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Abstract

Domain theory has its origins in Mathematics and Theoretical Computer Science. Mathematically it combines order
and topology. Its central concepts have their origin in the idea of approximating ideal objects by their relatively finite or,
more generally, relatively compact parts.

The development of domain theory in recent years was mainly motivated by question in denotational semantics and
the theory of computation. But since 2008, domain theoretical notions and methods are used in the theory of C∗-algebras
in connection with the Cuntz semigroup.

This paper is largely expository. It presents those notionsof domain theory that seem to be relevant for the theory of
Cuntz semigroups and have sometimes been developed independently in both communities. It also contains a new aspect
in presenting results of Elliott, Ivanescu and Santiago on the cone of traces of a C∗-algebra as a particular case of the dual
of a Cuntz semigroup.

1 Introduction

Continuous lattices have emerged in quite distant areas under various disguises, and the equivalence of the different
definitions is not straightforward. The two main sources arein topological algebra on the one hand and in semantics of
untypedλ-calculus at the other hand.

In 1974, published in 1976 [18], K. H. Hofmann and A. R. Stralka arrived at the characterization that is now adopted
generally. In this work on compact semilattices, it was their aim to characterize order theoretically those compact Haus-
dorff semilattices that admit a separating family of continuous semilattice homomorphism into the unit interval[0, 1].
These compact semilattices were also calledLawson semilattices. The following relation turned out to be crucial (see
[18, p. 27, lines 20ff.]: For elementsx, y in a complete lattice they say thatx is relatively compact iny if every open
covering(ui)i of y (akay ≤ supi ui) contains a finite subcoverui1 , . . . , uin of x (akax ≤ ui1 ∨ · · · ∨ uin ). This termi-
nology was chosen since, in the lattice of open subsets of a locally compact Hausdorff space, this relative compactness
notion agrees with the common use of relative compactness intopology: An open subsetV is relatively compact in an
open subsetW if the closure ofV is compact and contained inW . The Lawson semilattices were characterized to be
those complete lattices, where each element is the supremumof its relatively compact parts, and they called these lattices
relatively algebraic. Later on, terminology changed:relatively compact inwas replaced by the shorterway-below.

Two years before, in 1972, D. S. Scott’s seminal paper [32] with the titleContinuous Latticeshad appeared. In this
paper Scott provided the first models for the untypedλ-calculus using what he had calledcontinuous lattices. It took
some time until the attention of the compact semilattice community was drawn towards Scott’s paper. It was only shortly
before the appearance of [18] in 1976 that it was discovered that Scott’s continuous lattices were precisely the relatively
algebraic lattices in the sense of Hofmann and Stralka.
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Continuous lattices were mainly used in denotational semantics of programming languages. In view of those appli-
cations a generalization from complete lattices to directed complete partially ordered sets (dcpos, for short) was needed.
Because of the lack of finite suprema, the relationx way-belowy had to be defined by saying that every directed family
(ui)i coveringy (akay ≤ supi ui) contains an elementuio coveringx (aka,x ≤ uio ), and a dcpo was said to be acontin-
uous dcpo(a domain, for short), if each of its elementsy is the supremum of a directed family of elementsxi way-below
y. The term ’domain’ has its origin in the use of these structures as semantic domains.

The author recently discovered that domain theoretic notions and constructions are used in the theory of C∗-algebras.
These developments were initiated in a paper by Coward, Elliot and Ivanescu [5] in 2008. Their aim was to introduce a
new invariant for C∗-algebras that is finer than the K-groups. This invariant is called the Cuntz semigroup and is a kind of
completion of the classical ordered semigroup introduced by J. Cuntz [6] in 1978. In [5] and the follow-up papers domain
theory is not used in its classical form. A variant is considered where the set system of directed subsets is replaced by
increasing sequences or, equivalently, by countable directed sets. Thus, partially ordered sets are considered in which
not all directed sets but only increasing sequences are required to have a least upper bound. An elementx is said to be
compactly contained iny if, every increasing sequenceun coveringy (akay ≤ supn un) contains an elementun0

already
coveringx (akax ≤ un0

). The Cuntz semigroupS of a C∗-algebra as introduced in [5] has the following properties
among others:

(O0)S is a partially ordered commutative monoid with0 as smallest element,
(O1) every increasing sequence has a least upper bound,
(O2) every elementy is the least upper bound of an increasing sequence of elementsxn compactly contained iny,
(O3) if xi is compactly contained inyi for i = 1, 2, thenx1 + x2 is compactly contained iny1 + y2,
(O4) addition is continuous in the sense that it preserves suprema of increasing sequences.

A structure with these properties is then called anabstract Cuntz semigroup.
A whole series of papers has appeared since that time with further developments. The author of these lines has been

working in domain theory for more than 30 years. He discovered the new developments around the Cuntz semigroups
through a paper by Antoine, Perera and Thiel [4]. It turns outthat domain theoretical concepts and methods play a more
important role than expected. Quite some properties have been rediscovered, other developments occur in parallel to
developments in domain theory.

This paper is largely expository. Its purpose is to establish a common platform for communication between domain
theory and the community working on Cuntz semigroups. But italso pursues a specific purpose: In 2011, Elliott, Robert
and Santiago [8] have published results on the space of lowersemicontinuous traces and 2-quasi-traces of C∗-algebras.
The proofs for the two cases seem to follow a common pattern. The same pattern can be found in a paper by Plotkin in
2009 [28] on a Banach-Alaoglu type theorems for continuous directed complete partially ordered cones. Plotkin’s results
and methods have been refined and generalized by the author just recently [21]. These results when specialized to abstract
Cuntz semigroups give a unified proof for the results of Elliott, Robert and Santiago. For this, we show how the positive
cone of a C∗-algebra can be viewed as an abstract Cuntz semigroup. It is not amazing that the ingredients for our proof
can all be found in the paper of Elliott, Robert and Santiago.

In this presentation, I do not adopt the countable variant ofdomain theory as used in the C∗-algebra community. I
use dcpos, the way-below relation and domains as in the monograph [16]. The future will show, if I will be convinced to
change to the countable point of view. It is well-known that other subset systems can be used instead of directed sets, and
quite analogous developments can be carried through. One may consult a survey by Erné [11] on such variants of domain
theory.

The authors from the C∗-algebra community avoid the term ’way-below’ as if it wouldbe contagious. They use
’compactly contained in’, sometimes ’far below’. I do not mind other terminologies, but remain with ’way-below’ from
time to time, and I hope that nobody feels uneasy about it.

ACKNOWLEDGMENT I am grateful to Hannes Thiel for corrections and useful suggestions.
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2 Predomains and c-spaces

We want to stress the concept of a predomain. In the same way asHilbert spaces are completions of pre-Hilbert spaces,
domains are obtained from predomains by a completion process, the round ideal completion. Domains can be defined in
terms of partial orders but have a strong topological flavor.Similarly, predomains occur under two different but equivalent
disguises: as relational and as topological structures.

The notion of a predomain is not new at all. It is motivated by the notion of a basis for domains. This notion
has been axiomatized as a relational structure first by M. Smyth [33] (under the name of anR-structure) and it occurs
under the name of anabstract basisin standard texts on Domain Theory, most prominently in the Handbook article by
Abramsky and Jung [1, Section 2.2.6], where abstract bases are used for free constructions [1, Chapter 6]. This aspect
has been rediscovered by Antoine, Perera and Thiel [4] for constructing tensor products of abstract Cuntz semigroups.
The topological variant is due to Erné [9, 10] under the nameof a c-space and independently to Ershov [14, 15] under the
name of anα-space. It was Ershov that insisted on omitting the completeness properties required for domains. He had
advocated this aspect already in his early work on computable functionals of higher type; his f-spaces and a-spaces are
early manifestations (see [12, 13]).

It seems to me that these concepts have not yet attracted the attention that they deserve. The defining properties are
amazingly simple and at the same time as powerful as those of domains. For this reason, I propose a new name that
stresses the importance by calling thempredomains.

2.1 Predomains

Let us concentrate first on the relational aspect. Apredomainis a setP equipped with a binary relation≺≺ that is transitive

a≺≺ b≺≺ c =⇒ a≺≺ c (Trans)

and satisfies the followinginterpolation propertyfor every finite subsetF and every elementc:

F ≺≺ c =⇒ ∃b ∈ P. F ≺≺ b≺≺ c (IP)

whereF ≺≺ c is an abbreviation for ’a≺≺ c for all a ∈ F ’.
ForF we may choose the empty set and in this case the interpolationproperty says:

∀c. ∃b. b≺≺ c (IP0)

ChoosingF to be a singleton, the interpolation property above impliesthe ordinary interpolation property

a≺≺ c =⇒ ∃b. a≺≺ b≺≺ c (IP1)

ChoosingF to be a two element set, the interpolation property reads:

ai≺≺ c (i = 1, 2) =⇒ ∃b. ai≺≺ b≺≺ c (i = 1, 2) (IP2)

Clearly (IP0)and (IP2) together are equivalent to (IP). We use the notation:

��c = {b ∈ P | b≺≺ c}, ��c = {a ∈ P | c≺≺ a}

The following is our basic example:

Example 2.1. LetX be a locally compact Hausdorff space,C0(X) theC∗-algebra of all complex valued continuous
functions defined onX that vanish at infinity. Its positive coneC0(X)+ consisting of thosef ∈ C0(X) with nonnegative
real values is a poset with the usual pointwise orderf ≤ g if f(x) ≤ g(x) for all x. There is a natural predomain
structure onC0(X)+ defined by

f≺≺ g if f ≤ (g − ε)+

where(g − ε)+ is the function with valuemax(g(x)− ε, 0) for everyx ∈ X .
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For the relation≺≺ on a predomainP we use a terminology borrowed from the partially ordered sets: A subsetD of
P is said to be≺≺-directedif, for every finite subsetF of D, there is an elementc ∈ D such thatF ≺≺ c.

A subsetD′ of a≺≺-directed setD is said to be≺≺-cofinal if, for everyd ∈ D there is ad′ ∈ D′ such thatd≺≺ d′.
Such a≺≺-cofinal subsetD′ is also≺≺-directed. Indeed, for a finite subsetF ⊆ D′ ⊆ D there is and ∈ D such that
F ≺≺ d and, choosing an elementd′ ∈ D′ such thatd≺≺ d′ we obtainF ≺≺ d′.

A subsetQ of a predomainP is said to be≺≺-denseif, whenevera≺≺ c holds for elements inP , there is an element
b ∈ Q such thata≺≺ b≺≺ c.

Remark 2.2. A≺≺-dense subsetQ of a predomainP is a predomain when equipped with the relation≺≺ restricted toQ
and, for everyc ∈ P , the set��Qc = ��c ∩Q is cofinal in��c.

Clearly the restriction of≺≺ toQ is transitive. For the interpolation property (IP) consider a finite subsetF of Q and
supposeF ≺≺ c for somec ∈ Q, thenF ≺≺ b≺≺ c for someb ∈ P by (IP) and so we can find an elementb′ ∈ Q such
thatb≺≺ b′≺≺ c, whenceF ≺≺ b′≺≺ c.

2.2 Continuous posets and domains

Let (P,≤) be a partially ordered set (poset, for short). For elementsa, b in P we say thata is relatively compact inb (a
is way-belowb, for short) and we writea ≪ b if, for every directed subsetD such thatb ≤ supD, there is an element
d ∈ D with a ≤ d, wheneverD has a least upper boundsupD in P . We say thatP is acontinuous posetif for every
elementb ∈ P the set

��b = {a ∈ P | a≪ b}

is directed andb = sup ��b.
In a continuous poset, ifa ≪ b and ifD is a directed subset such thatb ≤ supD, there is ad ∈ D such that even

a≪ d.
If (P,≤) is a partially ordered set such that every directed subset has a supremum, we say thatP is directed complete

(adcpofor short). A continuous dcpo is called adomain.
The relation≪ in a posetP has the following properties:

a≪ c =⇒ a ≤ c (1)

a≪ b ≤ c =⇒ a≪ c (2)

d ≤ a≪ b =⇒ d≪ b (3)

Remark 2.3. Every continuous poset is a predomain, when equipped with its relation≪.

Proof. For transitivity, suppose thata ≪ b ≪ c. Thenb ≤ c by property (1), whencea ≪ c by property (2). For the
interpolation property (IP) letF ≪ a for a finite subsetF . The family of sets��b with b ≪ a is directed, and each of the
sets��b is directed. ThusD =

⋃
b≪a

��b is directed, too, andsupD = a. For everyf ∈ F we havef ≪ a. Thus, there is
an elementdf ∈ D with f ≤ df . SinceD is directed, we find an elementd ∈ D such thatf ≤ d for every elementf in
the finite setF . Since ford ∈ D there is an elementb such thatd≪ b≪ a, we haveF ≪ b≪ a.

Any ≪-dense subsetB of a continuous posetP is called abasisof P . By remark 2.2 every basisB is a predomain
for the relation≪ restricted toB; for everyc ∈ P , the set��Bc = ��c∩B is directed and cofinal in��c so thatc = sup ��Bc.

But there are important predomain structures for which relation≺≺ is not derived from a partial order as above. This is
illustrated best by our basic example 2.1 of the coneC0(X)+ of nonnegative continuous real valued functions vanishing
at infinity on a locally compact Hausdorff spaceX . This cone carries a natural pointwise orderf ≤ g if f(x) ≤ g(x)
for all x ∈ X . The predomain relation≺≺ does not agree with the relation≪ onC0(X)+ derived from the partial order
except for very special cases. Let us chooseX to be the unit interval with its usual compact Hausdorff topology where
we denote by1 the constant function with value1. Then(1 − ε)1≺≺ 1, but(1 − ε)1 6≪ 1. Indeed,fn(x) = x1/n is an
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increasing sequence of continuous functions and1 is the least upper bound of this sequence in the poset(C0([0, 1])+,≤)
(although not the pointwise supremum) and(1− ε) ·1) 6≤ fn for all n. Thus(1− ε) ·1) 6≪ 1. By a similar argument one
can show that there is nof ≪ 1 except for the constant function0.

The point in the example(C0(X)+,≤) is that there is a difference between least upper bounds in the poset
(C0(X)+,≤) and pointwise least upper bounds. We say that a functionf : X → R+ vanishing at infinity is the pointwise
supremum of an increasing sequence or a directed family of functionsfi in C0(X)+ if f(x) = supifi(x) for every
x ∈ X . By Dini’s theorem,f is then continuous and thefi converge tof uniformly. The predomain relation≺≺ may be
defined by using this strengthened notion of pointwise leastupper bound instead of the notion of a least upper bound in
the poset(C0(X)+,≤).

It is important to consider predomain structures≺≺ not derived from partial orders as≪ in the case of continuous
posets. In the contrary, partial orders can be derived from predomain structures as we will see. Predomains are more
general and may be more important than continuous posets.

In the same vein, I propose to replace the notion of a preCuntzsemigroup as considered in [3, Definition 2.1] by a
more appropriate structure: commutative predomain monoids with an additive relation≺≺ (see below 3.1).

2.3 The round ideal completion

We have seen that every domainD is a predomain for its way-below relation. More importantly, predomains occur as
bases of domains. Let us see that every predomain has a completion which is a domain.

A round idealis a subsetJ of a predomainP with the following properties: (1)J is≺≺-directed and (2) ifa≺≺ b ∈ J ,
thena ∈ J . This is equivalent to the requirement that a finite subsetF of P is contained inJ if and only if there is an
elementb ∈ J such thatF ≺≺ b.

For every elementb ∈ P , the set
��b = {a ∈ P | a≺≺ b}

is a round ideal.

Proposition 2.4. The setRI(P ) of all round ideals of a predomainP ordered by inclusion is a domain, called theround
ideal completionof the predomainP . The way-below relation onRI(P ) is given byI ≪ J if there is an elementb ∈ J

such thatI ⊆ ��b. The round ideals��a, a ∈ P , form a basis of the round ideal completion.

Proof. Since the union of a family of round ideals that is directed under inclusion is a round ideal, the collectionRI(P )
of all round ideals is directed complete.

Given two round idealsI andJ , suppose thatI ≪ J . SinceJ is the union of the round ideals��c with c ∈ J , we
obtainI ⊆ ��c for somec ∈ J . Suppose conversely that this latter condition is satisfiedand suppose thatJ is contained in
the union of a directed family of round idealsJj . Thenc ∈ Ji for somei and consequently��c ⊆ Ji. HenceI ≪ J .

By the characterization of the way-below relation, the round ideals of the form��c, c ∈ P , are≪-dense inRI(P ) and,
hence, form a basis.

Since the round ideals��c, c ∈ P , form a basis for the round ideal completion, they form a predomain, when equipped
with the restriction of the relation≪ onRI(P ). One may conjecture thata≺≺ b if, and only if,��a≪ ��b. It is indeed true
thata≺≺ b in P implies��a≪ ��b in RI(P ). But the converse is not true in general as the following example shows (thus,
not every predomain is the basis of a domain):

Example 2.5. LetD be the union of[0, 1]2 and the segment{r(1, 1) | 1 ≤ r ≤ 2} in R
2. OnD we take the coordinatewise

order. ThenD is a continuous lattice with the way-below relation:(a, b) ≪ (a′, b′) iff 1 < a′ = b′, (a, b) ∈ [0, 1]2 or
a < a′ ≤ 1, b < b′ ≤ 1 or a < a′ ≤ 1, b = b′ = 0 or a = a′ = 0, b < b′ ≤ 1 or a = a′ = b = b′ = 0.

We can weaken this way-below relation to a relation≺≺ by strengthening the first set of inequalities to1 < a′ =
b′, a < 1 or b < 1. Thus, for example(1, a) ≪ (2, 2) but not(1, a)≺≺ (2, 2). The round ideal completion of(D,≺≺) is
the continuous latticeD.
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A predomain is calledstratifiedif

��a≪ ��b in RI(P ) =⇒ a≺≺ b in P

By the characterization of the relation≪ in Proposition 2.4, this is equivalent to

��a ⊆ ��c, c≺≺ b =⇒ a≺≺ b

Every predomain can be stratified by strengthening the relation≺≺ to: a≺≺s b iff ��a ≪ ��b in the round ideal completion
iff there is ac≺≺ b such that��a ⊆ ��c.

Replacing≺≺ by≺≺s on a predomainP does not change the round ideal completion. Indeed, a domainis the round
ideal completion of any of its bases, and the predomain(P,≺≺s) may be identified with the basis of all��a, a ∈ P , of the
round ideal completionRI(P ).

The containment order on round ideals induces anatural preorderon the predomainP : Definea ≤ a′ if ��a ⊆ ��a
′,

that is, ifc≪ a impliesc≪ a′.
The property

a≺≺ c ≤ b =⇒ a≺≺ b (2)

then holds for any predomain. The corresponding property

a ≤ c≺≺ b =⇒ a≺≺ b (3)

does not hold for predomains, in general; it holds if and onlyif the predomain is stratified.

Example 2.6. Let us return to our basic exampleC0(X)+ of nonnegative real-valued functions vanishing at infinity
defined on a locally compact Hausdorff spaceX viewed as predomain as in 2.1. This predomain is stratified. Its round
ideal completion can be identified with the domainLSC(X) of all lower semicontinuous functionsg fromX to the one
point compactificationR+ = R+ ∪ {+∞} of the nonnegative reals. A round idealJ of C0(X)+ is identified with the
functiong defined byg(x) = supf∈J f(x). The way-below relation≪ on LSC(X) is given byg ≪ h if there is an
f ∈ C0(X)+ such thatg ≤ f ≤ (h− ε)+ for someε > 0.

2.4 c-Spaces

Let us turn now to the topological variant of predomains. Thetopologies occurring in this context are highly non-
Hausdorff. This is not a default but an essential feature. Indeed these topologies combine order and topology.

In an arbitrary topological space(X, τ) we use thespecialization preorder: a ≤τ b if a belongs to the closure of
the singleton{b}, which is equivalent to saying that every open neighborhoodof a is also a neighborhood ofb. For any
elementx we denote by

↑x = {y ∈ X | x ≤τ y}

thesaturationof x, equivalently, the intersection of all open sets containingx. Continuous functions between topological
spaces preserve the respective specialization preorders.

A c-spaceis a topological spaceX with the property that every elementb has a neighborhood basis of sets of the form
↑x. c-Spaces have the remarkable property that separate continuity is equivalent to joint continuity, a property that has
been noticed by Ershov:

Proposition 2.7. LetX be a c-space andY andZ arbitrary topological spaces. Then every mapf : X × Y → Z that is
continuous separately in each of the two arguments is jointly continuous.

Proof. Let x0 andy0 be elements ofX andY , respectively, andU a neighborhood off(x0, y0). If x 7→ f(x, y0) is
continuous, there is a neighborhoodW of x0 such thatf(x, y0) ∈ U for everyx ∈ W . SinceX is a c-space, we may
suppose thatW = ↑x1 for somex1 ∈ X . Using thaty 7→ f(x1, y) is continuous, we find a neighborhoodV of y0 such
thatf(x1, y) ∈ U for all y ∈ V . Sincex 7→ f(x, y) is continuous for everyy, these maps preserve the specialization
order. Hence,f(x, y) ∈ U for all (x, y) ∈ ↑x1 × V and the latter set is a neighborhood of(x0, y0).
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2.5 Predomains and c-spaces

Every predomain(P,≺≺) carries a natural topologyτ≺≺ that turns it into a c-space: A subsetUofP is declared to be open,
if (1) x ∈ U andx≺≺ y imply y ∈ U and (2) for everyx ∈ U there is an elementz ∈ U with z≺≺ x, equivalently, if
U = ��U where

��U = {x ∈ P | ∃z ∈ U. z≺≺ x}

Proposition 2.8. On a predomain(P,≺≺) the open sets just defined form a c-space topology denoted byτ≺≺ for which
the sets��x = {y ∈ P | x≺≺ y}, x ∈ P form a basis. The specialization preorder agrees with the natural preorder of
(P,≺≺).

Proof. Clearly the union of any family of open sets in the sense just defined is open. The intersection of finitely many
open sets is open by the interpolation property (IP). The sets of the form��x are open by transitivity and the interpolation
property (IP1) and they form a basis for the topologyτ≺≺ by the interpolation property (IP2). The specialization preorder
for this topology agrees with the natural preorder sincex ≤s y iff every open neighborhood ofx containsy iff z ≺≺ x

impliesz≺≺ y iff ��x ⊆ ��y iff x ≤ y. Moreover every open neighborhoodU of x contains an elementz ≪ x so that↑z is
a subset ofU containing the open basic neighborhood��z of x. Thus(P, τ≺≺) is a c-space.

Conversely, on a c-space(P, τ) we consider thetopological way-below relationa≺≺τ b if ↑a is a neighborhood ofb.

Proposition 2.9. A c-space(P, τ) becomes a stratified predomain for the topological way-below relation≺≺τ . The
natural preorder associated with the relation≺≺τ agrees with the specialization preorder≤τ .

The topological way-below relation has the property thata′ ≤ a≺≺τ b =⇒ a′≺≺τ b, that is, it satisfies property (3).
Thus,(P,≺≺τ ) is a stratified predomain.

The two constructions almost yield a one-to-one correspondence between predomains and c-spaces. Starting with a
predomain(P,≺≺), then passing to the c-space topologyτ≺≺ and then extracting the topological way-below relation yields
the stratification of the original relation≺≺. Starting with a c-space, extracting its topological way-below relation and
forming then the associated c-space topology gives back theoriginal c-space topology.

On a domain, the c-space topology agrees with the Scott topology. Indeed, on a domain the sets of the form��a form
a basis of the Scott topology [16, Theorem II-1.14].

2.6 Countability conditions

A predomainP is said to befirst countableif, for every elementb, the round ideal��b has a countable≺≺-cofinal subset.
This is equivalent to the requirement that there is a sequencea1≺≺ a2≺≺ . . . which is≺≺-cofinal in��b. We say thatP is
second countableor countably basedif it has a countable≺≺-dense subsetB.

Our basic example(C0(X)+,≺≺) 2.1 is first countable choosingfn = (f − 1
n )+, n ∈ N, but not second countable in

general.
The first and second countability conditions for predomainscorrespond to first and second countability of the corre-

sponding c-space topologyτ≺≺, respectively.
The round ideal completion of a countably based predomain iscountably based. But the round ideal completion of a

first countable predomain need not be first countable:

Example 2.10. Our basic example(C0(X)+,≺≺) 2.1 is first countable. Choosingfn = (f − 1
n )+, n ∈ N, we obtain a

countable cofinal subset in the round ideal��f . The round ideal completion need not be first countable. As anexample,
letX be an uncountable discrete space. The round ideal completion ofC0(X)+ is the domain of all mapsg fromX to
R+. The mapsf ≪ g are those mapsf with finite support that satisfyf(x) < g(x) for all x in the support off . Because
of the uncountablity ofX , there cannot be a cofinal countable subset among the functionsf way-below, for example, the
constant function 1.
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A round idealI will be said to be countably generated or simply a roundω-ideal if it contains a sequence

a1≺≺ a2 ≪ . . .

such that, for everyb ∈ I, there is ann such thatb ≪ an. If P is first countable, theni(a) = ��a is a roundω-ideal and
we may form theω-completion, the collectionωRI(P ) of all roundω-ideals which isω-complete in the sense that the
union of every increasing sequence of roundω-deals is a roundω-ideal. The roundω-ideal completion is anω-domain.
By this we mean that every elementa is the supremum of a chaina1 ≪ω a2 ≪ω . . . , whereb ≪ω a if, for every
sequenceb1 ≤ b2 ≤ . . . with a ≤ supn bn, there is ann such thatb ≤ bn. In a first countable predomain there may exist
round ideals that are not countably generated as we have seenin 2.10. Another example is given by the ordered setΩ of
countable ordinals. Here, the setΩ itself is a round ideal that is not countably generated.

In the literature related to the Cuntz semigroup, first countability is always required following Coward, Elliott and
Santiago [5].

2.7 Morphisms

For predomains it is natural to consider mapsf : P → Q thatpreserve the relation≺≺, that isa≺≺ b impliesf(a)≺≺ f(b).
For the associated c-space topology that is equivalent to saying that↑f(U) is open for every open subsetU . Maps between
topological spaces will be calledopen, if they satisfy this property. (In topology, a map is calledopen if the image of
every open set is open. We have modified this definition, but insuch a way that for T1 spaces the new definition agrees
with the old one. For T0-spaces this new definition looks more appropriate.)

As for topological spaces in general, for c-spaces it is natural to consider continuous maps. Continuous maps preserve
the respective specialization preorders, but not the topological way-below relations. Accordingly, a mapf : P → Q

between predomains will be calledcontinuous, if it is continuous for the respective c-space topologies.This is equivalent
to the condition:

∀b ∈ P. ∀c ∈ Q. c≺≺ f(b) =⇒ ∃a ∈ P. a≺≺ b andc≺≺ f(a)

The canonical mapi : a 7→ ��a from a predomainP into its round ideal completion preserves the relation≺≺. It also is
continuous. Indeed, ifI is a round ideal withI ≪ ��a, then there is an elementb ∈ ��a such thatI ⊆ ��b. As a consequence,
i : a 7→ ��a is a topological embedding.

On posets and dcpos we use Scott continuity. A map between posets is said to beScott continuousif it is monotone
and preserves existing suprema of directed sets1. This order theoretic notion of continuity is equivalent tocontinuity with
respect to a topology, the Scott topology. The closed sets ofthe Scott topologyof a poset are those lower sets that are
closed for suprema of directed subsets, as far as they exist.

On domains one can consider the Scott topology and the associated c-space topology. Fortunately the two topologies
agree so that there is no ambiguity when talking about continuity of function from or into domains.

2.8 Universality of the round ideal completion

The canonical mapi : a 7→ ��a from a predomain(P,≺≺) into its round ideal completion is continuous and preserves
the relation≺≺. Both properties are consequences of the characterizationof the way-below relation on the round ideal
completion: Indeed, ifI is a round ideal withI ≪ ��a, then there is an elementc ∈ ��a such thatI ⊆ ��c which shows
continuity. For the preservation of≺≺, let a≺≺ b; interpolate an elementa≺≺ c≺≺ b and we have��a ⊆ ��c andc ∈ ��b,
that is��a≪ ��b.

The round ideal completion of a predomain has the desired universal property:

1It is interesting to remark that Hofmann and Stralka in their1976 paper [18, Definition 1.29] had proposed to callnormal those maps that preserve
existing directed suprema in analogy to the terminology used for W∗-algebras
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Proposition 2.11. For every continuous mapf from a predomain(P,≺≺) into a dcpoQ (with the Scott topology), there
is a unique continuous map̂f : RI(P ) → Q such thatf̂(��a) = f(a):

P
��✲ RI(P )

Q

f̂

❄

f

✲

If Q is a domain, the continuous extensionf̂ preserves≪ if and only iff preserves≪.

Proof. For uniqueness suppose thatf̂ : RI(P ) → Q is a continuous map satisfyinĝf(��a) = f(a). Any round ideal
J is the union of the directed family of��a, a ∈ J . Thus f̂(J) = f̂(

⋃
a∈P

��a) = supa∈P f̂(��a) (by continuity) =
supa∈P f(a).

We now definef̂ by f̂(J) = supa∈J f(a) for every round idealJ . We first remark that̂f is well defined, since
for a round idealJ of P the imagef(J) is directed. Indeed, a continuous map preserves the specialization order; the
specialization order on a predomain is the ordera ≤ b iff �� ⊆ ��b and the specialization order for the Scott topology on a
dcpo is the given order.

We now check that̂f is Scott-continuous. IfJi is a directed family of round ideals theJ =
⋃

i Ji is its supremum in
the domain of round ideals and̂f(J) = supa∈J f(a) = supi supa∈Ji

f(a) = supi f̂(Ji).

Now suppose thatQ is a continuous dcpo. If̂f preserves≪, thenf = f̂ ◦ �� preserves≪. Conversely, suppose
thatf preserves≪. Let I ≪ J in RI(A). There is ana ∈ J such thatb ≪ a for all b ∈ I. Let a ≪ a′ ∈ J . Then

f̂(I) = supb∈I f(b) ≤ f(a) ≪ f(a′) ≤
∨↑

b∈J f(b) = f̂(J). Thus,f̂ preserves≪.

For a continuous mapf from a predomainP to a predomainQ, the composition�� ◦ f : P → RI(Q) is continuous,
too. By the preceding proposition, there is a unique continuous mapRI(f) : RI(P ) → RI(Q) such thatRI(f)◦�� = ��◦f :

P
��✲ RI(P )

Q

f

❄

��

✲ RI(Q)

RI(f)

❄

and this map is defined byRI(f)(J) =
⋃

a∈J
��f(a) = ��f(J). Moreover,RI(f) preserves≪ if and only if f does. In

this way,RI becomes a functor from the category of predomains and continuous maps to the category of domains and
continuous maps. It restricts to a functor if one restricts to continuous maps preserving≪.

From a topological point of view, the round ideal completionRI(X) of a c-spaceX can also be seen to be the D-
completion in the sense of [22, Proposition 9.1] and equivalently as the sobrification [22, Proposition 10.2] . Thus it
has a more general universal property than the one shown above: For every continuous mapf fromX into a monotone
convergence spaceY (in particular, into every sober space), there is a unique continuous map̂f : RI(X) → Y such that
f̂(��x) = f(x) for all x ∈ X [22, Theorem 6.7]. But we will not use this more general pointof view in this paper.

Not all continuous maps fromRI(P ) to RI(Q) are induced by continuous maps fromP to Q, but only those that
map the basisP to the basisQ. As the continuous maps fromRI(P ) to RI(Q) are in one-to-one correspondence with
the continuous maps fromP to RI(Q), we may view these mapsF as set-valued maps fromP to Q, whereF (x) is a
round ideal ofQ for everyx ∈ P . Alternatively we may view these maps as a relationR ⊆ P × Q where(x, y) ∈ R

9



if y ∈ F (x). It is not difficult to axiomatize such relations; one has to write down, firstly, that the set of ally such that
(x, y) ∈ R form a round ideal and, secondly, thatF is continuous. One finds such axioms in [1, Definition 2.2.27].

3 PreCuntz semigroups and their duals

In this paper, amonoid(C,+, 0) will always be understood to be commutative. Thus,+ is a commutative associative
operation with neutral element0. A monoid homomorphismis a mapf between monoids such thatf(0) = 0 and
f(x+ y) = f(x) + f(y).

A coneis a monoid(C,+, 0) endowed with a scalar multiplication by real numbersr > 0 which satisfies the identities:
1 · a = a, (rs)a = r(sa), (r + s)a = ra+ sa, r(a+ b) = ra+ rb. One may extend the scalar multiplication tor = 0 by
defining0 · a = 0, and the above laws for the scalar multiplication remain valid. A linear map is a mapf between cones
which is a monoid homomorphism and satisfiesf(rx) = rf(x).

3.1 PreCuntz and Cuntz semigroups

A predomain monoid(C,+, 0,≺≺) is a monoid endowed with the structure of a predomain in such away that addition is
continuous.

We will say that the relation≺≺ is additiveif

0≺≺ a and a≺≺ a′, b≺≺ b′ =⇒ a+ b≺≺ a′ + b′

A predomain monoid in which the relation≺≺ is additive will also be called apreCuntz semigroup.
Since for c-spaces separate continuity implies joint continuity by Proposition 2.7, it suffices to require addition to be

separately continuous, that is, the mapsx 7→ a+ x to be continuous for everya. But the additivity of the relation≺≺ has
to be understood jointly as defined above. It is not sufficientto require thata≺≺ a′ impliesa+ b≺≺ a′ + b.

A directed complete partially ordered monoid (a dcpo-monoid, for short) is a monoid with a directed complete partial
order such that the addition is (Scott-) continuous. If the underlying dcpo is a domain, we say that it is adomain monoid.
A domain monoid with an additive way-below relation will be called aCuntz semigroup. Of course, a Cuntz semigroup
is also preCuntz; we just have to concentrate at the way-below relation.

Let us look at the round ideal completion of a preCuntz semigroupC. For two round idealsI andJ define

I + J =
⋃

a∈I,b∈J

��(a+ b)

ThenI+J is a round ideal. Indeed, ifc ∈ I +J , thenc≪ a+ b for somea ∈ I, b ∈ J . There area′ ∈ I andb′ ∈ J with
a≺≺ a′ andb≺≺ b′. By the additivity of the way-below relation we obtainc≺≺ a+ b≺≺ a′ + b′, whencec ∈ ��(a′ + b′),
that is,c ∈ I + J . Using Proposition 2.4 the following is easily verified:

Proposition 3.1. The round ideal completionRI(C) of a preCuntz semigroupC is a Cuntz semigroup. The mapa 7→
��a : C → RI(C) is a continuous monoid homomorphism preserving≪.

Proof. It just remains to verify that the continuous extensionf̂ according to 2.11 is a monoid homomorphism:f̂(I+J) =

f̂(
⋃

a∈I,b∈J
��(a + b) = supa∈I,b∈J f̂(��(a + b)) = supa∈I,b∈J f(a + b) = supa∈I,b∈J f(a) + f(b) = supa∈I f(a) +

supb∈J f(b) = supa∈I f̂(��a) + supb∈J f̂(��b) = f̂(I) + f̂(J).

The round ideal completion of a preCuntz semigroup we has theexpected universal property:

Proposition 3.2. If f : C → D is a continuous monoid homomorphism from a preCuntz semigroupC into a dcpo monoid
D, the unique continuous extension̂f : RI(C) → D satisfyingf̂(��a) = f(a) for all a ∈ C according to the universal
property 2.11 is a monoid homomorphism.
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Proof. It just remains to verify that the continuous extensionf̂ according to 2.11 is a monoid homomorphism:f̂(I+J) =

f̂(
⋃

a∈I,b∈J
��(a + b) = supa∈I,b∈J f̂(��(a + b)) = supa∈I,b∈J f(a + b) = supa∈I,b∈J f(a) + f(b) = supa∈I f(a) +

supb∈J f(b) = supa∈I f̂(��a) + supb∈J f̂(��b) = f̂(I) + f̂(J).

Corollary 3.3. For every continuous monoid homomorphismf : C → D of preCuntz semigroups there is a unique
continuous monoid homomorphismRI(f) : RI(C) → RI(D) such thatRI(f)(��a) = ��f(a) for all a ∈ C, andRI(f)
preserves≪ if and only iff does.

We now add scalar multiplication, thus passing from monoidsto cones. The properties stated before remain valid.
A preCuntz coneis a preCuntz monoid which is also a cone such that scalar multiplication is continuous as a map
R>0 × C → C, whereR>0 is considered as a predomain with< as its approximation relation. In a preCuntz cone the
mapx 7→ rx : C → C is continuous and it has a continuous inversex 7→ r−1x, that is, it is a homeomorphism. It follows
thatx≺≺ y impliesrx≺≺ ry for 0 < r < +∞.

The round ideal completion of a preCuntz cone is a Cuntz cone with a universal property analogous to the universal
property of the round ideal completion of a preCuntz semigroup: A dcpo-cone is understood to be a dcpo-monoidD

which is also a cone in such a way that the scalar multiplicationR>0 ×D → D is Scott-continuous. For every linear map
f from a preCuntz coneC to a dcpo-coneD the unique continuous extension̂f : RI(C) → D is linear.

Example 3.4. The nonnegative real numbers form a preCuntz coneR+ andR+ is its round ideal completion. In both
cases the approximation relation isr≺≺ s if r < s or r = s = 0. The addition is the usual one, extended byr+∞ = +∞.

Example 3.5. Our basic exampleC0(X)+ for a locally compact Hausdorff spaceX is a preCuntz cone with the usual
pointwise defined addition of functions. But notice thatf≺≺ f ′ does not implyf + g≺≺ f ′ + g. For example(x− 1

2 )+≺
≺ (x − 1

4 )+, butx + (x − 1
2 )+ 6≺≺ x + (x − 1

4 )+. Alsor ≪ s does not implyrf ≪ sf (for example ifX = [0, 1] and
f(x) = x, thenrf 6≪ sf , whenever0 < r < s).

The round ideal completion of(C0(X)+,≪) is LSC(X)+, the set of all lower semicontinuous mapsf : X → R+.
Here the way below relation is given byg ≪ h if there is af ∈ C0(X)+ and anε > 0 such thatg ≤ (f − ε)+, f ≤ h.

As a predomain,C0(X) is first countable, since(g − 1
n )+ ≪ (g − 1

n+1 )+ and since for everyf ≪ g we have
f ≪ (g − 1

n )+ for somen. I do not think that the roundω-ideal completion is what one wants to consider here, except
for those cases where it agrees withLSC(X)+.

Remark 3.6. The notion of an abstract Cuntz semigroup has been introduced by Coward, Elliott and Ivanescu [5]. First
countable preCuntz semigroups have been introduced by Antoine, Perera and Thiel under the name of a pre-W-semigroup
[4, Section 2.1]. They construct theirω-round ideal completions and prove a universal property of this construction [4,
Chapter 3].

3.2 Topologies on posets and function spaces

Let L be a poset, the order relation being denoted by≤. Denote byLop the same set with the opposite order≥. Besides
the Scott topologyσ onL one may consider the dual Scott topologyσop, the Scott topology ofLop. We are interested in
three other topologies onL that look quite simple at a first glance.

Theupper topologyτup has the principal ideals↓b = {y ∈ L | y ≤ b}, b ∈ L, as a subbasis for the closed
sets.

The lower topologyτlo has the principal filters↑a = {y ∈ L | y ≥ a}, a ∈ L, as a subbasis for the closed
sets

The interval topologyτiv is generated by the upper and the lower topology. The closed intervals[a, b] =
↑a ∩ ↓b are closed sets.
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We will use the following general observation: For completelatticesL andM , a mapβ : L → M preserving arbitrary
suprema has a lower adjointα : M → L defined byα(y) = sup{x ∈ L | f(x) ≤ y}. Thenα preserves arbitrary meets
andβ−1(↓y) = ↓α(y) which shows thatβ is continuous for the respective upper topologies. Similarly, α is continuous
for the respective upper topologies.

On R+, the extended nonnegative reals, the proper open sets of theupper topology are the intervals]r,+∞], the
proper open sets for the lower topology are the intervals[0, r[, and the interval topology is the usual compact Hausdorff
topology with the open intervals]r, s[ as a basis for the open sets. The analogous statement holds for subsets ofR+ as the
set of nonnegative realsR+ and the setR>0 of positive reals.

In agreement with classical analysis, a function from a spaceX into R+ is lower semicontinuous2 if and only if it is
continuous with respect to the upper topology onR+. We are interested in a special case.

Let (P,≺≺) be a predomain with its c-space topology and its natural preorder. We denote byLSC(P ) the set of all
lower semicontinuous functionsf : P → R+ ordered pointwise:f ≤ g if f(x) ≤ g(x) for all x ∈ P . We want to look at
the intrinsic upper, lower and interval topology on this function space.

Proposition 3.7. For a predomainP the function spaceLSC(P ) has the following properties:
(a) A subbasis for the upper topology ofLSC(P ) is given by:

Vx,r = {f ∈ LSC(P ) | f(x) > r}, x ∈ P, r ∈ R+

A net(fi)i of functions inLSC(P ) converges tof ∈ LSC(P ) for the upper topology if and only if:

f(x) ≤ lim inf
i

fi(x) for all x ∈ P (upConv)

(b) A subbasis for the lower topology is given by:

Wy,r = {f ∈ LSC(P ) | f(x) < r for somex ∈ ��y}, y ∈ P, r ∈ R+.

A net(fi)i of functions inLSC(P ) converges tof ∈ LSC(P ) for the lower topology if and only if:

lim sup
i

fi(y) ≤ f(x) whenevery≺≺ x in P (loConv)

(c) For the interval topology and the pointwise order,LSC(P ) is a compact ordered space. A net(fi)i of functions in
LSC(P ) converges tof ∈ LSC(P ) for the interval topology if and only conditions(upConv)and(upConv)hold.

The following developments contain a proof for the proposition.

We begin with a setP and we consider the powerR
P

+ of all functionsg : P → R+. With respect to the pointwise

order,R
P

+ is a complete lattice. Suprema and infima of arbitrary families of functions are formed pointwise. The lower,

upper and interval topology onR
P

+ agree with the product topologies of the lower, upper and interval topology onR+,

respectively. A net(fi)i in R
P

+ converges tof for the upper (resp., lower) topology if and only if does so pointwise, that
is, if and only if for everyx ∈ P ,

f(x) ≤ lim inf
i

fi(x) (resp.,lim sup
i

fi(x) ≤ f(x)) (Conv)

As a product of compact ordered spaces,R
P

+ is a compact ordered space for the interval topology.

Suppose now thatP is a preordered set and consider the collectionMON(P ) ⊆ R
P

+ of all monotone functions. Since

pointwise suprema and infima of monotone functions are monotone,MON(P ) is a complete sublattice ofR
P

+. Its intrinsic

2It looks incoherent to call a functionlower semicontinuous if it is continuous for theuppertopology onR+. But this is unavoidable if one want to
stay coherent with the use of lower semicontinuity in analysis and the terminology for topologies used in [].
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lower, upper and interval topology agree with the subspace topology induced by the lower, upper and interval topology

onR
P

+. Convergence is characterized as above andMON(P ) is closed inR
P

+, hence, a compact ordered space, for the
interval topology,

We now specialize further and suppose thatP is a topological space with its specialization preorder. The lower
semicontinuous functionsf : P → R+ form a subsetLSC(P ) of MON(P ), since continuous functions preserve the
specialization preorder. The pointwise supremum of a family of lower semicontinuous functions is again lower semicon-
tinuous, that is, the canonical injection ofLSC(P ) intoMON(P ) preserves arbitrary suprema. It follows thatLSC(P ) is
a complete lattice, too, and that the lower adjointenv : MON(P ) → LSC(P ) that assigns to every order preserving map
g : P → R+ its lower semicontinuous envelopeenv(g) = sup{f ∈ LSC(P ) | f ≤ g} preserves arbitrary infima. The
lower semicontinuous envelopeenv(g) is also given by

env(g)(x) = lim inf
ux

f(x) = sup
U∈ux

inf
z∈U

f(z) (Env)

for everyx ∈ P , whereux is any neighborhood basis ofx. The intrinsic upper topology of the latticeLSC(P ) is the

subspace topology induced by the upper topology onR
P

+. Indeed, ifg ∈ MON(P ) andf ∈ LSC(P ), then:

f ≤ g if and only if f ≤ env(g) (Adj1)

Thus convergence inLSC(P ) with respect to the upper topology is characterized by condition (upConv). This proves
claim (a).

Infima in LSC(P ) are not formed pointwise, in general. The infimum inLSC(P ) of a family of functionsfi is the
lower semicontinuous envelope of the pointwise infimum. Theintrinsic lower topology of the latticeLSC(P ) need no

longer be the subspace topology induced by the lower topology onR
P

+; it can be strictly finer.
We now suppose thatP is a predomain. By definition, a subbasis for the closed sets for the lower topology inLSC(P )

is given by the sets↑h = {f ∈ LSC(P ) | h ≤ f} whereh ranges overLSC(P ). If f 6∈ ↑h, there is anx0 ∈ P such that
f(x0) < h(x0). Chooser such thatf(x0) < r < h(x0). By lower semicontinuity, there is ay≺≺ x0 such thatr < h(y).
Thusf ∈ Wy,r) = {g ∈ LSC(P ) | g(x) < r for somex ∈ ��y} andWy,r) is disjoint from↓h. MoreoverWy,r is open
for the lower topology, since it is the complement of the subbasic lower closed set of allf ∈ LSC(P ) below the simple
lower semicontinuous functionrχ

��y
which has valuer if x ∈ ��u and value0 else. Thus the setsWy,r form a subbasis

for the lower topology ofLSC(P ).

Lemma 3.8. For every monotone mapg from a predomainP toR+, the lower semicontinuous envelope3 is given by

env(g)(x) = sup
y≪x

g(y)

for all x ∈ P and the mapenv : MON(P ) → LSC(P ) preserves not only arbitrary infima but also arbitrary suprema.

Proof. In a predomain, an elementx has a neighborhood basis of principal filters↑y with y≺≺ x. If g is monotone, we
have thatinfz∈↑y f(z) = f(y) and the above formula for the lower semicontinuous envelopesimplifies toenv(g)(x) =
supy≺≺x f(y).

We now take a family of monotone functionsgi : P → R+ and we show thatenv(supi gi) = supi env(gi). Using
the formula forenv(g) just proved we have indeed,env(supi gi)(x) = supy≺≺x supi gi(y) = supi supy≺≺x gi(x) =
supi env(gi)(x).

Since the mapenv maps preserves arbitrary infima and arbitrary suprema, it iscontinuous for the respective lower,
upper and interval topologies. It also has a lower adjointα characterized by

g ≤ α(f) if and only if env(g) ≤ f (Adj2)

3The lower semicontinuous envelope as given by formula (Env)is standard in analysis. The formula given in the special situation of this lemma is
standard in Domain Theory (see, e.g., [16, ], cite[]dom). Ithas been rediscovered in [8, Lemma 4.7], [29, Lemma 2.2.1].
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for f ∈ LSC(P ) andg ∈ MON(P ). Explicitly, α(f) = sup{g ∈ MON(P ) | env(g) ≤ f}.
We now finish the proof of claim (b) by considering a net(fi)i in LSC(P ). Suppose firstly that the netfi converges

to somef ∈ LSC(P ) for the lower topology. Sinceα is a lower adjoint, it is continuous for the lower topologies
so that the netα(fi) converges toα(f) for the lower topology inMON(P ). This means thatlim supi α(fi)(x) ≤
α(f)(x) for everyx ∈ P by condition (Cond). Passing to the lower semicontinuous envelope on both sides yields
supy≺≺x lim supi α(fi)(y) ≤ f(x) hencelim supi α(fi)(y) ≤ f(x) whenevery≺≺ x as in claim (b). Suppose conversely
that the latter property holds. In order to prove that the net(fi)i converges tof we take any subbasic neighborhoodWy,r

of f . Thenf satisfiesf(x0) < r for somex0 ∈ ��y. Choose anyx such thaty ≺≺ x ≺≺ x0. Sincelim supi fi(z) ≤
f(x0) < r, there is an indexj such thatfi(z) < r for all i ≥ j and we conclude thatfi ∈Wy,r for all i ≥ j.

In order to prove claim (c) we first observe thatLSC(P ) is compact for the interval topology, sinceMON(P ) is
compact for the interval topology and the mapenv : MON(P ) → LSC(P ) is continuous. The following lemma shows
that the order inLSC(P ) is closed for the interval topology so thatLSC(P ) is a compact ordered space.

Lemma 3.9. Let f 6≤ h in LSC(P ). Then there is a subbasic upper open neighborhoodV of f disjoint from some
subbasic lower open neighborhoodW of h.

Proof. Sincef 6≤ h. There is anx0 such thatf(x0) > h(x0). Choose anr with f(x0) > r > h(x0). By lower
semicontinuity, there is ay≺≺ x0 such thatf(y) > r. Now letVy,r be the sets of allf ∈ LSC(P ) such thatf(y) > r and
Wy,r the set of allf ∈ LSC(P ) such thatf(x) < r for somex with y≺≺ x. ThenVy,r andWy,r are disjoint subbasic
open sets for the upper and lower topology, respectively, containingf andh, respectively.

OnR+ addition is jointly continuous with respect to each of the three topologies (upper, lower and interval topology)
as a mapR+ × R+ → R+. Multiplication is jointly continuous as a mapR>0 × R+ → R+ for these three topologies4.
ThusR+ is a topological cone with respect to all of the three topologies (upper, lower and interval topology), where a
topological coneis a coneC with a topology such that addition and scalar multiplication are jointly continuous as maps
C × C → C andR>0 × C → C, respectively. This definition has to be read with caution: The question which topology
to use onR>0; one has to use the upper, lower and interval topology, respectively, in agreement with the topology used
onC.

SinceR+ is a topological cone, the powerR
P

+ is a topological cone, too, for the pointwise defined addition and
multiplication with real numbersr > 0, and this for each of the three topologies (lower, upper and interval topology). For
a preordered setP , the monotone functions form a subconeMON(P ). For a topological spaceP , the sumf + g of two
lower semicontinuous functionsf, g ∈ LSC(P ) and the scalar multiplerf for 0 < r < +∞ are lower semicontinuous,
too. ThusLSC(P ) is a subcone ofMON(P ). Furthermore, ifP is a predomain, the mapenv : MON(P ) → LSC(P ) is
linear. This is easily verified using the formula for the lower semicontinuous envelope in Lemma 3.8; but there is also a
general argument that we present after the statement of the next proposition. We conclude:

Proposition 3.10. LetP be a predomain.MON(P ) andLSC(P ) are ordered topological cones for their intrinsic upper,
lower and interval topologies, respectively. The mapenv : MON(P ) → LSC(P ) is linear, monotone and continuous for
each of the three topologies.

Recall that, in the previous proposition, according to our definition of a topological cone, the setR>0 of positive
scalars has to be equipped with the respective upper, lower,and interval topology.

We will use the following observation several times:

Observation 3.11. LetC andD be cones each with a topology that agrees with the upper topology on the raysR>0 · a.
Then every continuous monoid homomorphismf : C → D is homogeneous, hence linear.Indeed, by additivity one
obtainsf(qa) = qf(a) for every rational numberq > 0. For a real numberr > 0 choose an increasing sequenceqn

4There is no way to extend the multiplication to all ofR+ in such a way that it remains continuous for the interval topology.This fact had been
overlooked in [8] and had led to misleading statements in [8]. If we extend multiplication by+∞ · 0 = 0 = 0 · (+∞), it remains continuous for the
upper topology, if we extend it by+∞ · 0 = +∞ = 0 · (+∞), it remains continuous for the lower topology.
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of rational numbers with supremumr. Thena = sup qna andrf(a) = supn qnf(a) sincer 7→ rx is supposed to be
continuous for the respective upper topologies. Sincef is continuous for the respective upper topologies, we finally obtain
f(ra) = f(supn qna) = supn f(qna) = supn qnf(a) = rf(a).

One may ask, why we restrict scalar multiplication toR>0 and why we do not extend it tor = 0 andr = +∞. The
reason is that we have to treat the three cases differently concerning such an extension. While there is no continuous
extension of scalar multiplication toR+ for the interval topology, we can proceed as follows for the two other cases.

Using the upper topology, we may define0 ·r = 0 = r ·0 for all r ∈ R+ (includingr = +∞) andr · (+∞) = +∞ =
(+∞) · r for r > 0. This multiplication is continuous onR+ for the upper topology and can be extended pointwise to a
multiplication of functionsg ∈ MON(P ) andf ∈ LSC(P ) with scalarsr ∈ R+ which remains continuous for the upper
topologies and which satisfies all defining laws of scalar multiplication in cones.

Using the lower topology, we may define0 · r = 0 = r · 0 for all r < +∞ andr · (+∞) = +∞ = (+∞) · r for
all r ∈ R+ (includingr = +∞. This multiplication is continuous onR+ for the lower topology and can be extended
pointwise to a multiplication of functionsg ∈ MON(P ) andf ∈ LSC(P ) with scalarsr ∈ R+ which remains continuous
for the lower topologies and which satisfies all defining lawsof scalar multiplication in cones.

Remark 3.12. In domain theory one usually stresses the Scott topology. Inthe context of the this section, the Scott

topology agrees with the upper topologyτup. This is the case forR
P

+, MON(P ) and, in case of a predomainP , also for
LSC(P ). The same holds for the dual Scott topology and the lower topology τlo in all of these cases. The reason is that
this phenomenon occurs in complete completely distributive lattices in general (see, e,g,, [16, Section VII-3]). We have
preferred to use the lower and upper topology since their definition is simpler.

3.3 Compact ordered and stably compact spaces

Let us point out that in the cases under consideration each one of the three topologies (upper, lower and interval topology)
determines the other two uniquely.

According to L. Nachbin [26], a compact space(X, τ) endowed with a partial order≤ the graphG≤ = {(x, y) | x ≤
y} of which is closed inX ×X is called acompact ordered space. Such a space is always Hausdorff, since the diagonal
in X ×X is closed.

To any compact ordered space(X, τ,≤) we associate two other topologies, the lower topologyτ lo and the upper
topologyτup. The closed sets of the upper (resp., lower) topology are theτ -open upper (resp., lower) sets. Thus, the open
sets of the upper (resp., lower) topology are theτ -open upper (resp., lower) sets. We will use the following characterization
of these two derived topologies:

Lemma 3.13. Let (X, τ,≤) be a compact ordered space. Suppose thatτ1 (resp.,τ2) are topologies onX that consists
of τ -open upper (resp., lower) sets which are separating in the following sense: Wheneverx 6≤ y, there are disjoint sets
U ∈ τ1 andV ∈ τ2 such thatx ∈ U andy ∈ V . Thenτ1 is the upper andτ2 the lower topology.

Proof. LetW be an arbitraryτ -open upper set. We have to show thatW belongs toτ1. For this choose anyx ∈ W . It
suffices to show that there is aU ∈ τ1 such thatx ∈ U ⊆ W (since thenW is the union of open sets belonging toτ1).
Thus take anyy 6∈ U . Thenx 6≤ y and we can find disjoint setsUy ∈ τ1 andVy ∈ τ2 such thatx ∈ Uy andy ∈ Vy. The
open setsVy cover the complement ofW which is a closed hence compact set. Thus, finitely many of theVy cover the
complement ofW . Take the intersectionU of the corresponding finitely manyUy. Thenx ∈ U ⊆W andU ∈ τ1.

There is an equivalent way to look at this situation. A topological space(X,ω) is calledstably compactif it is
compact, locally compact, sober and coherent. Bycoherentwe mean that the intersection of any two compact saturated
subsets is compact.

The relation between stably compact spaces and compact ordered spaces is the following (see, e.g., [2] or [16, Section
VI-7]):
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To every stably compact space(X,ω) we associate a compact ordered space(X,ωp,≤ω) in the following way:≤ω is
the specialization order associated with the topologyω. The topologyωp is the coarsest refinement of the given topologyω

and the associated co-compact topologyωcc the closed sets of which are theω-compact saturated subsets ofX . Moreover,
the original topologyω is the upper topology associated withωp and the co-compact topologyωcc is the lower topology.

Conversely, Let(X, τ,≤) be a compact ordered space. Then the upper topologyτup is stably compact. Its associated
co-compact topology is the lower topology andτ is the coarsest common refinement of the associated upper andlower
topologies. The order≤ agrees with the specialization order associated with the upper topology.

This setting allows an alternative proof of Proposition 3.7. We use:

Lemma 3.14. If X is a stably compact space andY a retract ofX , that is, if there are continuous mapsρ : X → Y and
i : Y → X such thatρ ◦ i is the identity inY , thenY is stably compact, too.

We now letP be a predomain. We recall that(MON(P ), τ,≤) is a compact ordered space. Thus, its upper topology
τup is stably compact. For its intrinsic upper topology,LSC(P ) is a subspace ofMON(P ) and even a retract under the
mapenv : MON(P ) → LSC(P ) which is continuous for the upper topologies, sinceenv preserves arbitrary suprema
by Lemma 3.8. ThusLSC(P ) is stably compact for its intrinsic upper topologyτup by Lemma 3.14. By Lemma 3.13
and Lemma 3.9, the intrinsic lower topology onLSC(P ) agrees with the co-compact topology(τup)cc and, hence, the
compact Hausdorff topology(τup)p agrees with the intrinsic interval topology ofLSC(P ). We summarize:

Proposition 3.15. Let P be a predomain. ThenLSC(P ) is stably compact for its upper topology. The associated co-
compact topology is the lower topology and the associated patch topology is the interval topology.

3.4 The dual M∗ of a preCuntz semigroup

For a predomain monoid(M,+, 0,≪) its dualM∗ is defined to be the set of all lower semicontinuous monoid homo-
morphismsϕ : M → R+. Since the sumϕ + ψ of monoid homomorphismsϕ andψ and also the scalar multiplerϕ,
0 < r < ∗∞ are monoid homomorphisms,M∗ is a subcone ofLSC(M). Since the pointwise supremum of a directed
family of lower semicontinuous monoid homomorphisms is again not only lower semicontinuous but also a monoid ho-
momorphism,M∗ is a dcpo-monoid. ButM∗ is not a domain. Let us investigate its topological structure.

As in Section 3.2 we will use the setM ′ of all monotone monoid homomorphismsγ : P → R+. Clearly,M ′ is a
subcone of the coneMON(P ) of all monotone maps fromP toR+.

The central observation is:

Lemma 3.16. For a preCuntz semigroupM , the lower semicontinuous envelopeenv(γ) of a monotone monoid homo-
morphismγ : M → R+ is also a monoid homomorphism.

Proof. Given a monotone monoid homomorphismγ, recall thatenv(γ)(x) = supx′≺≺x γ(x
′). Thus, clearlyenv(γ)(0) =

0. In order to show additivity, letx, y ∈ M . Thenenv(γ)(x) + env(γ)(y) = supx′≺≺x γ(x
′) + supy′≺≺y γ(y

′) =
supx′≺≺x,y′≺≺y γ(x

′) + γ(y′) = supx′≺≺x,y′≺≺y γ(x
′ + y′) ≤ supz≺≺x+y γ(z) = env(γ)(x+ y), where we have used that

the relation≺≺ is additive inM for the inequality in the chain of equalities above. The reverse inequality follows from the
continuity of addition inM which implies that, ifz≺≺ x + y, then there arex′≺≺ x andy′≺≺ y such thatz ≤ x′ + y′.
Thussupx′≺≺x,y′≺≺y γ(x

′+y′) ≥ supz≺≺x+y γ(z). This allows to read the above chain of equalities in the with≤ replaced
by≥.

Thusenv mapsM ′ ontoM∗ and we have the following situation where all the arrows denote linear maps:

R
M

+
✛

⊃ MON(M) ✛
⊃ M ′

LSC(M)

env

↓↓
∪

✻

✛
⊃ M∗

env

↓↓
∪

✻
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We consider the restrictions toM∗ of our three topologies onLSC(M):

Theweak∗upper topologyτ∗up, the restriction of the upper topology onLSC(P ). It is the weakest topology
for which all the point evaluationsδx : ϕ 7→ ϕ(x) : M∗ → R+ are lower semicontinuous,

the restrictionτ∗lo toM∗ of the lower topologyτlo onLSC(M),

the restrictionτ∗iv toM∗ of the interval topologyτiv .

We now are ready for our main result:

Theorem 3.17. LetM be a preCuntz semigroup andM∗ its dual cone.
(a) For the topologyτ∗iv and the pointwise order≤,M∗ is a compact ordered topological cone.
(b) For the weak∗upper topologyτ∗up, and similarly for the topologyτ∗lo,M∗ is a stably compact topological cone.

Proof. Lt us show thatM ′ is closed inMON(M) for the interval topology. Convergence for the interval topology in
MON(P ) is pointwise convergence inR+. Thus if γi is a net inM ′ that converges to someγ ∈ MON(M), then for
x, y ∈ M , γi(x) converges toγ(x), γi(y) converges toγ(y) andγi(x + y) converges toγ(x + y). At the other hand,
γi(x+ y) = γi(x) + γi(y) converges toγ(x) + γ(y) by the continuity of addition onR+. Thusγ(x) + γ(y) = γ(x+ y).

As a closed subcone ofMON(M), M ′ is a compact ordered cone for the interval topology. Formingthe lower
semicontinuous envelope mapsM ′ ontoM∗ by Lemma 3.16. By Proposition 3.10, the mapenv is continuous for the
respective interval topologies. Hence,M∗ is also compact for the topologyτ∗iv hence a compact ordered space, and closed
in LSC(M) for the interval topology. We infer that(M∗, τ∗iv) is a compact ordered topological cone.

M∗ is also a topological cone for the weak∗upper topologyτ∗up and the topologyτ∗lo which are stably compact accord-
ing to Proposition 3.15, being the topologies of open upper and lower sets, respectively, for the topologyτ∗iv.

From Proposition 3.7 we also deduce:
(a) A subbasis for the weak∗upper topologyτ∗up of M∗ is given by:

Vx,r = {f ∈M∗ | f(x) > r}, x ∈M, r ∈ R+

A subbasis for the topologyτ∗lo by:

Wy,r = {f ∈M∗ | f(x) < r for somex ∈ ��y}, y ∈M, r ∈ R+.

Together these subbases constitute a subbasis for the topologyτ∗iv.
(b) A net(fi)i of functions inM∗ converges tof for the weak∗upper upper topologyτ∗up if and only if:

f(x) ≤ lim inf
i

fi(x) for all x ∈M (upConv)

for the topologyτ∗lo if and only if:

lim sup
i

fi(y) ≤ f(x) whenevery≺≺ x in M (loConv)

for the topologyτ∗iv if and only conditions (upConv) and (upConv) hold.
These result hold in particular for the dual of our basic example, the preCuntz semigroupC0(X)+.

Remark 3.18. The main proof technique for the results in this subsection consists in considering first the coneM ′ of order
preserving linear functionalsλ : M → R+; for those the compactness properties follow from the Tychonoff Theorem on
the compactness of product spaces. Taking the lower semicontinuous envelope yields a continuous retraction on the the
lower semicontinuous monoid homomorphisms. This technique has first been applied by Jung [2] and is heavily used in
[28, 21]. In [8] it is mentioned that in the proof of Theorem 3.7 on the compactness of the space of traces the same idea
has been communicated to the authors by E. Kirchberg. In [8, Theorem 4.8] claim (a) of Theorem 3.17 has been proved
for Cuntz semigroups.
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3.5 The bidual M∗∗

LetM be a preCuntz semigroup andM∗ its dual. By the universal property of the round ideal completion (see 2.11), the
dualRI(M)∗ of RI(M) is canonically isomorphic (algebraically and topologically) to the dualM∗ ofM (and also to the
dual of the roundω-ideal completion ofM if M is first countable.

We may form the bidualM∗∗, the cone of all linear functionalsΛ: M∗ → R+ that are lower semicontinuous with
respect to the weak∗upper topologyτ∗up; this is equivalent to requiring that these maps are monotone and lower semi-
continuous with respect to the patch topologyτ∗p ; indeed, by Proposition 3.2 the patch open upper sets agree with the
weak∗upper open sets. We endowM∗∗ with the pointwise order, addition and multiplication by scalarsr > 0. We note
thatM∗∗ is directed complete (under pointwise suprema). There is a natural map fromM into its bidualM∗∗: to very
x ∈ M we assign the point evaluation̂x : ϕ 7→ ϕ(x). This map fromM to M∗∗ clearly is a monoid homomorphism,
linear and monotone. We would like this map to be an order embedding, that is,x 6≤ y in M implies x̂ 6≤ ŷ. For this it
suffices to have the following separation property:

Separation Property 3.19. Wheneverx 6≤ y in M , there is aϕ ∈M∗ such thatϕ(x) > ϕ(y).

This separation property will not be true for Cuntz semigroups in general. We provide a proof under the hypothesis
thatM is a preCuntz cone:

Lemma 3.20. Wheneverx 6≤ y in a preCuntz coneM , there is aϕ ∈M∗ such thatϕ(x) > ϕ(y).

Proof. Consider elementsx 6≤ y. Then��x 6⊆ ��y, that is, there is an elementz ≪ x with z 6≪ y. By interpolation we
find an elementz′ with z ≪ z′ ≪ x. Then��z

′ 6⊆ ��y, that is,z′ 6≤ y. Using interpolation we recursively find a sequence
x ≫ x1 ≫ x2 ≫ · · · ≫ z′. The setU of all u ∈ M such thatu ≫ xn for somen is a τ≪-open neighborhood ofx
contained in��z′ whencey 6∈ U . Moreover,U is convex. Indeed, for elementsu, v ∈ U there is ann such thatu, v ≫ xn.
It follows for everyr in the open unit interval,ru + (1 − r)v ≫ rxn + (1 − r)xn = xn, that isru + (1 − r)v ∈ U .
We now can apply [19, Corollary 9.2] which tells us that for every open convex set U in a semitopological cone and every
elementy not contained in U, there is a lower semicontinuous linear functionalϕ such thatϕ(y) < 1 butϕ(u) > 1 for all
u ∈ U , in particular,ϕ(x) > ϕ(y).

For every round idealI of M , let Î = sup{x̂ | x ∈ I}. Clearly, Î ∈ M∗∗. Thus, we obtain a map fromRI(M) to
M∗∗ which is Scott-continuous. Moreover this map preserves≪:

Lemma 3.21. For round idealsI andJ in a Cuntz cone,I ≪ J impliesÎ ≪ Ĵ .

Proof. We first consider elementsx≺≺ y in M . As y = supr<1 ry, there is anr < 1 such thatx≺≺ ry. LetUx be the
set of allϕ ∈M∗ such thatϕ(x) > 1, and similarly forUry andUy. By definition,Ux, Ury andUy are weak∗upper open
andUx ⊆ Ury ⊂ Uy. We want to show that there is a compact saturated setK such thatUx ⊆ K ⊆ Uy. Indeed, letϕi be
a net inUx converging to someϕ for the topologyτ∗lo. Let us show thatϕ ∈ Uy. Indeed,ϕ(ry) ≥ lim supi ϕi(z) for all
z ≪ ry, in particular,ϕ(ry) ≥ limsupiϕi(x) ≥ 1. Thusrϕ(y) ≥ 1 whenceϕ(y) = 1

r > 1, that isϕ ∈ Uy). From this
we conclude that̂x ≪ ŷ in M∗∗. The claim for ideals is a direct consequence, for ifI ≪ J there are elementsx≺≺ y in
J such thatI ⊆ ��x.

The following question arises:

Question 3.22. If M is a preCuntz cone, isM∗∗ isomorphic to the round ideal completionRI(M)? More precisely, given
anyΛ ∈M∗∗, is there a round idealJ in M such thatΛ = Ĵ .

The answer to this question is ’yes’ in the case of our basic example, the coneC0(X)+ for a locally compact Hausdorff
spaceX : In this case,(C0(X)+)

∗∗ is naturally isomorphic to the coneLSC(X) of all lower semicontinuous functions
f : X → R+, which is the round ideal completion ofC0(X)+ according. Indeed,(C0(X)+)

∗ corresponds to the cone of
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all continuous valuations (a topological variant of measures) onX and the claim is a special case of the Schröder-Simpson
Theorem (see [20, Theorem 2.15] or [17] for a short proof).

In the search for an affirmatively answer to the question above for a preCuntz coneM , one can use [20, Corollary 4.5]
which tells us that every lower semicontinuous linear functionalΛ onM∗ is the pointwise supremum of functionals of
the formx̂i, xi ∈ M . If we can show that we can choose this set ofxi to be directed, then we have a positive answer to
our question. Indeed, in this case they≺≺ xi for somei form a round idealJ of M such thatĴ = Λ.

Robert [30] has investigated the relation betweenM and the double dualM∗∗ for Cuntz semigroups that are not
already cones. Here the problem is to embedM into a cone which he succeeds by a kind of tensor product construction
but under additional hypotheses on the Cuntz semigroup.

4 Traces on C∗-algebras

We now turn to C∗-algebras. LetA be aC∗-algebra. The elements of the forma = xx∗, x ∈ A, are calledpositive. These
elements form a cone denotedA+. OnA+ we use the topology induced by the norm of the C∗-algebra and the natural
ordera ≤ b if b− a ∈ A+. We refer to standard references for background material.

A lower semicontinuous traceis a lower semicontinuous monoid homomorphismt : A+ → R+ such thatt(xx∗) =
t(x∗x) for all x ∈ A. We denote byT (A) the set of all traces.T (A) becomes an ordered cone for the pointwise defined
order, addition and multiplication by real numbersr > 0 . We would like to viewA+ as a predomain in such a way that
T (A) is its dual. We let us guide by the basic example 2.1C0(X)+ 2.1.

We remark that a lower semicontinuous trace satisfiest(ra) = rt(a) for r ∈ Rp anda ∈ A+ and, hence, is a linear
map onA+. This follows from the properties of being a monoid homomorphism and lower semicontinuity.

4.1 A+ as a preCuntz semigroup

Every elementa ∈ A+ generates a commutativeC∗-subalgebraC∗(a) of A. By Gelfand’s representation theorem, there
is an isometrical isomorphismia : C∗(a) → C0(X) for some locally compact Hausdorff spaceX . We denote by(a−ε)+
the element ofC∗(a) that corresponds to the function(ia(a)− ε)+ in C0(X).

As a first try we definea ≪ b for elementsa, b ∈ A+ if a ≤ (b − ε)+ for someε > 0. In this wayA+ becomes a
predomain. We first check the interpolation property. We have indeed0 ≪ b for everyb ∈ A+ and ifai ≪ c for i = 1, 2,
thenai ≤ (b − ε)+ for someε > 0. Forc = b − ε

2 we then haveai ≪ c ≪ b for i = 1, 2. Transitivity follows from the
fact thata≪ b impliesa ≤ b and thata ≤ b≪ c impliesa≪ c.

The relation≪ just defined will not have the desired properties. FollowingCuntz and Pedersen [7], one should take
in account an equivalence relation that identifies elementsthat are identified by every lower semicontinuous trace. Since
traces identify the elementsxx∗ andx∗x, we considerxx∗ andx∗x to be equivalent. For a sequence(xi)i of elements in
A, if the sums

∑
i xix

∗
i and

∑
i x

∗
i xi both converge, a lower semicontinuous trace will also identify these two sums.

According to [7], two elementsa anda′ in A+ areCuntz-Pedersen equivalentand we writea ∼ a′ if there is a
sequencexn in A such thata =

∑
n xnx

∗
n anda′ =

∑
n x

∗
nxn.

The relation∼ is indeed an equivalence relation (transitivity is by no means straightforward). Moreover,∼ is count-
ably additive, that is,an ∼ bn implies

∑
n an ∼

∑
n bn provided that the respective infinite sums converge. We refer to

[7, Section 2] for proofs. Clearly,∼ is a congruence relation, that is, for alla, a′, b ∈ A+ andr ∈ R+ one has:

a ∼ a′ impliesa+ b ∼ a′ + b, ra ∼ ra′

TheCuntz-Pedersen preorderonA+ is defined by:

a - b if there is ana′ ∈ A such thata ∼ a′ ≤ b (CPP)

Note thata ≤ b impliesa - b.
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We want to replace the Cuntz-Pedersen preorder by a relationthat we like to call theCuntz-Pedersen approximation
relation≺≺ defined as follows:

a≺≺ b if there is aa′ ∈ A+ and anε > 0 such thata ∼ a′ ≤ (b− ε)+

Equivalently:
a≺≺ b if there are anε > 0 such thata - (b− ε)+

We note that in particular,(b− ε)+≺≺ (b − ε
2 )+≺≺ b.

Proposition 4.1. For every C∗-algebraA, (A+,+, 0,≺≺) is a first countable preCuntz semigroup.

For the proof we first observe thatd≺≺ c impliesd - (c− ε)+ ≤ c for someε > 0 whenced - c. We now show that
≺≺ endowsA+ with the structure of a predomain.

For transitivity, letd≺≺ c≺≺ a. Thend - c as we just noticed andc - (a − ε)+. We inferd - (a − ε)+ from the
transitivity of- whenced≺≺ a.

For interpolation we notice that0≺≺ a for everya ∈ A+ so that we have (Int0). For (Int2), suppose thatci≺≺ a for
i = 1, 2. Then there is anε > 0 such thatci - (a− ε)+ for i = 1, 2. Since(a− ε)+≺≺ (a− ε

2 )+≺≺ a, we may choose
c = (a− ε

2 )+ and we haveci≺≺ c≺≺ a for i = 1, 2.
It remains to show that addition preserves≺≺ and is continuous. For this we use a result by Elliott, Robertand Santiago

[8, Proposition 2.3]: Givena, b ∈ A+ andε > 0, there is aδ > 0 such that

(a− ε)+ + (b− ε)+ - (a+ b − δ)+ (4)

(a+ b− ε)+ - (a− δ)+ + (b − δ)+ (5)

Indeed, these two inequalities are equivalent to the following properties which express the additivity and the continuity of
the relation≺≺, respectively:

a′≺≺ a, b′≺≺ b =⇒ a′ + b′≺≺ a+ b (6)

c≺≺ a+ b =⇒ ∃a′≺≺ a, b′≺≺ b. c≺≺ a′ + b′ (7)

This finishes the proof of Proposition 4.1.

The natural preorder of the predomain(A+,≺≺) according to 2.3 is defined bya -CP b if ��a ⊆ ��b. More explicitly,
a -CP b if for everyε > 0 there is aδ > 0 such that(a− ε)+ - (b− δ)+. This preorder has already been considered by
Robert [29]. Thus, ifc′ -CP c≺≺ a -CP a′, thenc′≺≺ a′. From results due to Robert [29] it follows that the converse
is not true, that is��a ⊆ ��b does not implya - b, in general.

It is natural to ask whether the natural preorder-CP agrees with the Cuntz-Pedersen preorder-. L. Robert [29,
Proposition 2.1(iii)] has proved the implication:

a - b =⇒ a -CP b (8)

But in the same paper, Robert [29] exhibits an example that shows that the converse does not hold, in general.
The proof for the implication (8) is surprisingly sophisticated. One refers to a lemma due to Kirchberg and Rørdam

[24, Lemma 2.2]: Ifε > ‖a− b‖ then there is a contractiond in A such that(a− ε)+ = dbd∗. From this, one deduces [8,
Lemma 2.2]:

‖a− b‖ < ε =⇒ (a− ε)+ - b (9)

One then shows the following refinement:

‖a− b‖ < ε =⇒ ∃δ > 0. (a− ε)+ - (b − δ)+ (10)
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Suppose indeed‖a − b‖ < ε. Since(b − δ)+ converges (in norm) tob for δ → 0, there is someδ > 0 such that still
‖a− (b− δ)+‖ < ε. Now (10) follows from (9).

One further uses from [8, Proposition 2.3]

(xx∗ − ε)+ ∼ (x∗x− ε)+ (11)

for every elementx of the C∗-algebraA andε > 0. From (5) (see also [29, proof of Proposition 2.1(i)] we deduce:

a ≤ b =⇒ ∀ε > 0. ∃δ > 0. (a− ε)+ - (b − δ)+ (12)

Indeed, ifa ≤ b, thenb = a+ (b − a) andb− a ∈ A+. Thus, forε > 0 we can find aδ > 0 such that(a− ε)+ + ((b −
a)− ε)+ - (b − δ)+. It follows that(a− ε)+ - (b− δ)+.

We are now ready for the proof of the implication (8). Supposea - b. There is a sequencexn of elements inA such
thata =

∑∞

n=1 xnx
∗
n anda′ =

∑∞

n=1 x
∗
nxn ≤ b. Consider anyε > 0. There is anN such that‖a−

∑N
n=1 xnx

∗
n‖ < ε.

The following chain of arguments shows thata -CP b:

(a− ε)+ - (
∑N

n=1 xnx
∗
n − δ)+ for someδ > 0 by (10)

-
∑N

n=1(xnx
∗
n − δ1)+ for someδ1 > 0 by (5)

∼
∑N

n=1(x
∗
nxn − δ1)+ by (11)

- (
∑N

n=1 x
∗
nxn − δ2)+ for someδ2 > 0 by (4)

- (b− δ3)+ for someδ3 > 0 by (12)

4.2 The cone T (A) of traces

We are ready now to apply our results on the dual of a preCuntz semigroup to the the preCuntz semigroup(A+,+, 0,≺≺)
on the positive cone of a C∗-algebraA. We first show that the coneT (A) of traces is the dual of the preCuntz semigroup
(A+,+, 0,≺≺):

Lemma 4.2. The lower semicontinuous traces onA+ agree with the lower semicontinuous monoid homomorphisms from
the preCuntz semigroup(A+,+, 0,≺≺) toR+.

Proof. Consider a monoid homomorphismt : A+ → R+ satisfyingt(a) = t(a′) whenever(a ∼ a′. We want to show
thatλ is lower semicontinuous for the norm topology onA+ if and only if it is lower semicontinuous for the predomain
structure≺≺. Thus letr be a nonnegative real number and look at the setU = {a ∈ A+ | t(a) > 0}. We have to show
thatU is open for the norm topology if and only if it is open for the c-space topologyτ≺≺ associated with≺≺.

Suppose first thatU is open for the norm topology and look at any elementa ∈ U . Since(a − ε)+) converges toa
with respect to the norm, whenε goes to0, we have(a − ε)+) ∈ U for ε small enough. The we have found an element
b = (a − ε)+) ∈ U such thatb≺≺ a. We secondly look at any elementc ∈ A+ with a≺≺ c. Then there is ana′ such
thata ∼ a′ ≤ (c − ε)+ for someε >). Thent(a) = t(a′) ≤ t(c − ε)+ ≤ t(a) since a monoid homomorphism onA+

preserves the order≤. Hencer < t(a) ≤ t(c), that is,c ∈ U . Thus,U is open for the c-space topologyτ≺≺.
Suppose conversely thatU is open for the c-space topologyτ≺≺ and choose anya ∈ U . We want to show that there is

anε > 0 such thatb ∈ U for everyb such that‖a− b‖ < ε. There is anε > 0 such that(a− ε)+ ∈ U . For everyb with
‖a − b‖ < ε there is aδ > 0 such that(a − ε)+ - b by (9), whence(a − ε)+ -CP b by the previous lemma. And the
latter impliesb ∈ U .

We now may apply Theorem 3.17 and we obtain the following improvement of results by Elliott, Robert, Santiago
[8]:

Corollary 4.3. LetA be a C∗-algebra andT (A) the cone of lower semicontinuous traces.
(a) Equipped with the topologyτ∗iv, T (A) is an ordered compact topological cone, that is, addition and scalar multi-

plication are order preserving and jointly continuous, where R>0 is endowed with the usual Hausdorff topology.
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(b) Equipped with the weak∗upper topology,T (A) is a stably compact topological cone, that is, addition and scalar
multiplication are continuous, whereR>0 is endowed with the upper topology.

(c) Equipped with the lower topologyτ∗lo, T (A) is a stably compact topological cone, that is, addition and scalar
multiplication are continuous, whereR>0 is endowed with the lower topology.

Subbases and convergence for the three topologies involvedin the above corollary can be described as in the text
following the proof of Theorem 3.17.

The dualT (A)∗ of the cone of traces consisting of the lower semicontinuouslinear functionals fromT (A) to R+

contains the round ideal completionRI(A+) of (A+,+, 0,≺≺) as a subcone via the mapJ 7→ Ĵ , whereĴ : T (A) → R+

is defined byĴ(ϕ) = supx∈J ϕ(x). This map is also an order embedding by 3.20. Our general question 3.22 can be
reformulated in this special case:

Question 4.4. Is the the dualT (A)∗ equal to the round ideal completionRI(A+) of (A+,+, 0,≺≺)? More precisely,
given any lower semicontinuous linear mapLambda : T (A) → R+, is there a round idealJ in (A+,+, 0,≺≺) such that
Λ = Ĵ .

The answer to this question is ’yes’ for commutative C∗-algebras as we have indicated after 3.22.
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