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Abstract

Domain theory has its origins in Mathematics and Theork@oemputer Science. Mathematically it combines order
and topology. Its central concepts have their origin in teaiof approximating ideal objects by their relatively o,
more generally, relatively compact parts.

The development of domain theory in recent years was maioljvated by question in denotational semantics and
the theory of computation. But since 2008, domain theaaktiotions and methods are used in the theorychebras
in connection with the Cuntz semigroup.

This paper is largely expository. It presents those notafrdomain theory that seem to be relevant for the theory of
Cuntz semigroups and have sometimes been developed irtisytlgnin both communities. It also contains a new aspect
in presenting results of Elliott, Ivanescu and Santiagdhecbne of traces of a'Galgebra as a particular case of the dual
of a Cuntz semigroup.

1 Introduction

Continuous lattices have emerged in quite distant areasruwratious disguises, and the equivalence of the different
definitions is not straightforward. The two main sourcesian®pological algebra on the one hand and in semantics of
untypedA-calculus at the other hand.

In 1974, published in 1976 [18], K. H. Hofmann and A. R. Steadicrived at the characterization that is now adopted
generally. In this work on compact semilattices, it wasrta@n to characterize order theoretically those compactsHau
dorff semilattices that admit a separating family of contins semilattice homomorphism into the unit interféall].
These compact semilattices were also calladson semilatticesThe following relation turned out to be crucial (see
[18, p. 27, lines 20ff.]: For elements y in a complete lattice they say thatis relatively compact iny if every open
covering(u;); of y (akay < sup, u;) contains a finite subcover;, , . .., u;, of x (akax < w;, V-V u,,). This termi-
nology was chosen since, in the lattice of open subsets afalyocompact Hausdorff space, this relative compactness
notion agrees with the common use of relative compactnespislogy: An open subsét is relatively compact in an
open subselV if the closure ofl/ is compact and contained if¥. The Lawson semilattices were characterized to be
those complete lattices, where each element is the suprerhitsirelatively compact parts, and they called thesedegti
relatively algebraic Later on, terminology changetklatively compact irwas replaced by the shorteay-below

Two years before, in 1972, D. S. Scott’s seminal paper [3#} Wie title Continuous Latticebad appeared. In this
paper Scott provided the first models for the untypechlculus using what he had calledntinuous lattices It took
some time until the attention of the compact semilattice mamity was drawn towards Scott’'s paper. It was only shortly
before the appearance 0f [18] in 1976 that it was discovéradScott’s continuous lattices were precisely the redéitiv
algebraic lattices in the sense of Hofmann and Stralka.
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Continuous lattices were mainly used in denotational séicgaof programming languages. In view of those appli-
cations a generalization from complete lattices to dictamplete partially ordered setdcpos for short) was needed.
Because of the lack of finite suprema, the relatiomay-belowy had to be defined by saying that every directed family
(u;); coveringy (akay < sup, u;) contains an element;, coveringz (aka,x < u;,), and a dcpo was said to beantin-
uous dcpdadomain for short), if each of its elemenisis the supremum of a directed family of elemenfsvay-below
y. The term 'domain’ has its origin in the use of these struggias semantic domains.

The author recently discovered that domain theoretic netand constructions are used in the theory ‘l@ebras.
These developments were initiated in a paper by CowardytEhd Ivanescu [5] in 2008. Their aim was to introduce a
new invariant for C-algebras that is finer than the K-groups. This invarianalied the Cuntz semigroup and is a kind of
completion of the classical ordered semigroup introdugedl I€untz[[6] in 1978. IN[5] and the follow-up papers domain
theory is not used in its classical form. A variant is considewhere the set system of directed subsets is replaced by
increasing sequences or, equivalently, by countable teidesets. Thus, partially ordered sets are considered inhwhi
not all directed sets but only increasing sequences areregbio have a least upper bound. An elemelig said to be
compactly contained ig if, every increasing sequenag coveringy (akay < sup,, u,) contains an element,, already
coveringz (akax < u,,). The Cuntz semigroup of a C*-algebra as introduced inl[5] has the following properties
among others:

(O0) S is a partially ordered commutative monoid witlas smallest element,

(O1) every increasing sequence has a least upper bound,

(02) every elemery is the least upper bound of an increasing sequence of elsmgbmpactly contained ip,

(O3) if x; is compactly contained ig; for i = 1, 2, thenz; + x2 is compactly contained iy + o,

(O4) addition is continuous in the sense that it preservpegesna of increasing sequences.

A structure with these properties is then callechistract Cuntz semigroup

A whole series of papers has appeared since that time withefudevelopments. The author of these lines has been
working in domain theory for more than 30 years. He discadéhe new developments around the Cuntz semigroups
through a paper by Antoine, Perera and THiél [4]. It turnstbat domain theoretical concepts and methods play a more
important role than expected. Quite some properties haga bediscovered, other developments occur in parallel to
developments in domain theory.

This paper is largely expository. Its purpose is to estaldi€ommon platform for communication between domain
theory and the community working on Cuntz semigroups. Balsib pursues a specific purpose: In 2011, Elliott, Robert
and Santiagd [8] have published results on the space of Iseraicontinuous traces and 2-quasi-tracesohlgebras.
The proofs for the two cases seem to follow a common patteine. Shme pattern can be found in a paper by Plotkin in
2009 [28] on a Banach-Alaoglu type theorems for continuarected complete partially ordered cones. Plotkin’s ressul
and methods have been refined and generalized by the aushoggently[[21]. These results when specialized to aktstrac
Cuntz semigroups give a unified proof for the results of ElliBobert and Santiago. For this, we show how the positive
cone of a C-algebra can be viewed as an abstract Cuntz semigroup. ¢t @mazing that the ingredients for our proof
can all be found in the paper of Elliott, Robert and Santiago.

In this presentation, | do not adopt the countable variarttarhain theory as used in the' @lgebra community. |
use dcpos, the way-below relation and domains as in the nmapbd@l16]. The future will show, if I will be convinced to
change to the countable point of view. It is well-known thtites subset systems can be used instead of directed sets, and
quite analogous developments can be carried through. Oneansult a survey by Ern&[11] on such variants of domain
theory.

The authors from the CGalgebra community avoid the term 'way-below’ as if it woldé contagious. They use
‘compactly contained in’, sometimes 'far below’. | do notndiother terminologies, but remain with 'way-below’ from
time to time, and | hope that nobody feels uneasy about it.

ACKNOWLEDGMENT | am grateful to Hannes Thiel for corrections and useful sstjgns.



2 Predomainsand c-spaces

We want to stress the concept of a predomain. In the same wdijtest spaces are completions of pre-Hilbert spaces,
domains are obtained from predomains by a completion pspties round ideal completion. Domains can be defined in
terms of partial orders but have a strong topological flaBamilarly, predomains occur under two different but eqléwna
disguises: as relational and as topological structures.

The notion of a predomain is not new at all. It is motivated bg hotion of a basis for domains. This notion
has been axiomatized as a relational structure first by M.tBi{38] (under the name of aR-structure) and it occurs
under the name of aabstract basisn standard texts on Domain Theory, most prominently in tleadbook article by
Abramsky and Jung [1, Section 2.2.6], where abstract basegsad for free constructioris [1, Chapter 6]. This aspect
has been rediscovered by Antoine, Perera and Thiel [4] fostrocting tensor products of abstract Cuntz semigroups.
The topological variant is due to Errié [9,/ 10] under the nafreec-space and independently to Ershiov [14, 15] under the
name of am-space. It was Ershov that insisted on omitting the compéste properties required for domains. He had
advocated this aspect already in his early work on compefaisictionals of higher type; his f-spaces and a-spaces are
early manifestations (sele [12,113]).

It seems to me that these concepts have not yet attractedténdia@n that they deserve. The defining properties are
amazingly simple and at the same time as powerful as thoserofiths. For this reason, | propose a new name that
stresses the importance by calling theradomains

2.1 Predomains
Let us concentrate first on the relational aspegbréddomains a setP equipped with a binary relatiog that is transitive
a<b<c = a<<c (Trans)
and satisfies the followinimterpolation propertyfor every finite subsef’ and every elemernt
F«<c= d3beP FKLbc (IP)

whereF << cis an abbreviation ford << c for all a € F".
For F' we may choose the empty set and in this case the interpolatoperty says:

Ve. 3. b=<< ¢ (IPO)
ChoosingF' to be a singleton, the interpolation property above imghesordinary interpolation property
a<c = d.aKbXc (IP1)
ChoosingF' to be a two element set, the interpolation property reads:
a;<<c(i=1,2) = Fb.a;<<b=<c(i=1,2) (IP2)
Clearly (IPO)and (IP2) together are equivalent to (IP). \&fe the notation:
te={beP|b<c}, tc={a€eP|ca}
The following is our basic example:

Example 2.1. Let X be a locally compact Hausdorff spaggy(X) the C*-algebra of all complex valued continuous
functions defined o that vanish at infinity. Its positive cor&,(X ), consisting of thos¢ € Cy(X) with nonnegative
real values is a poset with the usual pointwise ordex g if f(z) < g(x) for all . There is a natural predomain
structure onCy (X ) defined by

f=gif f<(9—e)t

where(g — ¢)4 is the function with valuenax(g(z) — €, 0) for everyz € X.



For the relation on a predomairP we use a terminology borrowed from the partially ordered:satsubsetD of
P is said to bex-directedif, for every finite subsef’ of D, there is an elemerte D such thatF' < c.

A subsetD’ of a<<-directed seD is said to be«-cofinalif, for everyd € D thereis ad’ € D’ such thatl << d'.
Such a<<-cofinal subse’ is also<<-directed. Indeed, for a finite subsetC D’ C D there is and € D such that
F << d and, choosing an elemediite D’ such thatl << d’ we obtainF << d’.

A subset) of a predomairP is said to be«-densédf, whenevers << ¢ holds for elements i, there is an element
b € @ suchthati =< b=< c.

Remark 2.2. A<<-dense subsep of a predomainP is a predomain when equipped with the relatienrestricted toQ
and, for every € P, the set|,c = {cN Q is cofinal inc.

Clearly the restriction ok< to @ is transitive. For the interpolation property (IP) considdinite subsef’ of @ and
supposeF’ << ¢ for somec € Q, thenF << b =< ¢ for someb € P by (IP) and so we can find an eleméhte @ such
thatd << V' << ¢, whenceF < V' << c.

2.2 Continuous posets and domains

Let (P, <) be a partially ordered sepgset for short). For elements, b in P we say that is relatively compact i (a
is way-belowb, for short) and we writer < b if, for every directed subsdb such that < sup D, there is an element
d € D with ¢ < d, wheneverD has a least upper bourdp D in P. We say thatP is acontinuous poset for every
element € P the set

tb={a€eP|laxb}

is directed an® = sup {b.

In a continuous poset, if < b and if D is a directed subset such thaK sup D, there is ad € D such that even
a < d.

If (P, <) is a partially ordered set such that every directed subsed lsapremum, we say thatis directed complete
(adcpofor short). A continuous dcpo is calleddamain

The relationk in a posetP has the following properties:

akc = a<c (1)
akKb<ece = a<kc (2)
d<a<b = d<b ()

Remark 2.3. Every continuous poset is a predomain, when equipped witelition<.

Proof. For transitivity, suppose that < b < c¢. Thenb < ¢ by property (1), whence < ¢ by property (2). For the
interpolation property (IP) lef’ < « for a finite subsef'. The family of setg.b with b < « is directed, and each of the
sets{b is directed. Thud = (J, ., {b is directed, too, angup D = a. For everyf € F' we havef < a. Thus, there is
an elementl; € D with f < dy. SinceD is directed, we find an elemedtc D such thatf < d for every elemenf in
the finite setF". Since ford € D there is an elemertsuch thatl < b < a, we haveF’ < b < a. O

Any <-dense subsdB of a continuous pose® is called abasisof P. By remarKZ.2 every basiB is a predomain
for the relationk restricted taB; for everyc € P, the setizc = {cN B is directed and cofinal ific so thatc = sup {zc.

But there are important predomain structures for whichti@ia« is not derived from a partial order as above. This is
illustrated best by our basic examplel2.1 of the c6peX ). of nonnegative continuous real valued functions vanishing
at infinity on a locally compact Hausdorff spa&e This cone carries a natural pointwise orgeK ¢ if f(z) < g(x)
for all z € X. The predomain relatior< does not agree with the relatiett on Cy(X ). derived from the partial order
except for very special cases. Let us chods& be the unit interval with its usual compact Hausdorff togy where
we denote byl the constant function with value Then(1 — )1 << 1, but(1 — €)1 « 1. Indeed,f,,(z) = z'/™ is an



increasing sequence of continuous functions hrslthe least upper bound of this sequence in the p@&gto, 1))+, <)
(although not the pointwise supremum) did-¢) - 1) £ f, foralln. Thus(1 —e¢) -1) « 1. By a similar argument one
can show that there is nb< 1 except for the constant functién

The point in the exampléCy(X), <) is that there is a difference between least upper boundsenptset
(Co(X)+, <) and pointwise least upper bounds. We say that a fungtioR — R_. vanishing at infinity is the pointwise
supremum of an increasing sequence or a directed familyradtions f; in Co(X) 4 if f(x) = sup;fi(x) for every
x € X. By Dini's theorem,f is then continuous and th& converge tof uniformly. The predomain relatior< may be
defined by using this strengthened notion of pointwise lapper bound instead of the notion of a least upper bound in
the posetCy(X) 4, <).

It is important to consider predomain structuresnot derived from partial orders ag in the case of continuous
posets. In the contrary, partial orders can be derived fromdgmain structures as we will see. Predomains are more
general and may be more important than continuous posets.

In the same vein, | propose to replace the notion of a preCGesertigroup as considered in [3, Definition 2.1] by a
more appropriate structure: commutative predomain manwith an additive relatior< (see beloW 3]1).

2.3 Theround ideal completion

We have seen that every domdinhis a predomain for its way-below relation. More importanfiyedomains occur as
bases of domains. Let us see that every predomain has a campibich is a domain.

A round idealis a subsef of a predomairP with the following properties: (1) is<<-directed and (2) it << b € J,
thena € J. This is equivalent to the requirement that a finite sulisef P is contained inJ if and only if there is an
elemen® € J such thatF' << b.

For every element € P, the set

tb={a€P|a<b}

is a round ideal.

Proposition 2.4. The setRJ(P) of all round ideals of a predomaiR ordered by inclusion is a domain, called theund
ideal completiorof the predomairP. The way-below relation oRJ(P) is given byl < J if there is an elemerit € J
such that/ C {b. The round idealga, a € P, form a basis of the round ideal completion.

Proof. Since the union of a family of round ideals that is directedeminclusion is a round ideal, the collecti®i(P)
of all round ideals is directed complete.

Given two round ideald andJ, suppose thaf < J. SinceJ is the union of the round ideals: with ¢ € J, we
obtainl C |cfor somec € J. Suppose conversely that this latter condition is satigfietisuppose thatis contained in
the union of a directed family of round ideals. Thenc € J; for somei and consequentlyc C J;. Hencel < J.

By the characterization of the way-below relation, the migdeals of the formic, ¢ € P, are<-dense ifRI(P) and,
hence, form a basis. O

Since the round idealg:, ¢ € P, form a basis for the round ideal completion, they form a predin, when equipped
with the restriction of the relatior onRI(P). One may conjecture that<< b if, and only if, {a < {b. Itis indeed true
thata << bin P implies{a < {bin RI(P). But the converse is not true in general as the following eXarshows (thus,
not every predomain is the basis of a domain):

Example2.5. Let D be the union ofo, 1]? and the segmert-(1,1) | 1 < r < 2} in R2. On D we take the coordinatewise
order. ThenD is a continuous lattice with the way-below relatiofu, b) < (a’,b') iff 1 < a’ = ¥/, (a,b) € [0,1]? or
a<d <l,b<b <lora<d <1,b=b=00ra=d =0,b<bd/ <lora=a =b="b =0.

We can weaken this way-below relation to a relatienby strengthening the first set of inequalitieslto< o’ =
b,a < lorb < 1. Thus, for examplél,a) < (2,2) but not(1,a) << (2,2). The round ideal completion ¢D,~<<) is
the continuous latticé.



A predomain is calledtratifiedif
ta < binRI(P) = a<<binP
By the characterization of the relatieqt in Propositio 2.1, this is equivalent to
ta Cle,c=<b = a<<b

Every predomain can be stratified by strengthening theioelak to: a << b iff {a < b in the round ideal completion
iff there is ac<< b such that.a C |c.

Replacing< by =<, on a predomairP does not change the round ideal completion. Indeed, a dos e round
ideal completion of any of its bases, and the predomBir<) may be identified with the basis of alt, a € P, of the
round ideal completioRI(P).

The containment order on round ideals inducestural preorderon the predomai®: Definea < o’ if {a C {d/,
thatis, ifc < a impliesc < d’.

The property

a<c<b = a=<bd (2)

then holds for any predomain. The corresponding property
a<c=<b = a=<b (3)
does not hold for predomains, in general; it holds if and dirtiye predomain is stratified.

Example 2.6. Let us return to our basic exampté,(X ), of nonnegative real-valued functions vanishing at infinity
defined on a locally compact Hausdorff spaXeviewed as predomain asfin 2.1. This predomain is stratifiesdround
ideal completion can be identified with the dom&isC(X) of all lower semicontinuous functionsfrom X to the one
point compactificatioR, = R, U {+oo} of the nonnegative reals. A round idealof Cy(X), is identified with the
functiong defined byg(z) = sup;c, f(z). The way-below relatior< on LSC(X) is given byg < h if there is an

f € Co(X)y suchthaly < f < (h —¢)4 for somes > 0.

24 c-Spaces

Let us turn now to the topological variant of predomains. Thgologies occurring in this context are highly non-
Hausdorff. This is not a default but an essential featuréeéu these topologies combine order and topology.

In an arbitrary topological spadeX, 7) we use thespecialization preordera <. b if a belongs to the closure of
the singleton{b}, which is equivalent to saying that every open neighbortafadis also a neighborhood &f For any
elementz we denote by

te={yeX |z <y}
thesaturationof x, equivalently, the intersection of all open sets contajninContinuous functions between topological
spaces preserve the respective specialization preorders.

A c-spacés a topological spac& with the property that every elemeinhas a neighborhood basis of sets of the form
Tz. c-Spaces have the remarkable property that separatacintis equivalent to joint continuity, a property that has
been noticed by Ershov:

Proposition 2.7. Let X be a c-space antl and Z arbitrary topological spaces. Then every mApX x Y — Z thatis
continuous separately in each of the two arguments is jpightinuous.

Proof. Let 2y andy, be elements o’ andY’, respectively, and/ a neighborhood of (zo, yo). If z — f(x,yo) is
continuous, there is a neighborho@d of =, such thatf(z,yo) € U for everyz € W. SinceX is a c-space, we may
suppose thal = 1z, for somez; € X. Using thaty — f(z1,y) is continuous, we find a neighborho®dof y, such
that f(z1,y) € U forally € V. Sincex — f(z,y) is continuous for every, these maps preserve the specialization
order. Hencef (x,y) € U forall (z,y) € tz; x V and the latter set is a neighborhood 0§, o). O



2.5 Predomainsand c-spaces

Every predomairiP,<<) carries a natural topology< that turns it into a c-space: A subgés f P is declared to be open,
if (1) z € U andx << y imply y € U and (2) for everyr € U there is an element € U with z << z, equivalently, if
U = tU where

ftU={zxeP|IFzelU 2=z}

Proposition 2.8. On a predomain( P,~<<) the open sets just defined form a c-space topology denoted, Bgr which
the setsfx = {y € P | z =< y}, = € P form a basis. The specialization preorder agrees with theirsé preorder of
(P,<<).

Proof. Clearly the union of any family of open sets in the sense jefindd is open. The intersection of finitely many
open sets is open by the interpolation property (IP). The akthe formfx are open by transitivity and the interpolation
property (IP1) and they form a basis for the topolagy by the interpolation property (IP2). The specializatioagrder
for this topology agrees with the natural preorder since; y iff every open neighborhood of containsy iff z << «
impliesz << y iff {x C {y iff z <y. Moreover every open neighborhobdof 2 contains an element< x so that}z is

a subset o/ containing the open basic neighborhdadof z. Thus(P, 7—) is a c-space. O

Conversely, on a c-spa¢, 7) we consider théopological way-below relation <<, b if Ta is a neighborhood df.

Proposition 2.9. A c-space(P, ) becomes a stratified predomain for the topological way-elelation<<,. The
natural preorder associated with the relatier.. agrees with the specialization preorder..

The topological way-below relation has the property tat a <<, b = a’ <<, b, that s, it satisfies property (3).
Thus,(P,<< ) is a stratified predomain.

The two constructions almost yield a one-to-one correspood between predomains and c-spaces. Starting with a
predomain P,~<<), then passing to the c-space topolagy and then extracting the topological way-below relatioridge
the stratification of the original relatiorg<. Starting with a c-space, extracting its topological wayelw relation and
forming then the associated c-space topology gives baortpmal c-space topology.

On a domain, the c-space topology agrees with the Scottdggolndeed, on a domain the sets of the fgurform
a basis of the Scott topology [16, Theorem 11-1.14].

2.6 Countability conditions

A predomainP is said to bdirst countablef, for every elemenb, the round idealb has a countable<-cofinal subset.
This is equivalent to the requirement that there is a seqene< as << ... which is<<-cofinal in {b. We say that’ is
second countabler countably based it has a countable<-dense subsdB.

Our basic exampléCy (X)+,<<) 21 is first countable choosinfy = (f — 1), n € N, but not second countable in
general.

The first and second countability conditions for predomasespond to first and second countability of the corre-
sponding c-space topology., respectively.

The round ideal completion of a countably based predomainustably based. But the round ideal completion of a
first countable predomain need not be first countable:

Example 2.10. Our basic exampléCy (X ),~<) 2.1 is first countable. Choosiny, = (f — 1), n € N, we obtain a
countable cofinal subset in the round idggl. The round ideal completion need not be first countable. Asxample,
let X be an uncountable discrete space. The round ideal complefi@’y(X ) is the domain of all mapg from X to
R.. The maps’ < g are those mapg with finite support that satisfyi(x) < g(z) for all z in the support off. Because
of the uncountablity o, there cannot be a cofinal countable subset among the furgcfiavay-below, for example, the
constant function 1.



A round ideall will be said to be countably generated or simply a rowndeal if it contains a sequence
<< o K ...

such that, for every € I, there is am such thab < a,,. If P is first countable, thei{a) = {a is a roundw-ideal and
we may form thev-completion, the collectiowRI(P) of all roundw-ideals which isu-complete in the sense that the
union of every increasing sequence of roundeals is a round-ideal. The roundv-ideal completion is an-domain
By this we mean that every elememtis the supremum of a chaiy, <, a2 <, ..., whereb <, « if, for every
sequencé; < by < ... with a < sup,, b, there is am such thab < b,,. In afirst countable predomain there may exist
round ideals that are not countably generated as we haversBelf). Another example is given by the ordered@etf
countable ordinals. Here, the $eitself is a round ideal that is not countably generated.

In the literature related to the Cuntz semigroup, first cabifity is always required following Coward, Elliott and
Santiagol[5].

2.7 Morphisms

For predomainsit is natural to consider mgpsP — @ thatpreserve the relatior<, thatisa << bimplies f (a) << f(b).
For the associated c-space topology that is equivalenytogthatt f (U) is open for every open subdét Maps between
topological spaces will be calleaben if they satisfy this property. (In topology, a map is calle@gen if the image of
every open set is open. We have modified this definition, batich a way that for Tspaces the new definition agrees
with the old one. For J-spaces this new definition looks more appropriate.)

As for topological spaces in general, for c-spaces it isnahta consider continuous maps. Continuous maps preserve
the respective specialization preorders, but not the tgpchl way-below relations. Accordingly, a mgp P — Q
between predomains will be calledntinuousif it is continuous for the respective c-space topologidss is equivalent
to the condition:

Voe P.Vee Q.c<< f(b) = Ja€ P a<<bandc= f(a)

The canonical map: a« — {a from a predomairP into its round ideal completion preserves the relatianlt also is
continuous. Indeed, if is around ideal with < |a, then there is an elemeht {a such thatl C |[b. As a consequence,
i: a — }a is atopological embedding.

On posets and dcpos we use Scott continuity. A map betweeangigssaid to b&cott continuous it is monotone
and preserves existing suprema of directedsatsis order theoretic notion of continuity is equivalenttmtinuity with
respect to a topology, the Scott topology. The closed setisedbcott topologyf a poset are those lower sets that are
closed for suprema of directed subsets, as far as they exist.

On domains one can consider the Scott topology and the assdd-space topology. Fortunately the two topologies
agree so that there is no ambiguity when talking about caityirof function from or into domains.

2.8 Universality of theround ideal completion

The canonical map: a — {a from a predomain P,~<<) into its round ideal completion is continuous and preserves
the relation<<. Both properties are consequences of the characterizafithve way-below relation on the round ideal
completion: Indeed, if is a round ideal withl < la, then there is an elemente |a such thatl C |c which shows
continuity. For the preservation ek, let a << b; interpolate an element<< ¢ << b and we havga C |{c andc € {b,
thatis{a < {b.

The round ideal completion of a predomain has the desiredetsal property:

1|t is interesting to remark that Hofmann and Stralka in ti&iv6 paper [18, Definition 1.29] had proposed to oalimalthose maps that preserve
existing directed suprema in analogy to the terminologyddee\W*-algebras



Proposition 2.11. For every continuous map from a predomair( P,~<<) into a dcpo@ (with the Scott topology), there
is a unique continuous maf: RI(P) — @ such thatf({a) = f(a):

P

If @ is a domain, the continuous extensif)preserves« if and only if f preserves<.

Proof. For uniqueness suppose trfott RI(P) — Q is a continuous map satisfyinfxia) = f(a). Any round ideal

~

J is the union of the directed family dfa, a € J. Thusf(J) = f(U,cp ta) = sup,cp f({a) (by continuity) =
swoep fl0). )

We now definef by f(J) = sup,c; f(a) for every round ideall. We first remark thaff is well defined, since
for a round idealJ of P the imagef(J) is directed. Indeed, a continuous map preserves the sizetiah order; the
specialization order on a predomain is the ordet b iff | C |b and the specialization order for the Scott topology on a
dcpo is the given order.

We now check thafis Scott-continuous. I7; is a directed family of round ideals the= | J, J; is its supremum in
the domain of round ideals anfd.J) = sup,e s f(a) = sup; sup,¢ 5, f(a) = sup; 7).

Now suppose thaf) is a continuous dcpo. If preservesg, thenf = fo | preserves«. Conversely, suppose
that f preserves. Let] <« Jin RI(A). Thereis amu € J such thath < aforallb € I. Leta < o’ € J. Then

) = supper f(b) < fla) < f(d') < \/TbeJ f(b) = f(J). Thus,f preserves<. O

For a continuous may from a predomairP to a predomairf), the compositior} o f: P — RI(Q) is continuous,
too. By the preceding proposition, there is a unique cootisumapRI(f): RI(P) — RI(Q) suchthatRI(f)o{ = {o f:

P RI(P)
f RI(f)
Q RI(Q)

and this map is defined RI(f)(J) = U, f(a) = Lf(J). Moreover,RJ(f) preserves< if and only if f does. In
this way, RJ becomes a functor from the category of predomains and agoisimaps to the category of domains and
continuous maps. It restricts to a functor if one restriotsdntinuous maps preservirg.

From a topological point of view, the round ideal completi®#( X) of a c-spaceX can also be seen to be the D-
completion in the sense df [22, Proposition 9.1] and eqgaividy as the sobrification [22, Proposition 10.2] . Thus it
has a more general universal property than the one showreabov every continuous mapfrom X into a monotone
convergence spacé (in particular, into every sober space), there is a uniquricoous mapf: RI(X) — Y such that
f@x) = f(z) forall z € X [22, Theorem 6.7]. But we will not use this more general pointiew in this paper.

Not all continuous maps froRI(P) to RI(Q) are induced by continuous maps frafto @, but only those that
map the basi{ to the basig). As the continuous maps froRI(P) to RI(Q) are in one-to-one correspondence with
the continuous maps from® to RI(Q), we may view these maps as set-valued maps frof to @), whereF(x) is a
round ideal ofQ for everyxz € P. Alternatively we may view these maps as a relathorc P x @ where(z,y) € R



if y € F(x). Itis not difficult to axiomatize such relations; one has tatevdown, firstly, that the set of all such that
(z,y) € R form around ideal and, secondly, thais continuous. One finds such axiomslin [1, Definition 2.2.27]

3 PreCuntz semigroups and their duals

In this paper, anonoid(C, +, 0) will always be understood to be commutative. Thi#tsis a commutative associative
operation with neutral elemeit A monoid homomorphisnis a mapf between monoids such thgt0) = 0 and
fla+y) = f@) + f(y).

A coneis a monoid C, 4, 0) endowed with a scalar multiplication by real numberts 0 which satisfies the identities:
1-a=a,(rs)a=r(sa),(r+s)a=ra+sa,r(a+b) =ra+rb. One may extend the scalar multiplicatiornvte= 0 by
defining0 - a = 0, and the above laws for the scalar multiplication remairdva linear map is a mag’ between cones
which is a monoid homomorphism and satisffész) = rf(z).

3.1 PreCuntz and Cuntz semigroups

A predomain monoidC, +, 0,~<<) is a monoid endowed with the structure of a predomain in sughyathat addition is
continuous.
We will say that the relatior< is additiveif

0<<a and a<<a',b=<<b = a+b=<d +¥V

A predomain monoid in which the relatiex is additive will also be called preCuntz semigroup

Since for c-spaces separate continuity implies joint crity by Propositiofi 2]7, it suffices to require addition ® b
separately continuous, that is, the maps> a + x to be continuous for every. But the additivity of the relatior< has
to be understood jointly as defined above. It is not suffidieméquire thatt << o’ impliesa + b<< a’ + b.

A directed complete partially ordered monoid (a dcpo-mdnfair short) is a monoid with a directed complete partial
order such that the addition is (Scott-) continuous. If thderlying dcpo is a domain, we say that it id@main monoid
A domain monoid with an additive way-below relation will balled aCuntz semigroupOf course, a Cuntz semigroup
is also preCuntz; we just have to concentrate at the waywbeation.

Let us look at the round ideal completion of a preCuntz seouigt”'. For two round ideal$ and.J define

I+J= |J Ha+b)

acl,beJ

ThenI + Jis aroundideal. Indeed,ife I +.J, thenc < a+bforsomea € I,b € J. There are’ € I andb’ € J with
a—=< a’ andb =< b’. By the additivity of the way-below relation we obtair< a + b << a’ + ', whencec € {(a’ + V'),
thatis,c € I + J. Using Proposition 214 the following is easily verified:

Proposition 3.1. The round ideal completioRJ(C') of a preCuntz semigrou@' is a Cuntz semigroup. The map—
ta: C' — RI(C) is a continuous monoid homomorphism preserving

Proof. Itjust remains to verify that the continuous extensfaaccording t6 211 is a monoid homomorphisf(uﬁL J)

~

f(Uael,beJ ta+b) = sup,erpes f(Ha+0)) = sup,eqpes fla+b) = supyerpes fla) + f(b) = sup,e; f(a)

-~ -~ -~ ~

supye y f(b) = sup,e; f({a) +supye; f(10) = f(I) + f(J).

The round ideal completion of a preCuntz semigroup we hasxpected universal property:

o+ 1l

Proposition 3.2. If f: C' — D is a continuous monoid homomorphism from a preCuntz senpgrointo a dcpo monoid
D, the unique continuous extensign RI(C') — D satisfyingf(ia) = f(a) for all a € C according to the universal
property{Z2.11 is a monoid homomorphism.
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Proof. Itjust remains to verify that the continuous extensz(m:cording t¢ 2.711 is a monoid homomorphisf*(lI+ J) =

~

f(Uael,beJ ta+0b) = sup,erpes f($(a+0)) = sup,crpes fla+b) = sup,cr ey fla) + f(b) = sup,e; fa) +

~ -~ ~ ~

supye 7 f(b) = sup,er f(Ya) +supye s f($0) = f(I) + f(J). O

Corollary 3.3. For every continuous monoid homomorphigmC — D of preCuntz semigroups there is a unique
continuous monoid homomorphiski(f): RI(C) — RI(D) such thatRI(f)({a) = {f(a) for all a € C, andRI(f)
preservesg if and only if f does.

We now add scalar multiplication, thus passing from monéidsones. The properties stated before remain valid.
A preCuntz coneas a preCuntz monoid which is also a cone such that scalarpticdttion is continuous as a map
R-o x C — C, whereR- is considered as a predomain withas its approximation relation. In a preCuntz cone the
mapz — rz: C — C'is continuous and it has a continuous inverses »~ 'z, that is, it is a homeomorphism. It follows
thatz << y impliesrz << ry for 0 < r < +o0.

The round ideal completion of a preCuntz cone is a Cuntz cdtieamuniversal property analogous to the universal
property of the round ideal completion of a preCuntz semigroA dcpo-cone is understood to be a dcpo-monid
which is also a cone in such a way that the scalar multipbed®i.o x D — D is Scott-continuous. For every linear map
f from a preCuntz con€' to a dcpo-coné the unique continuous extensig?n RI(C) — Dis linear.

Example 3.4. The nonnegative real numbers form a preCuntz dBneand R is its round ideal completion. In both
cases the approximation relatiomis«< sif r < sorr = s = 0. The addition is the usual one, extended-byo = +o0.

Example 3.5. Our basic exampl€'y(X ) for a locally compact Hausdorff spack€ is a preCuntz cone with the usual
pointwise defined addition of functions. But notice tfia& f’ does notimply + g << f’ + g. For examplglz — ) <
< (z—1 butz+ (z — 1)y Kz + (x—1)4. Alsor < sdoes notimply f < sf (for example ifX = [0, 1] and
f(x) =z, thenrf <« sf, wheneved < r < s).

The round ideal completion ¢y (X) ., <) is LSC(X), the set of all lower semicontinuous mapsX — R,.
Here the way below relation is given by h if there is af € Cy(X )+ and ane > 0 suchthaty < (f — )4, f < h.

As a predomainCy(X) is first countable, sincég — 1), < (g9 — 757)+ and since for every’ < g we have
f<(g— %)+ for somen. | do not think that the round-ideal completion is what one wants to consider here, except
for those cases where it agrees WitRC(X ) ;.

Remark 3.6. The notion of an abstract Cuntz semigroup has been intradug€oward, Elliott and lvanescul[5]. First
countable preCuntz semigroups have been introduced byrfmteerera and Thiel under the name of a pre-W-semigroup
[4, Section 2.1]. They construct theirround ideal completions and prove a universal propertyhisf construction[[4,
Chapter 3].

3.2 Topologieson posets and function spaces

Let L be a poset, the order relation being denotedbypenote byL°? the same set with the opposite orderBesides
the Scott topology on L one may consider the dual Scott topolagiy, the Scott topology of.°P. We are interested in
three other topologies ah that look quite simple at a first glance.

Theupper topologyr,,, has the principal idealsh = {y € L | y < b}, b € L, as a subbasis for the closed
sets.

Thelower topologyr;, has the principal filter$a = {y € L | y > a}, a € L, as a subbasis for the closed
sets

The interval topologyr;,, is generated by the upper and the lower topology. The clasedvals|a, b] =
Ta N b are closed sets.
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We will use the following general observation: For complettices. and M, a maps: L — M preserving arbitrary
suprema has a lower adjoint M — L defined bya(y) = sup{z € L | f(z) < y}. Thena preserves arbitrary meets
andB~1(ly) = la(y) which shows thag is continuous for the respective upper topologies. Sitlyilar is continuous
for the respective upper topologies.

OnR,, the extended nonnegative reals, the proper open sets aipiier topology are the intervals, +oc], the
proper open sets for the lower topology are the inter{fals], and the interval topology is the usual compact Hausdorff
topology with the open intervals, s as a basis for the open sets. The analogous statement hotdbfets oR ; as the
set of nonnegative real®, and the seR - of positive reals.

In agreement with classical analysis, a function from a epgadnto R, is lower semicontinuo@sf and only if it is
continuous with respect to the upper topologyon. We are interested in a special case.

Let (P,<<) be a predomain with its c-space topology and its naturalrgexo We denote by.SC(P) the set of all
lower semicontinuous functions P — R ordered pointwisef < g if f(x) < g(z) for allz € P. We want to look at
the intrinsic upper, lower and interval topology on thisdtian space.

Proposition 3.7. For a predomainP the function spac&SC(P) has the following properties:
(a) A subbasis for the upper topologyld8C(P) is given by:

Vor ={f €LSC(P)| f(z) >r}, z € P,r e Ry

A net(f;); of functions inLSC(P) converges tg € LSC(P) for the upper topology if and only if:

flz) < 1imiinf fi(x)forallz € P (upConv)
(b) A subbasis for the lower topology is given by:
W, = {f € LSC(P) | f(z) < r for somer € {y}, y € P,r € R,.

A net(f;); of functions inLSC(P) converges tgf € LSC(P) for the lower topology if and only if:
limsup fi(y) < f(z) whenevey << z in P (loConv)
(c) For the interval topology and the pointwise orde§C(P) is a compact ordered space. A ri¢t); of functions in

LSC(P) converges tg € LSC(P) for the interval topology if and only conditiofgpConv)and (upConv)hold.

The following developments contain a proof for the proposit
We begin with a sef’ and we consider the pow@f of all functionsg: P — R,. With respect to the pointwise

order,Ri is a complete lattice. Suprema and infima of arbitrary famitif functions are formed pointwise. The lower,
upper and interval topology dﬁi agree with the product topologies of the lower, upper aneria topology orR .,

respectively. A netf;); in RI: converges tg for the upper (resp., lower) topology if and only if does sinpwise, that
is, if and only if for everyz € P,

f(z) <liminf f;(z) (resp.,limsup f;(z) < f(x)) (Conv)
As a product of compact ordered spadﬁg, is a compact ordered space for the interval topology.
Suppose now thaP is a preordered set and consider the collecit®dN (P) C Ri of all monotone functions. Since
pointwise suprema and infima of monotone functions are num@ ON(P) is a complete sublattice ﬁi. Its intrinsic

2|t looks incoherent to call a functiolewer semicontinuous if it is continuous for thgpertopology onR ;. But this is unavoidable if one want to
stay coherent with the use of lower semicontinuity in analgsd the terminology for topologies used in [].
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lower, upper and interval topology agree with the subspapelbdgy induced by the lower, upper and interval topology

on Ei. Convergence is characterized as aboveldiiN(P) is closed in@i, hence, a compact ordered space, for the
interval topology,

We now specialize further and suppose tlfats a topological space with its specialization preorder.e Tdwer
semicontinuous functiong: P — R, form a subseL.SC(P) of MON(P), since continuous functions preserve the
specialization preorder. The pointwise supremum of a faofilower semicontinuous functions is again lower semicon-
tinuous, that is, the canonical injectionld8C(P) into MON(P) preserves arbitrary suprema. It follows th&tC(P) is
a complete lattice, too, and that the lower adjeint : MON(P) — LSC(P) that assigns to every order preserving map
g: P — R its lower semicontinuous envelopeuv(g) = sup{f € LSC(P) | f < g} preserves arbitrary infima. The
lower semicontinuous envelopev(g) is also given by

env(g)(a) = liminf f(2) = sup inf J(2) (Env)

for everyz € P, whereu, is any neighborhood basis ef The intrinsic upper topology of the lattideSC(P) is the
subspace topology induced by the upper topologﬁﬁm Indeed, ifg € MON(P) andf € LSC(P), then:

f < gifandonlyif f < env(g) (Adj1)

Thus convergence ihSC(P) with respect to the upper topology is characterized by d¢@m{upConv). This proves
claim (a).

Infima in LSC(P) are not formed pointwise, in general. The infimuniLi#iC(P) of a family of functionsf; is the
lower semicontinuous envelope of the pointwise infimum. Tensic lower topology of the latticE.SC(P) need no
longer be the subspace topology induced by the lower topajo@_{i; it can be strictly finer.

We now suppose thdt is a predomain. By definition, a subbasis for the closed sethé lower topology iLSC(P)
is given by the set$h = {f € LSC(P) | h < f} whereh ranges oveLSC(P). If f & Th, there is anzy € P such that
f(zo) < h(zo). Chooser such thatf (z¢) < r < h(xo). By lower semicontinuity, there is@~<< x¢ such that < h(y).
Thusf € W,y = {g € LSC(P) | g(x) < r for somex € %y} andW, , is disjoint from|h. Moreover\V, .. is open
for the lower topology, since it is the complement of the sagib lower closed set of afl € LSC(P) below the simple
lower semicontinuous functiorMy which has value if z € fu and valued else. Thus the setd/, , form a subbasis

for the lower topology ol.SC(P).

Lemma 3.8. For every monotone mapfrom a predomairP to R, the lower semicontinuous enveIEpmgiven by
env(g)(x) = sup g(y)
y<Lz

for all x € P and the magnv: MON(P) — LSC(P) preserves not only arbitrary infima but also arbitrary supra.

Proof. In a predomain, an elementhas a neighborhood basis of principal filtégswith y << x. If g is monotone, we
have thatnf.ct, f(z) = f(y) and the above formula for the lower semicontinuous envedapelifies toenv(g)(z) =
SUPy <« f).

We now take a family of monotone functiops: P — R and we show thatnv(sup, g;) = sup, env(g;). Using
the formula forenv(g) just proved we have indeednv(sup; g;)(z) = sup,., sup; gi(y) = sup;sup, ., gi(v) =
sup, env(g;)(z). O

Since the mapnv maps preserves arbitrary infima and arbitrary supremaciviiginuous for the respective lower,
upper and interval topologies. It also has a lower adjainharacterized by

g < a(f)ifand only if env(g) < f (Adj2)

3The lower semicontinuous envelope as given by formula (Ens)andard in analysis. The formula given in the speciahsion of this lemma is
standard in Domain Theory (see, e.0..I[16, ], cite[[domhak been rediscovered id [8, Lemma 4.7]][29, Lemma 2.2.1].
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for f € LSC(P) andg € MON(P). Explicitly, a(f) = sup{g € MON(P) | env(g) < f}.

We now finish the proof of claim (b) by considering a ¢t); in LSC(P). Suppose firstly that the n¢t converges
to somef € LSC(P) for the lower topology. Since is a lower adjoint, it is continuous for the lower topologies
so that the nety(f;) converges tax(f) for the lower topology inMON(P). This means thalim sup; a(f;)(z) <
a(f)(xz) for everyxz € P by condition (Cond). Passing to the lower semicontinuou®lepe on both sides ylelds
supy«z limsup; a(fi)(y) < f(x) hencdimsup, a(f;)(y) < f(z) whenevely << z as in claim (b). Suppose conversely
that the latter property holds. In order to prove that the(iigt converges tgf we take any subbasic neighborhdé .
of f. Thenf satisfiesf(zy) < r for somez, € ty. Choose any: such thaty << = << x¢. Sincelimsup, fi(z) <
f(zo) < r, there is an index such thatf;(z) < r for all i > j and we conclude that € W, ,. forall i > j.

In order to prove claim (c) we first observe tHa8C(P) is compact for the interval topology, sindéON(P) is
compact for the interval topology and the map : MON(P) — LSC(P) is continuous. The following lemma shows
that the order ilL.SC(P) is closed for the interval topology so tHatC(P) is a compact ordered space.

Lemma 3.9. Let f £ hin LSC(P). Then there is a subbasic upper open neighborh@odf f disjoint from some
subbasic lower open neighborho®d of h.

Proof. Sincef £ h. There is ancy such thatf(zo) > h(zo). Choose amr with f(zo) > r > h(zo). By lower
semicontinuity, there isa—<< zo such thatf(y) > r. Now letV,, ,. be the sets of alf € LSC(P) such thatf(y) > r and
W, the set of allf € LSC(P) such thatf(z) < r for somez with y << z. ThenV,,, andW, ,. are disjoint subbasic
open sets for the upper and lower topology, respectivelytaining f andh, respectively. O

On R+ addition is jointly continuous with respect to each of thesthtopologies (upper, lower and interval topology)
asamamR, x R, — R,. Multiplication is jointly continuous as a map-, x R, — R for these three topolog@s
ThusR, is a topological cone with respect to all of the three top@sdupper, lower and interval topology), where a
topological conds a coneC' with a topology such that addition and scalar multiplicatéve jointly continuous as maps
C x C — CandR-y x C — C, respectively. This definition has to be read with cautiohe §uestion which topology
to use onR(; one has to use the upper, lower and interval topology, rtisedy, in agreement with the topology used
onC.

SinceR, is a topological cone, the pow@i is a topological cone, too, for the pointwise defined addigmd
multiplication with real numbers > 0, and this for each of the three topologies (lower, upper atetval topology). For
a preordered sd?, the monotone functions form a subcdd®N(P). For a topological spack, the sumf + g of two
lower semicontinuous functiong g € LSC(P) and the scalar multiplef for 0 < r» < +oo are lower semicontinuous,
too. ThusLSC(P) is a subcone oMON(P). Furthermore, ifP is a predomain, the mapv: MON(P) — LSC(P) is
linear. This is easily verified using the formula for the lavgemicontinuous envelope in Leminal3.8; but there is also a
general argument that we present after the statement ofthigoroposition. We conclude:

Proposition 3.10. Let P be a predomainMON(P) andLSC(P) are ordered topological cones for their intrinsic upper,
lower and interval topologies, respectively. The map: MON(P) — LSC(P) is linear, monotone and continuous for
each of the three topologies.

Recall that, in the previous proposition, according to oefirdtion of a topological cone, the s&t., of positive
scalars has to be equipped with the respective upper, landiinterval topology.
We will use the following observation several times:

Observation 3.11. LetC and D be cones each with a topology that agrees with the upper ¢ggyadn the rayR- - a.
Then every continuous monoid homomorphisnmC — D is homogeneous, hence linedndeed, by additivity one
obtainsf(qa) = ¢f(a) for every rational numbey > 0. For a real number > 0 choose an increasing sequenrge

4There is no way to extend the multiplication to all Bf_ in such a way that it remains continuous for the interval togpThis fact had been
overlooked in[[8] and had led to misleading statement5]inlf8le extend multiplication bytoo - 0 = 0 = 0 - (+00), it remains continuous for the
upper topology, if we extend it by-oo - 0 = 400 = 0 - (4-00), it remains continuous for the lower topology.
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of rational numbers with supremum Thena = sup g,a andrf(a) = sup,, ¢, f(a) sincer — rz is supposed to be
continuous for the respective upper topologies. Siftsecontinuous for the respective upper topologies, we firaitain

f(ra) = f(sup, gna) = sup,, f(qna) = sup,, gnf(a) = rf(a).

One may ask, why we restrict scalar multiplicatioriRg, and why we do not extend it to= 0 andr = +oc0. The
reason is that we have to treat the three cases differentiyerning such an extension. While there is no continuous
extension of scalar multiplication &, for the interval topology, we can proceed as follows for the bther cases.

Using the upper topology, we may defiler = 0 = r-0 for all » € R, (includingr = +oco) andr - (+00) = 400 =
(+00) - for » > 0. This multiplication is continuous oR ;. for the upper topology and can be extended pointwise to a
multiplication of functiongy € MON(P) andf € LSC(P) with scalars- € R, which remains continuous for the upper
topologies and which satisfies all defining laws of scalartiplidation in cones.

Using the lower topology, we may defifle r = 0 = r - 0 for all r < +oo andr - (+00) = +00 = (+00) - 7 for
all» € R, (includingr = +oco. This multiplication is continuous oR, for the lower topology and can be extended
pointwise to a multiplication of functiongs€ MON(P) andf € LSC(P) with scalars- € R, which remains continuous
for the lower topologies and which satisfies all defining lafuscalar multiplication in cones.

Remark 3.12. In domain theory one usually stresses the Scott topologythdncontext of the this section, the Scott

topology agrees with the upper topology,. This is the case deRf, MON(P) and, in case of a predomaify also for
LSC(P). The same holds for the dual Scott topology and the lowerltmyor;, in all of these cases. The reason is that
this phenomenon occurs in complete completely distrileuttices in general (see, e,d..[16, Section VII-3]). Weeha
preferred to use the lower and upper topology since theinidiefn is simpler.

3.3 Compact ordered and stably compact spaces

Let us point out that in the cases under consideration eaglofthe three topologies (upper, lower and interval topgjog
determines the other two uniquely.

According to L. Nachbin[26], a compact spac¥, r) endowed with a partial ordet the graphG< = {(z,y) | x <
y} of which is closed inX x X is called acompact ordered spac&uch a space is always Hausdorff, since the diagonal
in X x X is closed.

To any compact ordered spat, 7, <) we associate two other topologies, the lower topoleffyand the upper
topologyr“P. The closed sets of the upper (resp., lower) topology are-thgen upper (resp., lower) sets. Thus, the open
sets of the upper (resp., lower) topology aretkmpen upper (resp., lower) sets. We will use the followingreleterization
of these two derived topologies:

Lemma 3.13. Let (X, 7, <) be a compact ordered space. Suppose thdtesp.,2) are topologies onX that consists
of 7-open upper (resp., lower) sets which are separating in tflewing sense: Whenever«< y, there are disjoint sets
U € andV € rp suchthatr € U andy € V. Thenr, is the upper and the lower topology.

Proof. Let W be an arbitrary--open upper set. We have to show thiétbelongs tor;. For this choose any € W. It
suffices to show that there isld € 7 such thatr € U C W (since therlV is the union of open sets belongingg.
Thus take any ¢ U. Thenz £ y and we can find disjoint set$, € 7, andV,, € 7 such thatr € U, andy € V. The
open setd/, cover the complement " which is a closed hence compact set. Thus, finitely many o¥theover the
complement of/. Take the intersectioli of the corresponding finitely many,. Thenz ¢ U C W andU € 7. O

There is an equivalent way to look at this situation. A togital space(X,w) is calledstably compacitf it is
compact, locally compact, sober and coherent.cBlgerentwe mean that the intersection of any two compact saturated
subsets is compact.

The relation between stably compact spaces and compacedrsigaces is the following (see, e.gl, [2][or[16, Section
VI-7]):
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To every stably compact spat¥, w) we associate a compact ordered spaev?, <,,) in the following way:<,, is
the specialization order associated with the topologyhe topology.? is the coarsest refinement of the given topolagy
and the associated co-compact topolagythe closed sets of which are thecompact saturated subsets6f Moreover,
the original topologyw is the upper topology associated with and the co-compact topology* is the lower topology.

Conversely, Let X, 7, <) be a compact ordered space. Then the upper topeltigis stably compact. Its associated
co-compact topology is the lower topology ands the coarsest common refinement of the associated uppdowad
topologies. The ordex agrees with the specialization order associated with tipeuipology.

This setting allows an alternative proof of Proposifiod 3\& use:

Lemma 3.14. If X is a stably compact space ahda retract of X, that is, if there are continuous maps X — Y and
i: Y — X such thatp o 7 is the identity inY’, thenY is stably compact, too.

We now letP be a predomain. We recall th@ION(P), 7, <) is a compact ordered space. Thus, its upper topology
TUP is stably compact. For its intrinsic upper topolofi3C(P) is a subspace dfION(P) and even a retract under the
mapenv: MON(P) — LSC(P) which is continuous for the upper topologies, sire® preserves arbitrary suprema
by Lemm&3.B. Thu&SC(P) is stably compact for its intrinsic upper topolog}” by Lemmd3. 4. By Lemma3.113
and Lemma_3]9, the intrinsic lower topology &8C(P) agrees with the co-compact topology'? )¢ and, hence, the
compact Hausdorff topology-*?)? agrees with the intrinsic interval topology bSC(P). We summatrize:

Proposition 3.15. Let P be a predomain. ThehSC(P) is stably compact for its upper topology. The associated co-
compact topology is the lower topology and the associatéchp@pology is the interval topology.

3.4 Thedual M* of apreCuntz semigroup

For a predomain monoi@l/, +, 0, <) its dual M* is defined to be the set of all lower semicontinuous monoiddom
morphismsp: M — R,. Since the sunp + v» of monoid homomorphismg ands and also the scalar multiplep,
0 < r < xoo are monoid homomorphisma/* is a subcone oEL.SC(M). Since the pointwise supremum of a directed
family of lower semicontinuous monoid homomorphisms isiag@t only lower semicontinuous but also a monoid ho-
momorphismM* is a dcpo-monoid. Bub/* is not a domain. Let us investigate its topological strustur

As in Sectior 3.2 we will use the sét’ of all monotone monoid homomorphisms P — R,. Clearly, M’ is a
subcone of the conelON(P) of all monotone maps fron? to R, .

The central observation is:

Lemma 3.16. For a preCuntz semigroup/, the lower semicontinuous envelopev(vy) of a monotone monoid homo-
morphisnry: M — R, is also a monoid homomorphism.

Proof. Given a monotone monoid homomorphisirecall thaienv(y)(z) = sup,.., v(z’). Thus, clearlyenv(y)(0) =

0. In order to show additivity, let:,y € M. Thenenv(y)(z) + env(y)(y) = SUPu, V(@) + sup, ., Y(Y') =

SUD /iy yizy V(@) + YY) = SUDPp ey ey V(@' + YY) <UD,y V(2) = env(v)(z + y), where we have used that

the relation is additive in)/ for the inequality in the chain of equalities above. The rsgenequality follows from the

continuity of addition inA/ which implies that, ifz << = + y, then there are’ << x andy’ << y such that: < 2/ + v¢/'.

'kIJ'hu3supz,«z_’y,«y v(2'+y') > sup, ., 4, 7(2). This allows to read the above chain of equalities in the vgiﬂeplac;d
y 2.

Thusenv mapsM’ onto M* and we have the following situation where all the arrows detinear maps:

RY «— MON(M) «~— M’



We consider the restrictions f@* of our three topologies ohSC(M):

Theweak upper topologyr,;,,, the restriction of the upper topology a8C(P). It is the weakest topology
for which all the point evaluations, : ¢ — o(z): M* — R, are lower semicontinuous,

the restrictionr;, to A/* of the lower topologyr, onLSC(M),
the restrictionr;;, to A * of the interval topology;,,.

We now are ready for our main result:

Theorem 3.17. Let M be a preCuntz semigroup ardd* its dual cone.
(a) For the topologyr;;, and the pointwise ordex, M* is a compact ordered topological cone.
(b) For the weakupper topologyr; ,, and similarly for the topology;;,, M~ is a stably compact topological cone.

Proof. Lt us show thatM/’ is closed inMON(M) for the interval topology. Convergence for the intervaldimgy in
MON(P) is pointwise convergence IR, . Thus if; is a net inM’ that converges to some € MON(M), then for
x,y € M, ~;(z) converges toy(x), v;(y) converges toy(y) and~;(x + y) converges toy(x + y). At the other hand,
vi(z +y) = vi(x) + vi(y) converges toy(z) +~(y) by the continuity of addition ol .. Thusy(z) +~v(y) = v(z + y).

As a closed subcone &fION(M), M’ is a compact ordered cone for the interval topology. Forntireglower
semicontinuous envelope map$’ onto M* by Lemmd3.16. By Propositidn 3110, the mapv is continuous for the
respective interval topologies. Hendd," is also compact for the topology;,, hence a compact ordered space, and closed
in LSC(M) for the interval topology. We infer thaf\/*, 77 ) is a compact ordered topological cone.

M~ is also a topological cone for the wealpper topologyr,;,, and the topology;;, which are stably compact accord-
ing to Propositio 315, being the topologies of open upperlawer sets, respectively, for the topology. O

From Propositiof 317 we also deduce:
(a) A subbasis for the wealpper topologyr,;, of M* is given by:

Vz,r:{feM*|f(CC)>T}, IGM,TERJF
A subbasis for the topology, by:
Wyr={feM"| f(x) <rforsomez € ty}, y € M,r € R;.

Together these subbases constitute a subbasis for thegypdg].
(b) A net(f;); of functions inA* converges tgf for the weakupper upper topology,,, if and only if:

f(z) < liminf f;(z) forallz € M (upConv)
for the topologyr;; if and only if:

limsup f;(y) < f(z) whenevey << zin M (loConv)

for the topologyr;, if and only conditions (upConv) and (upConv) hold.
These result hold in particular for the dual of our basic eplenthe preCuntz semigrouf (X) .

Remark 3.18. The main proof technique for the results in this subsectiorsists in considering first the coné’ of order
preserving linear functionals: M — R ; for those the compactness properties follow from the TyaficTheorem on

the compactness of product spaces. Taking the lower setiricons envelope yields a continuous retraction on the the
lower semicontinuous monoid homomorphisms. This techeltas first been applied by Jung [2] and is heavily used in
[28,[21]. In [8] it is mentioned that in the proof of TheorenT &n the compactness of the space of traces the same idea
has been communicated to the authors by E. Kirchberd.] Inj8pilem 4.8] claim (a) of Theordm 3]17 has been proved
for Cuntz semigroups.

17



3.5 Thebidual M**

Let M be a preCuntz semigroup aid* its dual. By the universal property of the round ideal cortipte(sed 2.1]1), the
dualRI(M)* of RI(M) is canonically isomorphic (algebraically and topologiggio the dual)/* of M (and also to the
dual of the roundv-ideal completion of\/ if M is first countable.

We may form the bidual/**, the cone of all linear functionals: M* — R, that are lower semicontinuous with
respect to the wedkipper topologyr,, ,; this is equivalent to requiring that these maps are moreotord lower semi-
continuous with respect to the patch topolagy indeed, by Proposition 3.2 the patch open upper sets agtkehe
weak upper open sets. We endaw** with the pointwise order, addition and multiplication byatarsr > 0. We note
that M ** is directed complete (under pointwise suprema). There &taral map from\/ into its bidualM**: to very
x € M we assign the point evaluatiah ¢ — (x). This map fromM to M** clearly is a monoid homomorphism,
linear and monotone. We would like this map to be an order eldibg, that isx £ y in M impliesz £ y. For this it
suffices to have the following separation property:

Separation Property 3.19. Whenever: £ y in M, there is ap € M* such thatp(z) > ¢(y).

This separation property will not be true for Cuntz semigr®in general. We provide a proof under the hypothesis
thatM is a preCuntz cone:

Lemma 3.20. Whenever: £ y in a preCuntz coné/, there is ap € M* such thatp(z) > ¢ (y).

Proof. Consider elements £ y. Thenlxz Z |y, thatis, there is an element< x with z &« y. By interpolation we
find an element’ with z <« 2’ < . Thenlz’ ¢ ly, thatis,z’ £ y. Using interpolation we recursively find a sequence
x> x> x> - > 2. The setU of all w € M such thatu > z,, for somen is ar«-open neighborhood of
contained irtz’ whencey ¢ U. MoreoverU is convex. Indeed, for elementsv € U there is am such that, v >> x,,.

It follows for everyr in the open unit intervabu + (1 — r)v > ra, + (1 — r)z, = x,, thatisru+ (1 —r)v € U.

We now can apply [19, Corollary 9.2] which tells us that foegvopen convex set U in a semitopological cone and every
elementy not contained in U, there is a lower semicontinuous lineacfionaly such thatp(y) < 1 bute(uw) > 1 forall

u € U, in particularp(z) > ¢(y). O

For every round ideal of M, letT = sup{Z | z € I}. Clearly,] € M**. Thus, we obtain a map frofJ(}) to
M** which is Scott-continuous. Moreover this map preserges

Lemma 3.21. For round ideals! and.J in a Cuntz conel < J implies] < .J.

Proof. We first consider elemenis<< y in M. Asy = sup,., ry, there is an < 1 such thatr << ry. LetU, be the
set of allp € M* such thatp(x) > 1, and similarly forU,., andU,,. By definition,U,, U, andU, are weakupper open
andU, < U,, C U,. We want to show that there is a compact saturated’saich that/, C K C U,. Indeed, letp; be
a netinU, converging to some for the topologyr; . Let us show thap € U,. Indeed(ry) > limsup, ¢;(z) for all
z < ry, in particularp(ry) > limsupip;(z) > 1. Thusre(y) > 1 whencep(y) = £ > 1, thatisy € U,). From this
we conclude that < g in M**. The claim for ideals is a direct consequence, fdr #& J there are elements<< y in
J suchthatl C |z. O

The following question arises:

Question 3.22. If M is a preCuntz cone, i/** isomorphic to the round ideal completi®J(A1)? More precisely, given
anyA € M**, is there a round ideal in M such thatA = J.

The answer to this question is 'yes'’ in the case of our basiomte, the con€y(X) . for a locally compact Hausdorff
spaceX: In this case(Co(X)4)** is naturally isomorphic to the corigSC(.X) of all lower semicontinuous functions
f+ X — R4, which is the round ideal completion 6% (X ). according. Indeed(C,(X),)* corresponds to the cone of

18



all continuous valuations (a topological variant of measyionX and the claim is a special case of the Schroder-Simpson
Theorem (see [20, Theorem 2.15] lor[17] for a short proof).

In the search for an affirmatively answer to the question alfova preCuntz cong/, one can use [20, Corollary 4.5]
which tells us that every lower semicontinuous linear fior@l A on M* is the pointwise supremum of functionals of
the formz;, x; € M. If we can show that we can choose this setpfo be directed, then we have a positive answer to
our question. Indeed, in this case the< x; for some; form a round ideall of M such that/ = A.

Robert [30] has investigated the relation betwédnand the double dual/** for Cuntz semigroups that are not
already cones. Here the problem is to emBédnto a cone which he succeeds by a kind of tensor product earistn
but under additional hypotheses on the Cuntz semigroup.

4 Traceson C*-algebras

We now turn to C-algebras. Le#d be aC*-algebra. The elements of the form= zz*, x € A, are callegositive These
elements form a cone denotéd . On A, we use the topology induced by the norm of thiedgebra and the natural
ordera < bif b —a € Ay. We refer to standard references for background material.

A lower semicontinuous trade a lower semicontinuous monoid homomorphismi, — R, such that(zz*) =
t(z*x) forallz € A. We denote by"(A) the set of all tracesI'(A) becomes an ordered cone for the pointwise defined
order, addition and multiplication by real numbers- 0 . We would like to viewA . as a predomain in such a way that
T(A) is its dual. We let us guide by the basic exaniplé@1X ), 2.1.

We remark that a lower semicontinuous trace satisfies) = rt(a) for r € Rp anda € A4 and, hence, is a linear
map onA_ . This follows from the properties of being a monoid homonism and lower semicontinuity.

4.1 A, asapreCuntz semigroup

Every element € A, generates a commutati¢& -subalgebra’*(a) of A. By Gelfand’s representation theorem, there
is an isometrical isomorphisi : C*(a) — Co(X) for some locally compact Hausdorff spake We denote bya —¢) 1
the element 0€*(a) that corresponds to the functidi, (a) — )+ in Co(X).

As a first try we definee < b for elements:, b € A, if a < (b — ¢)4 for somes > 0. In this way A, becomes a
predomain. We first check the interpolation property. Weetiadeed) < b for everyb € A, and ifa; < cfori =1, 2,
thena; < (b — ¢), forsomes > 0. Forc =b — 5 we then havey; < ¢ < bfori = 1,2. Transitivity follows from the
fact thata < bimpliesa < b and thau < b <« cimpliesa < c.

The relation« just defined will not have the desired properties. Follow@hmtz and Pedersenl [7], one should take
in account an equivalence relation that identifies elemibiatsare identified by every lower semicontinuous tracec&in
traces identify the elemenis:* andx*z, we considerz* andz*x to be equivalent. For a sequeneg); of elements in
A, ifthe sumsy_, ;2 and)_, =7 x; both converge, a lower semicontinuous trace will also ifgtiiese two sums.

According to [7], two elementa anda’ in A, areCuntz-Pedersen equivaleahd we writea ~ a’ if there is a
sequence, in Asuchthau = z,z} anda’ =" ) x,.

The relation~ is indeed an equivalence relation (transitivity is by no neestraightforward). Moreovet, is count-
ably additive, that isq,, ~ b,, implies)_,  a, ~ >, b, provided that the respective infinite sums converge. We tefe
[7, Section 2] for proofs. Clearlyy is a congruence relation, that is, foralla’,b € A, andr € R, one has:

a ~ a impliesa +b~a' +b,ra ~ ra’
TheCuntz-Pedersen preorden A is defined by:
a 3 bifthereisand’ € A suchthat ~a’ <b (CPP)

Note thate < bimpliesa = b.
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We want to replace the Cuntz-Pedersen preorder by a reldi@nve like to call theCuntz-Pedersen approximation
relation<< defined as follows:

a=<<bifthereisas’ € Ay andane > Osuchthatt ~a’ < (b—¢)4

Equivalently:
a—=< bif there are art > 0 suchthat 3 (b—¢)+

We note that in particulath — ) << (b — 5)4 =< b.
Proposition 4.1. For every C-algebraA, (44, +,0,<<) is a first countable preCuntz semigroup.

For the proof we first observe thét«< ¢ impliesd 3 (¢ —€)4+ < cfor somes > 0 whenced =< c. We now show that
<< endowsA; with the structure of a predomain.

For transitivity, letd << ¢ << a. Thend = ¢ as we just noticed and < (a — €)4+. We inferd 3 (a — €)4 from the
transitivity of < whenced < a.

For interpolation we notice théit<< « for everya € A, so that we have (Int0). For (Int2), suppose thak< a for
i = 1,2. Thenthere is an > 0 such that; 3 (a —¢)4 fori = 1,2. Since(a — ) << (a — §)4+ << a, we may choose
c=(a—5); andwe have; << c<< afori=1,2.

It remains to show that addition preservesand is continuous. For this we use a result by Elliott, Ro&ed Santiago
[8, Proposition 2.3]: Givem, b € A, ande > 0, there is & > 0 such that

(a—e)y+(b—e)+ I (a+b-0)+ (4)
(a+b—c)y 3 (a=06)++ (-4 ()

Indeed, these two inequalities are equivalent to the faligyproperties which express the additivity and the coritynof
the relation<<, respectively:

ad<<ab<b = d+V<a+bd (6)
c<a+b = Jd=<ab<<b c=<a+V )

This finishes the proof of Proposition #.1.

The natural preorder of the predomgifi, ,<<) according td 213 is defined by Scp b if La C {b. More explicitly,
a Scp bifforeverye > 0 thereis & > 0 such thafa — )4 3 (b —¢)4. This preorder has already been considered by
Robert[29]. Thus, it’ Scp c=<< a Scp d, thend << o/. From results due to Robelrt [29] it follows that the converse
is not true, thatiga C |b does not imply: = b, in general.

It is natural to ask whether the natural preorgesrp agrees with the Cuntz-Pedersen preorderL. Robert [29,
Proposition 2.1(iii)] has proved the implication:

a3b = aZlcpb (8)

But in the same paper, Robédrt [29] exhibits an example thawslthat the converse does not hold, in general.

The proof for the implicatior{8) is surprisingly sophistted. One refers to a lemma due to Kirchberg and Rgrdam
[24, Lemma 2.2]: It > ||a — b|| then there is a contractiahin A such thaia — ¢) 4 = dbd*. From this, one deduces [8,
Lemma 2.2]:

la—bll <& = (a—e)y 30 ©)

One then shows the following refinement:

la—b||<e = 36>0.(a—e)x I (b—0)+ (10)
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Suppose indeefa — b|| < . Since(b — §)4 converges (in norm) té for § — 0, there is somé > 0 such that still
la— (b—0)+| < e. Now (10) follows from[(9).
One further uses from [8, Proposition 2.3]

(az* —e)y ~ (z'z—e)s (11)
for every element of the C'-algebrad ande > 0. From [B) (see als 29, proof of Proposition 2.1(i)] we degtu
a<b = Ve>0.30>0.(a—¢e);r 3(b—0)+ (12)

Indeed, ifa < b, thenb =a+ (b —a) andb — a € A. Thus, fore > 0 we can find & > 0 such thatla — &) + ((b —
a) —e)y 3 (b—0)4. Itfollows that(a — )+ 3 (b—0)4.

We are now ready for the proof of the implicatidn (8). Suppesg b. There is a sequenas, of elements ind such
thata = 200 | &,z anda’ = Y°°° | x%a, < b. Consider any > 0. There is anV such thafja — >0 | z,a7%]| < e.
The following chain of arguments shows thaticp b:

(Zf:[:l znxi —6);  forsomed > 0 by (10)
SN (wnak —61); for somed; > 0 by (B)
S (@hwn = 01)1 by @)

(Zf:[:l xtxy, —82)4 for someds > 0 by (4)
(b—d3)+ for someds > 0 by (12)

(a—e)s

CAA 2 AN

4.2 TheconeT(A) of traces

We are ready now to apply our results on the dual of a preCaemtzggoup to the the preCuntz semigrdup; , +, 0,<<)
on the positive cone of a*Galgebrad. We first show that the coriE(A) of traces is the dual of the preCuntz semigroup
(A4, +,0,<<):

Lemma4.2. The lower semicontinuous traces dn agree with the lower semicontinuous monoid homomorphigmns f
the preCuntz semigroupd;, +,0,<<) to R

Proof. Consider a monoid homomorphism A, — R, satisfyingt(a) = t(a’) whenevera ~ a’. We want to show
that \ is lower semicontinuous for the norm topology dn if and only if it is lower semicontinuous for the predomain
structure<<. Thus letr be a nonnegative real number and look at thelset {a € A, | t(a) > 0}. We have to show
thatU is open for the norm topology if and only if it is open for thepace topology.. associated withk<.

Suppose first thal’ is open for the norm topology and look at any elememt U. Since(a — €)4.) converges ta
with respect to the norm, whengoes to0, we have(a — ¢)) € U for e small enough. The we have found an element
b= (a—¢)y) € U such thab << a. We secondly look at any element A, with a << ¢. Then there is an’ such
thata ~ a’ < (¢ — )4 for somes >). Thent(a) = t(a’) < t(c — )+ < t(a) since a monoid homomorphism oh.
preserves the ordet. Hencer < t(a) < t(c), thatis,c € U. Thus,U is open for the c-space topology.

Suppose conversely th&tis open for the c-space topology. and choose any € U. We want to show that there is
ane > 0 such thab € U for everyb such thal|a — b|| < €. There is are > 0 such thaila — €), € U. For everyb with
|la — b]| < e thereis & > 0 such thafa —¢) 3 b by (9), whenc€a — €) . Zcp b by the previous lemma. And the
latter impliesb € U. O

We now may apply Theorem 3]17 and we obtain the following isapment of results by Elliott, Robert, Santiago

[8l:

Coroallary 4.3. Let A be a C-algebra andl’(A) the cone of lower semicontinuous traces.
(a) Equipped with the topology,, T (A) is an ordered compact topological cone, that is, additiod analar multi-
plication are order preserving and jointly continuous, w®& ., is endowed with the usual Hausdorff topology.
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(b) Equipped with the wedlipper topologyI'(A) is a stably compact topological cone, that is, addition acalar
multiplication are continuous, wheiR-.( is endowed with the upper topology.

(c) Equipped with the lower topology:, T'(A) is a stably compact topological cone, that is, addition andlar
multiplication are continuous, wheiR-. is endowed with the lower topology.

Subbases and convergence for the three topologies invaiviek above corollary can be described as in the text
following the proof of Theorem 3.17. B
The dualT'(A)* of the cone of traces consisting of the lower semicontindimesr functionals froml’(A4) to R

contains the round ideal completi®i(A.) of (A4, +,0,<<) as a subcone via the map— J, whereJ : T(A) — Ry

o~

is defined by.J () = sup,.;¢(z). This map is also an order embedding[by 8.20. Our generatiqu&?22 can be
reformulated in this special case:

Question 4.4. Is the the duall'(A)* equal to the round ideal completidRI(A.) of (A, +,0,=<<)? More precisely,
given any lower semicontinuous linear mapmbda: T'(A) — R, is there a round ideall in (A4, +,0,<<) such that
A=J.

The answer to this question is 'yes’ for commutativedlgebras as we have indicated affter 8.22.
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