Skip to main content

Advertisement

Log in

A self-adaptive and stagnation-aware breakout local search algorithm on the grid for the Steiner tree problem with revenue, budget and hop constraints

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

The Steiner tree problem (STP) is a challenging NP-Hard combinatorial optimization problem. The STP with revenue, budget and hop constraints (STPRBH) determines a subtree of a given undirected graph with the defined constraints. In this study, we propose a novel self-adaptive and stagnation-aware breakout local search (BLS) algorithm (Grid-BLS) for the solution of the STPRBH. The proposed Grid-BLS is a parallel algorithm and keeps the parameters of the BLS heuristic in a population at the master node and tunes/updates them with the best performing parameters sent by the slave nodes. The parameter tuning of the BLS heuristic is considered as another optimization job and processed by a genetic algorithm that runs on the master node. The slave nodes perform BLS search and use a multistarting technique that prevents them to get stuck in a local optima by restarting the search processes. A master and slave communication topology is used for communicating with the slave processors. In order to evaluate the performance of the Grid-BLS algorithm, experiments are carried out on 240 benchmark problem instances. The solutions for 226 of these problems are reported to be optimal or the best solutions. The Grid-BLS achieves 21 new best solutions (graphs) that have never been found by any heuristic algorithm so far and performs better than the state-of-the-art heuristic algorithms Greedy, Destroy&Repair, Tabu Search, and Dynamic Memetic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akgun I (2011) New formulations for the hop-constrained minimum spanning tree problem via Sherali and Driscoll’s tightened Miller–Tucker–Zemlin constraints. Comput Oper Res 38(1):277–286

    Article  MathSciNet  MATH  Google Scholar 

  • Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski A, Zaharia M (2010) A view of cloud computing. Commun ACM 53(4):50–58

    Article  Google Scholar 

  • Avella P, Villacci D, Sforza A (2005) A Steiner arborescence model for the feeder reconfiguration in electric distribution networks. Eur J Oper Res 164(2):505–509

    Article  MATH  Google Scholar 

  • Beasley JE (1990) OR-Library: distributing test problems by electronic mail. J Oper Res Soc 41(11):1069–1072

    Article  Google Scholar 

  • Benlic U, Hao JK (2012) A study of breakout local search for the minimum sum coloring problem. In: Bui LT, Ong YS, Hoai NX, Ishibuchi H, Suganthan PN (eds) Simulated evolution and learning. SEAL 2012. Lecture notes in computer science, vol 7673. Springer, Berlin, pp 128–137

  • Benlic U, Hao JK (2013a) Breakout local search for the quadratic assignment problem. Appl Math Comput 219(9):4800–4815

    MathSciNet  MATH  Google Scholar 

  • Benlic U, Hao JK (2013b) Breakout local search for maximum clique problems. Comput Oper Res 40(1):192–206

    Article  MathSciNet  MATH  Google Scholar 

  • Benlic U, Hao JK (2013c) Breakout local search for the max-cut problem. Eng Appl Artif Intell 26(3):1162–1173

    Article  MATH  Google Scholar 

  • Canuto SA, Resende MG, Ribeiro CC (2001) Local search with perturbations for the prize-collecting Steiner tree problem in graphs. Networks 38(1):50–58

    Article  MathSciNet  MATH  Google Scholar 

  • Costa AM, Cordeau JF, Laporte G (2006) Steiner tree problems with profits. INFOR 44(2):99

    MathSciNet  Google Scholar 

  • Costa AM, Cordeau JF, Laporte G (2008) Fast heuristics for the Steiner tree problem with revenues, budget and hop constraints. Eur J Oper Res 190(1):68–78

    Article  MathSciNet  MATH  Google Scholar 

  • Costa AM, Cordeau JF, Laporte G (2009) Models and branch-and-cut algorithms for the Steiner tree problem with revenues, budget and hop constraints. Networks 53(2):141–159

    Article  MathSciNet  MATH  Google Scholar 

  • Da Cunha AS, Lucena A, Maculan N, Resende MG (2009) A relax-and-cut algorithm for the prize-collecting Steiner problem in graphs. Discrete Appl Math 157(6):1198–1217

    Article  MathSciNet  MATH  Google Scholar 

  • Dokeroglu T (2015) Hybrid teaching-learning-based optimization algorithms for the quadratic assignment problem. Comput Ind Eng 85:86–101

  • Dokeroglu T, Cosar A (2016) A novel multistart hyper-heuristic algorithm on the grid for the quadratic assignment problem. Eng Appl Artif Intell 52:10–25

  • Fu ZH, Hao JK (2014) Breakout local search for the Steiner tree problem with revenue, budget and hop constraints. Eur J Oper Res 232(1):209–220

  • Fu ZH, Hao JK (2015) Dynamic programming driven memetic search for the steiner tree problem with revenues, budget, and hop constraints. INFORMS J Comput 27(2):221–237

    Article  MathSciNet  MATH  Google Scholar 

  • Garey MR, Johnson DS (1977) The rectilinear Steiner tree problem is NP-complete. SIAM J Appl Math 32(4):826–834

    Article  MathSciNet  MATH  Google Scholar 

  • Garey MR, Graham RL, Johnson DS (1977) The complexity of computing Steiner minimal trees. SIAM J Appl Math 32(4):835–859

    Article  MathSciNet  MATH  Google Scholar 

  • Haouari M, Layeb SB, Sherali HD (2013) Tight compact models and comparative analysis for the prize collecting Steiner tree problem. Discrete Appl Math 161(4):618–632

    Article  MathSciNet  MATH  Google Scholar 

  • Hwang FK, Richards DS (1992) Steiner tree problems. Networks 22(1):55–89

    Article  MathSciNet  MATH  Google Scholar 

  • Hwang FK, Richards DS, Winter P (1992) The Steiner tree problem, vol 53. Elsevier

  • Johnson DS, Minkoff M, Phillips S (2000) The prize collecting steiner tree problem: theory and practice. SODA 1(0.6):4

    MATH  Google Scholar 

  • Kou L, Markowsky G, Berman L (1981) A fast algorithm for Steiner trees. Acta Inform 15(2):141–145

    Article  MathSciNet  MATH  Google Scholar 

  • Lawler EL (2001) Combinatorial optimization: networks and matroids. Courier Corporation, North Chelmsford

    MATH  Google Scholar 

  • Lee W, Loh WK, Sohn MM (2012) Searching Steiner trees for web graph query. Comput Ind Eng 62(3):732–739

    Article  Google Scholar 

  • Liu G, Guo W, Niu Y, Chen G, Huang X (2015) A PSO-based timing-driven Octilinear Steiner tree algorithm for VLSI routing considering bend reduction. Soft Comput 19(5):1153–1169

    Article  MATH  Google Scholar 

  • Ljubic I, Weiskircher R, Pferschy U, Klau GW, Mutzel P, Fischetti M (2005) Solving the prize-collecting Steiner tree problem to optimality. In: ALENEX/ANALCO, pp 68–76

  • Lourenço HR, Martin OC, Stützle T (2003) Iterated local search. In: Glover F, Kochenberger GA (eds) Handbook of metaheuristics, vol 57. Springer, US, pp 320–353

  • Sinnl M (2011) Branch-and-price for the steiner tree problem with revenues, budget and hop constraints. Diplom-Ingenieur, Fakultät für Informatik der Technischen Universität Wien

  • Sinnl M, Ljubic I (2016) A node-based layered graph approach for the Steiner tree problem with revenues, budget and hop-constraints. Math Program Comput 8(4):461–490

    Article  MathSciNet  MATH  Google Scholar 

  • Smit SK, Eiben AE (2009) Comparing parameter tuning methods for evolutionary algorithms. In: IEEE congress on evolutionary computation, 2009. CEC’09, pp 399–406

  • Voß S (1999) The Steiner tree problem with hop constraints. Ann Oper Res 86:321–345

    Article  MathSciNet  MATH  Google Scholar 

  • Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evolut Comput 1(1):67–82

    Article  Google Scholar 

  • Xu G (2013) An adaptive parameter tuning of particle swarm optimization algorithm. Appl Math Comput 219(9):4560–4569

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tansel Dokeroglu.

Ethics declarations

Conflict of interest

There is no conflict of interest between authors.

Human and animal rights

This article does not contain any studies with human participants performed by any of the authors. This article does not contain any studies with animals performed by any of the authors. This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

There is no individual participant included in the study.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dokeroglu, T., Mengusoglu, E. A self-adaptive and stagnation-aware breakout local search algorithm on the grid for the Steiner tree problem with revenue, budget and hop constraints. Soft Comput 22, 4133–4151 (2018). https://doi.org/10.1007/s00500-017-2630-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-017-2630-7

Keywords

Navigation