are

obtained by PSI protocol and then the result of fuzzy

matching would be achieved.

5.1 Proposed Scheme Based on the Malicious Model

1. Encryption: First, the client will generate private key

and public key of Paillier encryption scheme. The

client encrypts BFC with public key.

E(BFC) = [E(BFC(0)), · · · , E(BFC(m− 1))]

The client will transfer E(BFC) to the server di-

rectly.

2. Computation: The server receives E(BFC) from client

and computes the following formulas according to

Paillier encryption’s homomorphic properties, that

is:

E(BFC) · gBFs
= E([BFC [0] +BFS [0], · · · ,
BFC [m− 1] +BFS [m− 1])

= E(BFC +BFS) = E(BFC∪S)

Therefore, we can find that the client and the server’s

two Bloom filters are added together (see Fig. 4).

Then, the server generates r = [r0, · · · , rm−1] ∈ Zmq
randomly and computes E(r(BFC∪S/2)). That is:

E(r(BFC∪S/2))

= E[(r0[BFC [0] +BFS [0]− 2], · · · ,
rm−1[BFC [m− 1] +BFS [m− 1]− 2])]

= E[BFC∪S ] · E(−2)r

= E(BFC) · gBFS · E(−2)r

Next, the server will transfer E(r(BFC∪S/2)) to the

client. In the real execution, the server could com-

pute the final result of E(r(BFC∪S/2)) rather than

store the intermediate results, such as E(BFC∪S) or

E(BFC) · gBFs .
3. Recover: From the outcome of E(r(BFC∪S/2)), the

client will decrypt E(r(BFC∪S/2)) with private keys.

The client can calculate the value of r(BFC [i] +

BFS [i]−2). If r(BFC [i]+BFS [i]−2) equals 0, we can

know BFC [i] = BFS [i] = 1 and then BFC∪S [i] = 1.

Otherwise BFC [i] 6= BFS [i] and then BFC∪S [i] = 0.

4. Check: For any x ∈ C, if the locations in BFC∪S
mapped by hash(x) are all 1, then x ∈ C ∪S as can

be seen from Alg. 1.

In our algorithm, we can compute the elements of

C ∪ S and thus get the number of similar elements

of C and S. We record this number as t.

Algorithm 1 Check Algorithm (BFC∪S , a set C and

a set C ∪ S.
Require: A bloom filter BFC∪S , a set C and a set C ∪ S.
Ensure: True if x ∈ C, false else.
1: for all x ∈ C,
2: for i = 0 to k − 1.
3: i = hash(x)
4: End For
5: If all BFC∪S [i] = 1 then
6: x ∈ C ∪ S
7: End if
8: End For

5. Match: The client computes η = t
n . If η meets the

requirements of system, they would be friends. Else,

the client would reject the request of the server.

5.2 Analysis of Our Scheme

Correctness. As we know, all location of Bloom filters are

0 or 1. The Fig. 4 shows the details of two Bloom filters

added together and subtracted by 2. If we don’t con-

sider the encryption of them, both Bloom filters added

together will be BFC∪S that each location is 0, 1 and

2. When the client receives E(r(BFC∪S/2)) from the

server, what we encrypt is -1, 0 and -2. Let’s consider

BF [i]+BF [i]−2, namely E(r(BFC [i]+BFS [i]−2)) =

E(r · 0) = E(0). We can find that the outcome de-

crypted by the client is 0, the result will be BFC [i] =

BFS [i] = 1. Therefore, the intersection of both Bloom

filters BFC∪S can be achieved and the client executes

the Check Algorithm to compute the similar elements

with server.

Security proof. The security of our scheme is based

on the security of private set intersection protocol. In

order to prove the security of our scheme, we only need

to prove the security of PSI protocol. We give security

proof by comparison between the real model and an

ideal model. The real model is the execution of our PSI

protocol. The ideal model is the execution of the set

intersection protocol implemented by a trusted server.

Furthermore, the client and the server may behave arbi-

trarily during protocol execution except protocol abor-

tion.

Theorem 1 If the decisional composite residuosity (DCR)

assumption holds, then the protocol PSI implements pri-

vate set intersection in the malicious model securely.

Proof 1. Confidentiality of the client: All inputs of the

client are encrypted by Paillier encryption. Although

what we encrypt is 0 or 1, the results of encryption

are different numbers. In other words, the server

can’t identify the distribution of 0s and 1s. Besides,
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0 1 … 1 BFC01

1 1 … 111 BFS

+

1 2 … 2
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-1 0 … 0
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Fig. 4: Two Bloom filters added together and subtracted by 2.

security in PSI is based on IND-CPA secure encryp-

tion that can guarantee the security of client.

2. Confidentiality of the server: The server only com-

putes the final results according to the algorithm

and can’t decrypt it to get BFC without private

keys. To prove the security of our scheme against

malicious adversary, it must be shown that for any

possible client (server) behaviour in the real model,

there is an input that the client (server) provides to

the Trusted Third Party (TTP) in the ideal model,

such that his view in the real protocol is efficiently

distinguishable from his view in the ideal model.

Therefore, we give two constructions of simulator

SIMS and SIMC from a malicious real world. We

first give the simulator SIMS .

(a) Constructions of a simulator SIMS from a ma-

licious real world server S′:

i. The simulator SIMS encodes server’s all el-

ements by BFS .

ii. The simulator SIMS receives E(BFC) from

the client and simulates E(r(BFC∪S/2)).

iii. The simulator SIMS now plays the role of

the ideal server interacting with the ideal

client.

Since Paillier encryption scheme is IND-CPA se-

cure under the decisional composite residuosity

(DCR) assumption, the view of the malicious

server S′ in the simulation by SIMS and in the

real protocol are indistinguishable.

(b) Constructions of a simulator SIMC from a ma-

licious real world client C ′:

i. The simulator SIMC encodes the client’s all

elements by BFC and receives the encrypted

results E(BFC) from malicious client C ′.

ii. The simulator SIMC receives the input

E(r(BFC∪S/2)) from the ideal server and

records it.

iii. The simulator SIMC plays the role of the

ideal client and simulates r(BFC∪S/2).

Since the server can’t modify the computing re-

sults without private key in the real model, what

the client receives could be secure and confidential.

Therefore, the view of the malicious client C ′ in the

simulation by SIMC and in the real protocol is in-

distinguishable.

5.3 Complexity Analysis

The complexity of our protocol is O(m), m represents

the size of Bloom filter. We used hash function, Pail-

lier encryption and modular multiplication. We analyse

the efficiency of our protocol in terms of computation,

communication and storage.

• Computational complexity: To build BFC or BFS ,

each party needs n·k hash operations. For the client,

it needs to encrypt BFC by Paillier encryption with

pubic keys and decryptm ciphertexts. For the server,

it only needs to compute m times modular multipli-

cation.

• Memory complexity: The client needs to keep a copy

of two Bloom filters, one is BFC and the other is

BFC∪S . Meanwhile, it also needs to store m cipher-

texts. The server needs to keep a copy of one Bloom

filter and m ciphertexts.

• Communication complexity: The data transferred in

this protocol is m ciphertexts.

In the Table 1, tp , th and tm represents the com-

putational cost of one time Paillier encryption, hash

function and modular multiplication.
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Table 1: Efficiency analysis

Complexity Client Server
Computation nkth + mtp nkth + mtm

Communication m group elements m group elements
Storage 2mbit+m group elements mbit+m group elements

In order to demonstrate our scheme’s efficiency, we

evaluate its performance. The computation cost of the

proposed scheme is roughly evaluated on a personal

computer with 3.6GHz eight-core and 12GB RAM mem-

ory [22]. We currently use SHA-1 to build Bloom filters

and let N be 1024 bits to achieve 80-bits security. The

reference running time of Paillier encryption and de-

cryption can be seen in Table 2. Compared with Paillier

encryption, the computation cost of hash function and

modular multiplication can be neglected. Therefore, the

computation cost of client depends on the cost of Pail-

lier encryption. Furthermore, the computation cost de-

pends on the size of Bloom filter. Now, we let k = 80

and give different values of m and n to acquire the im-

plementation. When we compute the cost of client, we

neglect the cost of hash function and only take Paillier

encryption and decryption into consideration.

As the Table 1 and Fig. 5 show, the computation

cost of our protocol has linear complexity O(m). In

other words, the performance of our protocol depends

on the size of Bloom filter. However, it is different from

[9,10], whose complexity is O(n). Compared with the

server, the client has large computational overhead. If

this protocol is implemented in the smart phone, the

overhead of the client would be much larger. Therefore,

an outsourced fuzzy matching protocol is presented to

solve this problem.

6 Outsourced fuzzy matching protocol

In our scheme, the Paillier encryption is the most ex-

pensive operation executed by the client. In many cases,

the client maybe mobile phones, PDA and other small

devices, with limited computation resources. Outsourc-

ing computation allows resource-constrained clients to

outsource their complex computation workloads to a

server which has powerful computation ability and larger

computation resources.

6.1 Outsourced Paillier cryptosystem

Now, we give an efficient and secure outsourced algo-

rithm for Paillier cryptosystem.

• The protocol for encryption algorithm is the follow-

ing:

1. The client runs Rand algorithm (Rand can be

easily implemented in mobile devices) to gener-

ate random pairs (α, gα0 mod N2) and (β, gβ0 mod

N2), which can be completed during the offline

phase such as charging for mobile devices.

2. The client computes ggα0 , rg
β
0 ,mα+Nβ, g, g0 and

outsources them to the cloud.

3. The cloud computes P = (ggα0 )m mod N2, Q =

(rgβ0 )N mod N2, R = gmα+Nβ0 mod N2 and re-

turns them to the client.

4. The client computes PQ
R mod N2.

• The protocol for decryption algorithm is the follow-

ing:

1. The client runs Rand algorithm to generate ran-

dom pairs (α′, gα
′

0 mod N2) and (β′, gβ
′

0 mod N2).

2. Suppose the ciphertext is c, the client computes

cgα
′

0 , λα
′ − β′, g0, g and outsources them to the

cloud.

3. The cloud computes P = (cgα
′

0 )λ mod N2, Q =

gλα
′−β′

0 mod N2 and returns them to the client.

4. The client computes L( P

Qgβ
′

0

mod N2)µ mod N ,

which is the outcome of decryption.

6.2 Outsourced protocol

This outsourced protocol mainly aims at reducing the

cost of public key encryption for client computation.

The difference from the above protocol can be seen in

the following.

1. Outsourced encryption: The client outsources the

encryption of BFC to the cloud and returns the en-

crypted E(BFC) to the server.

2. Homomorphic computation: The server also com-

putes the result of E(r(BFC∪S/2)) and returns it

to the client.

3. Outsourced decryption: The client outsources E(r(BFC∪S/2))

to the cloud and decrypts it for the result of r(BFC∪S/2).

4. Recover, check and match: This step is the same

as the Section 5. Finally, the client obtains the in-

tersection and judges whether the two sets match

successfully or not.
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Table 2: The cost of Paillier cryptosystem

Algorithm [22] Enc Dec
PC run time 7.660ms 8.221ms

Smart phone run time 44.727ms 45.904ms

Fig. 5: The computation cost of the client.

6.3 Security Analysis

The security of this protocol depends on the security of

public key encryption.

Theorem 2 If the decisional composite residuosity (DCR)

assumption and discrete logarithm holds, then the out-

sourced protocol PSI implements private set intersection

in the malicious model.

Proof The client outsources its input to the cloud and

computes ciphertexts. The cloud receives inputs from

the client and the cloud can’t decrypt it to get the plain-

texts or key data. Therefore, the client can obtain the

true output from the cloud. In the protocol execution,

the server only receives encrypted messages. These are

all secure due to IND-CPA security of our encryption

scheme.

6.4 Performance Analysis

Throughout outsourcing, the client reduces the heavy

computation task. From Table 3, the client only needs

to do hash functions and doesn’t need to execute com-

plex public key encryption. In Section 3, the notion

of m has been explained in detail. For the security of

our constructions, m is at least of nk/ln2
2 ≈ 0.48nk.

Therefore, the computation time of Section 5 will be

nk(th + 0.48tp). As shown in the Table 3 and Table 4

(see also [8]), and from the Paillier encryption has much

more expensive cost than hash function even though

they are in the different platforms. From the perspec-

tive of the order of magnitude, the time cost of hash

function can be neglected. Whereas in the outsourced

protocol, the only operation is hash function and the

efficiency is improved greatly. In conclusion, this out-

sourced protocol is much more efficient than the former

version of the protocol.

We also roughly evaluate its performance using the

software Crypto++ 5.6.0 running on Windows Vista

Intel Core2 1.83GHZ 32-bit mode [8]. SHA-1 is used

for hash functions. Given a number k of different hash

functions and set size n, such that k = 80, 128, 192, 256

and n = 210, 212, 214, 216, 218, 220, the time cost of the

client is shown in the Fig. 6 and Fig. 7. It can be seen

from the figures that the computation time of the client

has the relation to the multiplication of nk and the hash

operation. When the values of n is fixed, the computa-

tion time increases linearly with the increase of k. When

the values of k is fixed, the same characteristic is pre-

sented. Therefore, this protocol is very efficient and can

support large scale data sets.

7 Conclusion

This paper presented two fuzzy matching protocols based

on Private Set Intersection protocol. They are all against

malicious adversaries in the standard model and can be

used in social network for many applications like find-
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Table 3: The comparison of client computation

Protocol Client Computation
Our non-outsourced proposal nkth + mtp

Our outsourced proposal nkth

Table 4: The cost for running SHA-1 one time

Windows Vista Intel Core2 1.83GHZ 32-bit mode setting Time Cycles=1/1.83GHZ
Algorithm cycles/Byte

SHA-1 11.4

Fig. 6: The cost of the client in space diagram form Fig. 7: The cost of the client in histogram form

ing friends. The overhead of the existing protocol in the

literature is very high due to the large computation of

the client. To solve this problem, we proposed an out-

sourced protocol that can reduce the computation over-

head of the client significantly. Compared with the prior

work, the securities of two protocols can be achieved in

malicious model. The efficiency of the former protocol

can achieve linear complexity and the latter protocol is

much more efficient than the former and can support

friends finding in large social networks.
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