Skip to main content
Log in

Qualitative modeling of catastrophe in group opinion

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Dynamic change and polarization of group opinion happen frequently in online opinion formation of modern society. Computational modeling of catastrophe in opinion can provide useful information for studying and understanding the dynamics of group opinion. This paper presents a qualitative modeling framework that integrates cusp catastrophe model and qualitative simulation to model catastrophe in group opinions. A qualitative model of opinion dynamics is proposed, and a multi-step fitting procedure is developed to fit model parameters from text data that are fuzzy and incomplete. A graphical metering approach is also designed to help in exploring the trajectory and three phases of catastrophe in opinion. The developed framework is applied to an example of online group opinion. Experiment results demonstrate the effectiveness and utility of the proposed framework for modeling of catastrophe in group opinion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Alonso S, Pérez IJ, Cabrerizo FJ, Herrera-Viedma E (2013) A linguistic consensus model for Web 2.0 communities. Appl Soft Comput 13(1):149–157

    Article  Google Scholar 

  • Berleant D, Kuipers B (1997) Qualitative and quantitative simulation: bridging the gap. Artif Intell 95:215–255

    Article  MATH  Google Scholar 

  • Bigelow JA (1982) catastrophe model of organizational change. Behavioral Science, 27(1): 26-42

  • Cabrerizo FJ, Moreno JM, Pérez IJ, Herrera-Viedma E (2010) Analyzing consensus approaches in fuzzy group decision making: advantages and drawbacks. Soft Comput 14(5):451–463

    Article  Google Scholar 

  • Castellano C, Fortunato S, Loreto V (2009) Statistical physics of social dynamics. arXiv:0710.3256v2 [physics.soc-ph], May,11

  • Cem SAC, Akyn HL (2003) Sound and complete qualitative simulation is impossible. Artif Intell 149:251–266

    Article  MathSciNet  Google Scholar 

  • Dandekar P, Goel A, Lee DT (2013) Biased assimilation, homophily and the dynamics of polarization. PNAS 110(15):5791–5796

    Article  MathSciNet  MATH  Google Scholar 

  • Dong Y, Chen X, Liang H, Li C (2016) Dynamics of linguistic opinions formation in bounded confidence model. Inf Fusion 32:52–61

    Article  Google Scholar 

  • Dou W, Ghose S (2006) A dynamic nonlinear model of online retail competition using cusp catastrophe theory. J Bus Res 59(7):838–848

    Article  Google Scholar 

  • Dong Y, Zhang H, Herrera-Viedma E (2016) Integrating experts’ weights generated dynamically into the consensus reaching process and its applications in managing non-cooperative behaviors. Decis Support Syst 84:1–15

    Article  Google Scholar 

  • Escartín J, Ceja L, Navarro J et al (2013) Modeling workplace bullying behaviors using catastrophe theory. Nonlinear Dyn Psychol Life Sci 17(4):493–515

    MathSciNet  Google Scholar 

  • Flay BR (1978) Catastrophe theory in social psychology: some applications to attitudes and social behavior. Behav Sci 23(5):335–350

    Article  Google Scholar 

  • Guastello SJ (2013) Chaos, catastrophe, and human affairs: applications of nonlinear dynamics to work, organizations, and social evolution. Psychology Press, Abingdon

    Google Scholar 

  • Guglielmann R, Ironi L (2011) A divide-and-conquer strategy for qualitative simulation and fuzzy identification of complex dynamical systems, International Journal of Uncertainty. Fuzziness Knowl-Based Syst 19(3):423–452

    Article  MATH  Google Scholar 

  • Harris D (1989) Comparison of 1-,2- and 3-parameter IRT model. Educ Meas Issues Pract 3:35–41

    Article  Google Scholar 

  • Harris RB, Harris KJ, Harvey P (2008) An examination of the impact of supervisor on the relationship between job strains and turnover intention for computer workers. J Appl Soc Psychol 38(8):2108–2131

    Article  Google Scholar 

  • Hinkkanen A, Lang KR, Whinston AB (2003) A set-theoretical foundation of qualitative reasoning and its application to the modeling of economics and business management problems. Inf Syst Front 5(4):379–399

    Article  Google Scholar 

  • Hu B, Xia GC (2005) Integrated qualitative simulation method for group behavior. J Artif Soc Soc Simul 8(2):372–390

    Google Scholar 

  • Hu B, Xia N (2015) Cusp catastrophe model for sudden changes in a person’s behavior. Inf Sci 294(10):489–512

    Article  MathSciNet  Google Scholar 

  • Huang YK, Feng CM (2009) A catastrophe model for developing loyalty strategies: a case study on choice behaviour of pick-up point for online shopping. Int J Serv Oper Inf 4(2):107–122

    MathSciNet  Google Scholar 

  • Kay H, Rinner B, Kuipers B (2000) Semi-quantitative system identification. Artif Intell 119(1):103–140

    Article  MathSciNet  MATH  Google Scholar 

  • Kuipers B (1986) Qualitative simulation. Artif Intell 29:289–338

    Article  MathSciNet  MATH  Google Scholar 

  • Kuipers B (1993) Qualitative simulation: then and now. Artif Intell 59(1):133–140

    Article  Google Scholar 

  • Kuipers B, Berleant D (1988). Using incomplete quantitative knowledge in qualitative reasoning. In: Proceedings of the seventh national conference on artificial intelligence

  • Liang H, Dong Y, Li C (2016) Dynamics of uncertain opinion formation: an agent-based simulation. JASSS J Artif Soc Soc Simul 19(4). http://jasss.soc.surrey.ac.uk/19/4/1/1.pdf

  • Liu T, Hu B (2009) Qualitative simulation of teachers group behaviors based on BP neural network. Computational intelligence and intelligent systems. Springer, Berlin, Heidelberg

    Google Scholar 

  • Madden L, Mathias BD, Madden TM (2015) In good company: the impact of perceived organizational support and positive relationships at work on turnover intentions. Manag Res Rev 38(3):242–263

    Article  Google Scholar 

  • Meiza A, Darwis S, Gunawan AY (2013) Fuzzy approach for catastrophe model parameter estimation. Far East J Appl Math 77(1). http://www.pphmj.com/journals/fjam.htm

  • Michard Q, Bouchaud JP (2005) Theory of collective opinion shifts: from smooth trends to abrupt swings. Eur Phys J B 47:151–159

    Article  Google Scholar 

  • Morente-Molinera JA, Wikström R, Herrera-Viedma E, Carlsson C (2016) An implementation of a linguistic mobile decision support system based on fuzzy ontologies to facilitate knowledge mobilization. Decis Support Syst 81:66–75

    Article  Google Scholar 

  • Oliva TA (1991) Information and profitability estimates: modelling the firm’s decision to adopt a new technology. Manag Sci 37(5):607–623

    Article  Google Scholar 

  • Pedrycz W (2013) Granular computing: analysis and design of intelligent systems. CRC Press, Boca Raton

    Book  Google Scholar 

  • Pedrycz W (1994) Why triangular membership functions. Fuzzy Sets Syst 64:21–30

    Article  MathSciNet  Google Scholar 

  • Pedrycz W (2014) Allocation of information granularity in optimization and decision-making models: towards building the foundations of granular computing. Eur J Oper Res 232:137–145

    Article  Google Scholar 

  • Peláez JI, Bernal R, Karanik M (2016) Majority OWA operator for opinion rating in social media. Soft Comput 20:1047–1055

    Article  Google Scholar 

  • Pérez IJ, Cabrerizo FJ, Herrera-Viedma E (2010) A mobile decision support system for dynamic group decision making problems. IEEE Trans Syst Man Cybern A Syst Hum 40(6):1244–1256

    Article  Google Scholar 

  • Perez LG, Mata F, Chiclana F, Kou G, Herrera-Viedma E (2016) Modelling influence in group decision making. Soft Comput 20(4):1653–1665

    Article  Google Scholar 

  • Poston T, Stewart I (2014) Catastrophe theory and its applications. Courier Corporation

  • Qian Z (2013) Supply chain participant behavior research based on qualitative simulation. Int J Digit Content Technol Appl 7(6):365

    Article  Google Scholar 

  • Shen Q, Leitch RR (1993) Fuzzy qualitative simulation. IEEE Trans Syst Man Cybern 23(4):1038–1061

    Article  Google Scholar 

  • Sivanandam SN, Sumathi S, Deepa SN (2007) Introduction to fuzzy logic using MATLAB. Springer, Berlin, Heidelberg

    Book  MATH  Google Scholar 

  • Stewart IN, Peregoy PL (1983) Catastrophe theory modeling in psychology. Psychol Bull 94(2):336

    Article  Google Scholar 

  • Thom R, Zeeman EC (1974) Catastrophe theory: its present state and future perspectives. Dyn Syst-warwick 366–372

  • Urena MR, Cabrerizo FJ, Morente-Molinera JA, Herrera-Viedma E (2016) GDM-R: a new framework in R to support fuzzy group decision making processes. Inf Sci 357:161–181

    Article  Google Scholar 

  • Vatcheva I, De Jong H, Bernard O et al (2006) Experiment selection for the discrimination of semi-quantitative models of dynamical systems. Artif Intell 170(4):472–506

    Article  MathSciNet  MATH  Google Scholar 

  • Wang J, Lo S, Sun J, et al (2012) Qualitative simulation of the panic spread in large-scale evacuation. Simulation, 0037549712456884

  • Wang L, Shen Q, Zhu L (2016) Dual hesitant fuzzy power aggregation operators based on Archimedean t-conorm and t-norm and their application to multiple attribute group decision making. Appl Soft Comput 38:23–50

    Article  Google Scholar 

  • Weidlich W (1971) The statistical description of polarization phenomena in society. Br J Math Stat Psychol 24:51

    Article  MATH  Google Scholar 

  • Weidlich W, Huebner H (2008) Dynamics of political opinion formation including catastrophe theory. J Econ Behav Organ 67(1):1–26

    Article  Google Scholar 

  • Wu HJ, Xiao YL (2013) A cusp catastrophe model of supply chain finance ecosystem. Int J Adv Comput Technol 5(6)

  • Wu J, Chiclana F, Herrera-Viedma E (2015) Trust based consensus model for social network in an incomplete linguistic information context. Appl Soft Comput 35:827–839

    Article  Google Scholar 

  • Xu Y, Hu B, Wu J et al (2014) Nonlinear analysis of the cooperation of strategic alliances through stochastic catastrophe theory. Phys A 400:100–108

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This study was funded by the key project of National Nature Science Fund of China (Grant Numbers 71531009, 71271093).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolin Hu.

Ethics declarations

Conflict of interest

Two authors declares that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by V. Loia.

Appendices

Appendix 1

  • syms x y z;

  • syms a b;

  • sym A

  • A = sym(zeros(1,50));

  • double xz;

  • double yz;

  • xz = zeros(4200);

  • yz = zeros(4200);

  • %———–Equations at Time t from Data1 ————%

$$\begin{aligned} A(1)= & {} '((0.2859+0.3455*{x}-0.7*{y})^{\wedge }2\\&+(-0.067+0.1625*{x}-0.9*{y})^{\wedge }2)-z'\\ A(2)= & {} '((0.2859+0.3455*{x}-0.4*{y})^{\wedge }2\\&+(-0.067~+~0.1625*{x}-0.75*{y})^{\wedge }2)-z'\\ A(3)= & {} '((0.0215+0.07*{x}+0.15*{y})^{\wedge }2\\&+(-6.25{E}-05~+~0.00875*{x}+0.45*{y})^{\wedge }2)-z'\\ A(4)= & {} '((0.0215~+~0.07*{x}+0.4*{y})^{\wedge }2\\&+(-6.25{E}-05+0.00875*{x}+0.875*{y})^{\wedge }2)-z'\\ A(5)= & {} '((0.0215+0.07*{x}+0*{y})^{\wedge }2\\&+(-6.25{E}-05+0.00875*{x}+1*{y})^{\wedge }2)-z'\\ A(6)= & {} '((0.0215+0.1425*{x}+0.15*{y})^{\wedge }2\\&+(-6.25{E}-05+0.01125*{x}+0.45*{y})^{\wedge }2)-z'\\ A(7)= & {} '((0.0215+0.1425*{x}+0.4*{y})^{\wedge }2\\&+(-6.25{E}-05+0.01125*{x}+0.875*{y})^{\wedge }2)-z'\\ A(8)= & {} '((0.0215+0.1425*{x}+0*{y})^{\wedge }2\\&+(-6.25{E}-05+0.01125*{x}+1*{y})^{\wedge }2)-z'\\ A(9)= & {} '((0.235+0.32*{x}+0*{y})^{\wedge }2\\&+(0.067+-0.1625*{x}+1*{y})^{\wedge }2)-z'\\ A(10)= & {} '((0.235+0.32*{x}+0.15*{y})^{\wedge }2\\&+(0.067+-0.1625*{x}+0.45*{y})^{\wedge }2)-z'\\ A(11)= & {} '((0.235+0.32*{x}+0.4*{y})^{\wedge }2\\&+(0.067+-0.1625*{x}+0.875*{y})^{\wedge }2)-z'\\ A(12)= & {} '((0.235+0.32*{x}+0*{y})^{\wedge }2\\&+(0.067+-0.1625*{x}+1*{y})^{\wedge }2)-z'\\ A(13)= & {} '((0.0215+0.07*{x}+0*{y})^{\wedge }2\\&+(-6.25{E}-05+0.00875*{x}+1*{y})^{\wedge }2)-z'\\ A(14)= & {} '((0.0215+0.07*{x}+0.4*{y})^{\wedge }2\\&+(-6.25{E}-05+0.00875*{x}+0.875*{y})^{\wedge }2)-z'\\ A(15)= & {} '((0.0215+0.1425*{x}+0*{y})^{\wedge }2\\&+(-6.25{E}-05+0.01125*{x}+1*{y})^{\wedge }2)-z'\\ A(16)= & {} '((0.0215+0.1425*{x}+0.4*{y})^{\wedge }2\\&+(-6.25{E}-05+0.01125*{x}+0.875*{y})^{\wedge }2)-z'\\ A(17)= & {} '((0.235+0.32*{x}+0*{y})^{\wedge }2\\&+(1.067+-0.1625*{x}+1*{y})^{\wedge }2)-z'\\ A(18)= & {} '((0.235+0.32*{x}+0.4*{y})^{\wedge }2\\&+(1.067+-0.1625*{x}+0.875*{y})^{\wedge }2)-z'\\ A(19)= & {} '((0.235+0.32*{x}+0.2*{y})^{\wedge }2\\&+(1.067+-0.1625*{x}+0.75*{y})^{\wedge }2)-z'\\ A(20)= & {} '((0.235+0.32*{x}+0*{y})^{\wedge }2\\&+(1.067+-0.1625*{x}+1*{y})^{\wedge }2)-z' \end{aligned}$$
$$\begin{aligned} A(21)= & {} '((0.235+0.32*{x}+0.4*{y})^{\wedge }2\\&+(1.067+-0.1625*{x}+0.875*{y})^{\wedge }2)-z'\\ A(22)= & {} '((0.235+0.32*{x}+0.2*{y})^{\wedge }2\\&+(1.067+-0.1625*{x}+0.75*{y})^{\wedge }2)-z'\\ A(23)= & {} '((0.0215+0.07*{x}+0.15*{y})^{\wedge }2\\&+(-6.25{E}-05+0.00875*{x}+0.45*{y})^{\wedge }2)-z'\\ A(24)= & {} '((0.0215+0.07*{x}+0.4*{y})^{\wedge }2\\&+(-6.25\hbox {E}-05+0.00875*{x}+0.875*{y})^{\wedge }2)-z'\\ A(25)= & {} '((0.0215+0.07*{x}+0*{y})^{\wedge }2\\&+(-6.25\hbox {E}-05+0.00875*{x}+1*{y})^{\wedge }2)-z'\\ A(26)= & {} '((0.0215+0*{x}+0.15*{y})^{\wedge }2\\&+(-6.25\hbox {E}-05+0*{x}+0.45*{y})^{\wedge }2)-z'\\ A(27)= & {} '((0.0215+0*{x}+0.4*{y})^{\wedge }2\\&+(-6.25\hbox {E}-05+0*{x}+0.875*{y})^{\wedge }2)-z'\\ A(28)= & {} '((0.0215+0*{x}+0*{y})^{\wedge }2\\&+(-6.25\hbox {E}-05+0*{x}+1*{y})^{\wedge }2)-z'\\ A(29)= & {} '((0.235+0*{x}+0.15*{y})^{\wedge }2\\&+(0.067+0*{x}+0.45*{y})^{\wedge }2)-z'\\ A(30)= & {} '((0.235+0*{x}+0.4*{y})^{\wedge }2\\&+(0.067+0*{x}+0.875*{y})^{\wedge }2)-z'\\ A(31)= & {} '((0.235+0*{x}+0*{y})^{\wedge }2\\&+(0.067+0*{x}+1*{y})^{\wedge }2)-z'\\ A(32)= & {} '((0.235+0*{x}+0.15*{y})^{\wedge }2\\&+(0.067+0*{x}+0.45*{y})^{\wedge }2)-z'\\ A(33)= & {} '((0.235+0*{x}+0.4*{y})^{\wedge }2\\&+(0.067+0*{x}+0.875*{y})^{\wedge }2)-z'\\ A(34)= & {} '((0.235+0*{x}+0*{y})^{\wedge }2\\&+(0.067+0*{x}+1*{y})^{\wedge }2)-z'\\ A(35)= & {} '((0.0215+0.07*{x}-0*{y})^{\wedge }2\\&+(-6.25\hbox {E}-05+0.00875*{x}+-1*{y})^{\wedge }2)-z'\\ A(36)= & {} '((0.0215+0.07*{x}-0.4*{y})^{\wedge }2\\&+(-6.25\hbox {E}-05+0.00875*{x}+-0.875*{y})^{\wedge }2)-z'\\ A(37)= & {} '((0.0215+0*{x}+-0*{y})^{\wedge }2\\&+(-6.25\hbox {E}-05+0*{x}+-1*{y})^{\wedge }2)-z'\\ A(38)= & {} '((0.0215+0*{x}+-0.4*{y})^{\wedge }2\\&+(-6.25\hbox {E}-05+0*{x}+-0.875*{y})^{\wedge }2)-z'\\ \end{aligned}$$

%———-Equations at Time t+1 from Data1 ————%

$$\begin{aligned} A(39)= & {} '((0.31725+0.405*{x}+0.2*{y})^{\wedge }2\\&+(-0.104625+0.2125*{x}+-0.9*{y})^{\wedge }2)-z'\\ A(40)= & {} '((0.31725+0.405*{x}+0.45*{y})^{\wedge }2\\&+(-0.104625+0.2125*{x}+-0.45*{y})^{\wedge }2)-z'\\ A(41)= & {} '((0.31725+0.405*{x}+0*{y})^{\wedge }2\\&+(-0.104625+0.2125*{x}+-1*{y})^{\wedge }2)-z'\\ A(42)= & {} '((0.31725+0.495*{x}+0.2*{y})^{\wedge }2\\&+(-0.104625+0.415*{x}+-0.9*{y})^{\wedge }2)-z'\\ A(43)= & {} '((0.31725+0.495*{x}+0.45*{y})^{\wedge }2\\&+(-0.104625+0.415*{x}+-0.45*{y})^{\wedge }2)-z'\\ A(44)= & {} '((0.31725+0.495*{x}+0*{y})^{\wedge }2\\&+(-0.104625+0.415*{x}+-1*{y})^{\wedge }2)-z'\\ A(45)= & {} '((0.6608125+0.5075*{x}+0.2*{y})^{\wedge }2\\&+(-0.756+0.415*{x}+-0.9*{y})^{\wedge }2)-z'\\ A(46)= & {} '((0.6608125+0.5075*{x}+0.45*{y})^{\wedge }2\\&+(-0.756+0.415*{x}+-0.45*{y})^{\wedge }2)-z'\\ A(47)= & {} '((0.6608125+0.5075*{x}+0*{y})^{\wedge }2\\&+(-0.756+0.415*{x}+-1*{y})^{\wedge }2)-z'\\ A(48)= & {} '((0.6608125+0.46*{x}+0.2*{y})^{\wedge }2\\&+(-0.756+0.82*{x}+-0.9*{y})^{\wedge }2)-z'\\ A(49)= & {} '((0.6608125+0.46*{x}+0.45*{y})^{\wedge }2\\&+(-0.756+0.82*{x}+-0.45*{y})^{\wedge }2)-z'\\ A(50)= & {} '((0.6608125+0.46*{x}+0*{y})^{\wedge }2\\&+(-0.756+0.82*{x}+-1*{y})^{\wedge }2)-z' \end{aligned}$$

%—————Calculating——————%

figure a

Appendix 2

figure b

Appendix 3

Step I:

All {QS’(ft), QS’(ut), QS’(vt)} are listed as follows:

{(1,dec), (low,std), (low, dec)},{ (1,dec), (low,std), (very low, dec)},{(1,dec), (low,dec), (low, dec)},{ (1,dec), (low,dec), (very low, dec)},{(1,dec), (very low,std), (low, dec)},{ (1,dec), (very low,std), (very low, dec)}.

Take {(1,dec), (low,std), (low, dec)} as example, and the successors can be reasoned by transition rules in Table 4 as follows:

(1,dec)\(\rightarrow \)(-1,std),(-1,dec), (1,dec)

(low,std)\(\rightarrow \)(low,inc), (low,std), (low,dec)

(low, dec)\(\rightarrow \)(very low, dec), (very low, std), (low,dec)

Then, all the possible successors of {(1,dec), (low,std), (low, dec)}, i.e., {QS’(\(f,t+1\)), QS’(\(u,t+1\)), QS’(\(v,t+1\))}, are yielded as follows:

{(-1,std), (low,inc), (very low, dec)},{(-1,std), (low,inc), (very low, std)},{(-1,std), (low,inc), (low, dec)},{(-1,std), (low,std), (very low, dec)},{(-1,std), (low,std), (very low, std)},{(-1,std), (low,std), (low, dec)},{(-1,std), (low,dec), (very low, dec)},{(-1,std), (low,dec), (very low, std)},{(-1,std), (low,dec), (low, dec)},{(-1,dec), (low,inc), (very low, dec)},{(-1, dec), (low,inc), (very low, std)},{(-1, dec), (low,inc), (low, dec)},{(-1, dec), (low,std), (very low, dec)},{(-1, dec), (low,std), (very low, std)},{(-1, dec), (low,std), (low, dec)},{(-1, dec), (low,dec), (very low, dec)},{(-1, dec), (low,dec), (very low, std)},{(-1, dec), (low,dec), (low, dec)},{(1,dec), (low,inc), (very low, dec)},{(1, dec), (low,inc), (very low, std)},{(1, dec), (low,inc), (low, dec)},{(1, dec), (low,std), (very low, dec)},{(1, dec), (low,std), (very low, std)},{(1, dec), (low,std), (low, dec)},{(1, dec), (low,dec), (very low, dec)},{(1, dec), (low,dec), (very low, std)},{(1, dec), (low,dec), (low, dec)}.

Step II:

Obtain all logical successors by QSIM Logical Filter from all possible {QS’(\(f,t+1\)), QS’(\(u,t+1\)), QS’(\(v,t+1\))} as follows:

{(-1,std), (low,std), (very low, std)},{(-1,std), (low,dec), (very low, dec)},{(-1,std), (low,dec), (low, dec)},{(-1, dec), (low,std), (very low, dec)},{(-1, dec), (low,std), (low, dec)},{(-1, dec), (low,dec), (very low, dec)},{(-1, dec), (low,dec), (low, dec)},{(1, dec), (low,std), (very low, dec)},{(1, dec), (low,std), (low, dec)},{(1, dec), (low,dec), (very low, dec)},{(1, dec), (low,dec), (low, dec)}.

Step III:

Obtain all rational successors by Psychological Filter from all logical {QS’(\(f,t+1\)), QS’(\(u,t+1\)), QS’(\(v,t+1\))} as follows (take the sensitive individual as example):

{(-1,std), (low,std), (very low, std)},{(-1,std), (low,dec), (low, dec)},{(-1, dec), (low,std), (low, dec)},{(-1, dec), (low,dec), (low, dec)},{(1, dec), (low,std), (low, dec)},{(1, dec), (low,dec), (low, dec)}.

Appendix 4

Take {(-1,std), (low,std), (very low,std)} as example(\(x=0.2\), \(y=0.25\)). (-1,std)=[\(b, c, b-a, d-c\)], (low,std)=[\(b, c, b-a, d-c\)], (very low,std)=[-1, a, 0, 0] (See Table 1 and Table 2). Calculate \(FQS(f,t)^{3}+\alpha \cdot \hbox {FQS}(u, t)\cdot \) FQS(\(f, t)+\beta \cdot \hbox {FQS}(v, t)\) using Table 4.

\(\hbox {FQS}(f,t)^{3}+\alpha \cdot \hbox { FQS}(u, t)\cdot \) \(\hbox {FQS}(f, t)+\beta \cdot \hbox {FQS}(v, t)=[-0.45,-0.35, 0.35, 0.25]^{\wedge }3+\alpha \cdot \) \([-0.45,-0.35\), \(0.35, 0.25]\) \(\cdot [-0.45,-0.35\), 0.35, 0.25] \(+\beta \cdot \) \([-1, -0.8R\), \(0, 0]=\) \([-0.0911\), \(-0.0428\), \(0.4207,0.0546] +\alpha \) \(\cdot [0.1225, 0.2025\), \(0.2375, 0.4375]+\beta \cdot \) \([-1, -0.8, 0, 0]=\) \([-0.0911+0.1225\alpha -\) \(\beta , -0.0428+0.2025\) \(\alpha -0.8\beta \), \(0.4207+0.2375\alpha \)- \(\beta , 0.0546+0.4375\) \(\alpha -0.8\beta \)].

Thus, \({D}(1)=(0.2859+0.3455\alpha -0.7\beta ) ^{\wedge }2+(-0.0669 +0.1625\alpha -0.9\beta ) ^{\wedge }2=0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, B., Hu, X. Qualitative modeling of catastrophe in group opinion. Soft Comput 22, 4661–4684 (2018). https://doi.org/10.1007/s00500-017-2652-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-017-2652-1

Keywords

Navigation