Skip to main content
Log in

An optimized data hiding scheme for Deflate codes

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Compression file is a common form of carriers in network data transmission; therefore, it is essential to investigate the data hiding schemes for compression files. The existing data hiding schemes embed secret bits by shrinking the length of symbols, while they are not secure enough since the shrinking of symbol length is easily detected. First, we propose a longest match detecting algorithm that can detect the data hiding behavior of shrinking the length of symbols, by checking whether items of the generated dictionary are longest matches or not. Then, we propose a secret data hiding scheme based on Deflate codes, which reversibly embeds secret data by altering the matching process, to choose the proper matching result that the least significant bit of length field in [distance, length] pair is equal to the current embedded secret bit. The proposed data hiding scheme can resist on the longest match detection, and the embedding rate is higher than DH-LZW algorithm. The experiment shows that the proposed scheme achieves 5.12% of embedding rate and 10.18% size increase in the compressed file. Moreover, an optimization is made in providing practical suggestion for DH-Deflate data hiding. One can choose which format and size of files are to be selected based upon the optimization, and thus, data hiding work can be achieved in a convenient and targeted way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bender W, Gruhl D, Morimoto N, Lu A (1996) Techniques for data hiding. IBM Syst J 35((3.4)):313–336

    Article  Google Scholar 

  • Chang C-C, Tai W-L, Lin C-C (2006) A reversible data hiding scheme based on side match vector quantization. IEEE Trans Circuits Syst Video Technol 16(10):1301–1308

    Article  Google Scholar 

  • Chang C-C, Nguyen T-S, Lin M-C, Lin C-C (2016) A novel data-hiding and compression scheme based on block classification of SMVQ indices. Digit Signal Proc 51:142–155

    Article  MathSciNet  Google Scholar 

  • Chen C-C, Chang C-C (2010) High-capacity reversible data-hiding for lzw codes. In: Computer modeling and simulation, 2010. ICCMS’10. Second international conference on, vol 1. IEEE, pp 3–8

  • Guo J-M, Liu Y-F (2012) High capacity data hiding for error-diffused block truncation coding. IEEE Trans Image Process 21(12):4808–4818

    Article  MathSciNet  MATH  Google Scholar 

  • Guo J-M, Tsai J-J (2012) Reversible data hiding in low complexity and high quality compression scheme. Digit Signal Proc 22(5):776–785

    Article  MathSciNet  Google Scholar 

  • Jian LI, Pan Z, Zheng J, Sun F, Xinxin YE, Yuan K (2015) The security analysis of quantum sagr04 protocol in collective-rotation noise channel. Chin J Electron 24(4):689–693

    Article  Google Scholar 

  • Kumar A, Pooja K (2010) Steganography-a data hiding technique. Int J Comput Appl 9(7):19–23

    Google Scholar 

  • Lee Y-P, Lee J-C, Chen W-K, Chang K-C, Jiunn S, Chang C-P (2012) High-payload image hiding with quality recovery using tri-way pixel-value differencing. Inf Sci 191:214–225

    Article  Google Scholar 

  • Liu T-Y, Tsai W-H (2007) A new steganographic method for data hiding in microsoft word documents by a change tracking technique. IEEE Trans Inf Forensics Secur 2(1):24–30

    Article  Google Scholar 

  • Lonardi S, Szpankowski W (2003) Joint source-channel lz’77 coding. In: Data compression conference, 2003. Proceedings. DCC 2003. IEEE, pp 273–282

  • Lonardi S, Szpankowski W, Ward MD (2007) Error resilient lz’77 data compression: algorithms, analysis, and experiments. IEEE Trans Inf Theory 53(5):1799–1813

    Article  MathSciNet  MATH  Google Scholar 

  • Mali SN, Patil PM, Jalnekar RM (2012) Robust and secured image-adaptive data hiding. Digit Signal Proc 22(2):314–323

    Article  MathSciNet  Google Scholar 

  • Moon SK, Kawitkar RS (2007) Data security using data hiding. In: Conference on computational intelligence and multimedia applications, 2007. International conference on, vol 4. IEEE, pp 247–251

  • Moulin P, Koetter R (2005) Data-hiding codes. Proc IEEE 93(12):2083–2126

    Article  Google Scholar 

  • Najafi HL (2007) A neural network approach to audio data hiding based on perceptual masking model of the human auditory system. Appl Intell 27(3):269–275

    Article  Google Scholar 

  • Nikolaidis A (2015) Reversible data hiding in jpeg images utilising zero quantised coefficients. IET Image Proc 9(7):560–568

    Article  Google Scholar 

  • Parah SA, Sheikh JA, Hafiz AM, Bhat GM (2015) A secure and robust information hiding technique for covert communication. Int J Electron 102(8):1253–1266

    Article  Google Scholar 

  • Ruijin ZHU, Tan Y, Zhang Q, Fei WU, Zheng J, Yuan XUE (2016) Determining image base of firmware files for arm devices. IEICE Trans Inf Syst E99.D(2):351–359

  • Shim Hiuk Jae, Ahn Jinhaeng, Jeon Byeungwoo (2004) Dh-lzw: lossless data hiding in lzw compression. In: Image processing, 2004. ICIP’04. 2004 International conference on, vol 4. IEEE, pp 2195–2198

  • Tseng H-W, Chang C-C (2004) High capacity data hiding in JPEG-compressed images. Informatica 15(1):127–142

    MathSciNet  MATH  Google Scholar 

  • Utku Celik M, Sharma G, Murat Tekalp A, Saber E (2005) Lossless generalized-lsb data embedding. IEEE Trans Image Process 14(2):253–266

    Article  Google Scholar 

  • Wang Z-H, Yang H-R, Cheng T-F, Chang C-C (2013) A high-performance reversible data-hiding scheme for lzw codes. J Syst Softw 86(11):2771–2778

    Article  Google Scholar 

  • Welch TA (1984) A technique for high-performance data compression. Computer 17(17):8–19

    Article  Google Scholar 

  • Wu Y, Lonardi S, Szpankowski W (2006) Error-resilient lzw data compression. In: Data compression conference (DCC’06). IEEE, pp 193–202

  • Xuan G, Shi YQ, Ni ZC, Chen J, Yang C, Zhen Y, Zheng J (2004) High capacity lossless data hiding based on integer wavelet transform. In: Circuits and systems, 2004. ISCAS’04. Proceedings of the 2004 international symposium on, vol 2. IEEE, pp II–29

  • Xuan G, Shi YQ, Yang C, Zheng Y, Zou D, Chai P (2005) Lossless data hiding using integer wavelet transform and threshold embedding technique. In: 2005 IEEE international conference on multimedia and expo. IEEE, pp 1520–1523

  • Yadav D, Singhal V, Bandil DK (2012) Reversible data hiding techniques. Int J Electron Comput Sci Eng 1(2):380–383

  • Yan F, Tan Y, Zhang Q, Fei W, Cheng Z, Zheng J (2016) An effective raid data layout for object-based de-duplication backup system. Chin J Electron 25(5):832–840

    Article  Google Scholar 

  • Zhang X, Tan Y, Xue Y, Zhang Q, Li Y, Zhang C, Zheng J (2017) Cryptographic key protection against frost for mobile devices. Clust Comput 1–10. doi:10.1007/s10586-016-0721-3

  • Zhang W, Xiaocheng H, Li X, Nenghai Y (2013) Recursive histogram modification: establishing equivalency between reversible data hiding and lossless data compression. IEEE Trans Image Process 22(7):2775–2785

    Article  Google Scholar 

  • Zhu R, Tan Y, Zhang Q, Li Y, Zheng J (2016) Determining image base of firmware for arm devices by matching literal pools. Digit Investig 16:19–28

    Article  Google Scholar 

  • Zhu R, Zhang B, Mao J, Zhang Q, Tan YA (2017) A methodology for determining the image base of arm-based industrial control system firmware. Int J Crit Infrastruct Prot 16(3):26–35

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. U1636213, 61370063, 61379048, 61672508).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Y., Tan, Ya., Liang, C. et al. An optimized data hiding scheme for Deflate codes. Soft Comput 22, 4445–4455 (2018). https://doi.org/10.1007/s00500-017-2651-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-017-2651-2

Keywords

Navigation