Skip to main content
Log in

Gravitational search algorithm with both attractive and repulsive forces

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

The gravitational search algorithm (GSA) is a meta-heuristic optimization algorithm which is inspired by the gravity force. This algorithm uses Newton’s gravity and motion laws to calculate the masses interactions and shows high performance in solving optimization problems. The premature convergence is the common drawback of heuristic search algorithms in high-dimensional problems, and GSA is not an exception. In this paper, a new version of GSA is proposed to improve the power of GSA in exploration and exploitation. The proposed algorithm has both attractive and repulsive forces. In this algorithm, the heavy particles attract some particles and repulse some others, in which the forces are inversely proportional to their distances. For better evaluation, the GSA with both attractive and repulsive forces (AR-GSA) is tested using CEC 2013 benchmark functions and the results are compared with some well-known meta-heuristic algorithms. The simulation results show that AR-GSA can improve the convergence rate, the exploration, and the exploitation capabilities of GSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Askari H, Zahiri SH (2012) Decision function estimation using intelligent gravitational search algorithm. Int J Mach Learn Cybern 3:163–172

    Article  Google Scholar 

  • Bahrololoum A, Nezamabadi-Pour H, Bahrololoum H, Saeed M (2012) A prototype classifier based on gravitational search algorithm. Appl Soft Comput 12(2):819–825

    Article  Google Scholar 

  • Basu M (2011) Artificial immune system for dynamic economic dispatch. Int J Electr Power Energy Syst 33(1):131–136

    Article  Google Scholar 

  • Bayraktar Z, Komurcu M, Bossard J, Werner D (2013) The wind driven optimization technique and its application in electromagnetics. IEEE Trans Antennas Propag 61(5):2745–2757

    Article  MathSciNet  MATH  Google Scholar 

  • Birbil SI, Fang SC (2003) An electromagnetism-like mechanism for global optimization. J Glob Optim 25(3):263–282

  • Caraffini F, Neri F, Cheng J, Zhang G, Picinali L, Iacca G, Mininno E (2013) Super-fit multicriteria adaptive differential evolution. In: IEEE congress on evolutionary computation, pp 1678–1685

  • Chatterjee A, Ghoshal SP, Mukherjee V (2012) A maiden application of gravitational search algorithm with wavelet mutation for the solution of economic load dispatch problems. Int J Bio-Inspir Comput 4(1):33–46

    Article  Google Scholar 

  • Chaturvedi D (2008) Applications of genetic algorithms to load forecasting problem. In: Soft computing. Studies in computational intelligence, vol 103. Springer, Berlin, Heidelberg, pp 383–402

  • Christmas J, Keedwell E, Frayling TM, Perry JRB (2011) Ant colony optimization to identify genetic variant association with type 2 diabetes. Inf Sci 181:1609–1622

    Article  Google Scholar 

  • Chuang CL, Jiang JA (2007) Integrated radiation optimization: inspired by the gravitational radiation in the curvature of space-time. In: IEEE congress on evolutionary computation, Singapore, pp 3157–3164

  • Cisty M (2010) Application of the harmony search optimization in irrigation. In: Geem Z (ed) Recent advances in harmony search algorithm. Springer, Berlin, pp 123–134

  • Connolly J-F, Granger E, Sabourin R (2012) An adaptive classification system for video-based face recognition. Inf Sci 192:50–70

    Article  Google Scholar 

  • Cuevas E, Oliva D, Zaldivar D, Perez-Cisneros M, Sossa H (2012) Circle detection using electro-magnetism optimization. Inf Sci 182:40–55

    Article  MathSciNet  Google Scholar 

  • Dai CH, Chen WR, Song YH (2010) Seek optimization algorithm: a novel stochastic search algorithm for global numerical optimization. J Syst Eng Electron 21(2):300–311

    Article  Google Scholar 

  • Doraghinejad M, Nezamabadi-pour H (2014) Black Hole: a new operator for gravitational search algorithm. Int J Comput Intell Syst 7(5):809–826

    Article  Google Scholar 

  • Dorigo M, Caro GD (1999) Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 congress on evolutionary computation, Washington, DC, pp 1470–1478

  • Draa A (2015) On the performances of the flower pollination algorithm–qualitative and quantitative analyses. Appl Soft Comput 34:349–371

    Article  Google Scholar 

  • El-Abd M (2013) Testing a particle swarm optimization and artificial bee colony hybrid algorithm on the CEC13 benchmarks. In: Proceedings of the IEEE congress on evolutionary computation, pp 2215–2220

  • Fathian M, Amiri B, Maroosi A (2007) Application of honey-bee mating optimization algorithm on clustering. Appl Math Comput 190:1502–13

    MathSciNet  MATH  Google Scholar 

  • Formato RA (2013) Pseudorandomness in central force optimization. Br J Math Comput Sci 3(3):241–264

    Article  Google Scholar 

  • Garcia S, Fernandez A, Luengo J, Herrera F (2010) Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf Sci 180(10):2044–2064

    Article  Google Scholar 

  • Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68

    Article  Google Scholar 

  • Gong W, Cai Z, Ling CX (2011) Enhanced differential evolution with adaptive strategies for numerical optimization. IEEE Trans Syst Man Cybern B 41(2):397–413

    Article  Google Scholar 

  • Gonzalez J, Pelta D, Cruz C, Terrazas G, Krasnogor N, Yang XS (2011) A new metaheuristic bat-inspired algorithm. In: Nature inspired cooperative strategies for optimization (NICSO 2010). Springer, Berlin, pp 65–74

  • Guo YW, Li WD, Mileham AR, Owen GW (2009) Applications of particle swarm optimisation in integrated process planning and scheduling. Robot Comput Integr Manuf 25:280–288

    Article  MATH  Google Scholar 

  • Halliday D, Resnick R, Walker J (2004) Fundamentals of physics extended, 8th edn. Wiley, New York

    MATH  Google Scholar 

  • Han X, Chang X (2012) A chaotic digital secure communication based on a modified gravitational search algorithm filter. Inf Sci 208(2):14–27

    Article  Google Scholar 

  • Haupt RL, Haupt E (2004) Practical genetic algorithms, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Hosseini HS (2007) Problem solving by intelligent water drops. IEEE congress on evolutionary computation, CEC 2007:3226–3231

    Google Scholar 

  • Hsiao YT, Chuang CL, Jiang JA, Chien CC (2005) A novel optimization algorithm: space gravitational optimization. In: IEEE international conference on systems, man and cybernetics, Hawaii, pp 2323–2328

  • Ibrahim AA, Mohamed A, Shareef H (2012) Application of quantum-inspired binary gravitational search algorithm for optimal power quality monitor placement. In: Proceedings of the 11th WSEAS international conference on artificial intelligence, knowledge engineering and data bases, Wisconsin, pp 27–32

  • Karaboga D, Basturk B (2007) Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. In: Melin P et al (eds) LNCS, vol 4529. Springer, Berlin, pp 789–798

    Google Scholar 

  • Karshenas H, Santana R, Bielza C, Larrañaga P (2013) Regularized continuous estimation of distribution algorithms. Appl Soft Comput 13(5):2412–2432

    Article  MATH  Google Scholar 

  • Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, vol 4, pp 1942–1948

  • Khajehzadeh M, Eslami M (2012) Gravitational search algorithm for optimization of retaining structures. Indian J Sci Technol 5(1):1821–1827

    Google Scholar 

  • Kim DH, Abraham A, Cho JH (2007) A hybrid genetic algorithm and bacterial foraging approach for global optimization. Inf Sci 177(18):3918–3937

    Article  Google Scholar 

  • Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    Article  MathSciNet  MATH  Google Scholar 

  • Korosec P, Silc J (2013) The continuous differential ant-stigmergy algorithm applied on real-parameter single objective optimization problems. In: IEEE congress on evolutionary computation (CEC), pp 1658–1663

  • Krishnanand KN, Ghose D (2009) Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions. Swarm Intell 3(2):87–124

    Article  Google Scholar 

  • Li XT, Yin M, Ma ZQ (2011) Hybrid differential evolution and gravitation search algorithm for unconstrained optimization. Int J Phys Sci 6(25):5961–5981

    Google Scholar 

  • Mirjalili Seyedali (2015) The ant lion optimizer. Adv Eng Softw 83:80–98

    Article  Google Scholar 

  • Mirjalili S, Mohd Hashim SZ, Moradian Sardroudi H (2012) Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm. Appl Math Comput 218(22):11125–11137

    MathSciNet  MATH  Google Scholar 

  • Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  • Punnathanam V, Kotecha P (2016) Yin-Yang-pair optimization: a novel lightweight optimization algorithm. Eng Appl Artif Intell 54:62–79

    Article  Google Scholar 

  • Rana S, Jasola S, Kumar R (2011) A review on particle swarm optimization algorithms and their applications to data clustering. Artif Intell Rev 35:211–222

    Article  Google Scholar 

  • Rashedi E, Nezamabadi-pour H (2014) Feature subset selection using improved binary gravitational search algorithm. J Intell Fuzzy Syst 26:1211–1221

    Google Scholar 

  • Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    Article  MATH  Google Scholar 

  • Rashedi E, Nezamabadi-pour H, Saryazdi S (2011) Filter modeling using gravitational search algorithm. Eng Appl Artif Intell 24(1):117–122

    Article  MATH  Google Scholar 

  • Rashedi E, Nezamabadi-pour H, Saryazdi S (2013) A simultaneous feature adaptation and feature selection method for content-based image retrieval systems. Knowl Based Syst 39:85–94

    Article  Google Scholar 

  • Rashedi E, Nezamabadi-pour H (2012) Improving the precision of CBIR systems by feature selection using binary gravitational search algorithm. In: 16th International symposium on artificial intelligence and signal processing, AISP2012, Iran

  • Saeidi-Khabisi FS, Rashedi E (2012) Fuzzy gravitational search algorithm. In: Processing of computer and knowledge engineering (ICCKE), pp 156–160

  • Sarafrazi S, Nezamabadi-pour H, Saryazdi S (2011) Disruption: a new operator in gravitational search algorithm. Sci Iran 18(3):539–548

    Article  Google Scholar 

  • Shams M, Rashedi E, Hakimi A (2015) Clustered-gravitational search algorithm and its application in parameter optimization of a low noise amplifier. Appl Math Comput 258:436–453

    MathSciNet  MATH  Google Scholar 

  • Sun G, Zhang A (2013) A hybrid genetic algorithm and gravitational search algorithm for image segmentation using multilevel thresholding. In: Sanches J, Micó L, Cardoso J (eds) Pattern recognition and image analysis. Springer, Berlin, pp 707–714

    Chapter  Google Scholar 

  • Uymaz SA, Tezel G, Yel E (2015) Artificial algae algorithm with multi-light source for numerical optimization and applications. Biosystems 138:25–38

    Article  Google Scholar 

  • Vijaya Kumar J, Vinod Kumar DM, Edukondalu K (2013) Strategic bidding using fuzzy adaptive gravitational search algorithm in a pool based electricity market. Appl Soft Comput 13(5):2445–2455

    Article  Google Scholar 

  • Wang Y, Zeng J, Cui Z, He X (2011) A novel constraint multi-objective artificial physics optimization algorithm and its convergence. Int J Innov Comput Appl 3(2):61–70

    Article  Google Scholar 

  • Yang X-S (2010) Firefly algorithm, Lévy flights and global optimization. In: Bramer M, Ellis R, Petridis M (eds) Research and development in intelligent systems, vol XXVI. Springer, London, pp 209–218

  • Yeh W-C (2012) Novel swarm optimization for mining classification rules on thyroid gland data. Inf Sci 197:65–76

    Article  Google Scholar 

  • Zhou Y, Li X, Gao L (2013) A differential evolution algorithm with intersect mutation operator. Appl Soft Comput 13(1):390–401

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Zandevakili.

Ethics declarations

Conflict of interest

Hamed Zandevakili, Esmat Rashedi, and Ali Mahani declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by V. Loia.

Appendix A: Complexity analysis method

Appendix A: Complexity analysis method

To compute the computational complexity of the algorithms the following phases should be done (http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2013/CEC2013.htm):

  1. (a)

    Run the test program below:

    for i \(=\) 1:1,000,000

    $$\begin{aligned} x= & {} 0.55 + (\hbox {double}) i;\\ x= & {} x+ x; x=x./2; x=x*x; x=\hbox {sqrt}(x);\\ x= & {} \hbox {log}(x); x=\hbox {exp}(x); y=x/x; \end{aligned}$$

    end

    Computation time for the above \(=\) \(T_0\);

  2. (b)

    Evaluate the computation time just for Function 14. For 200,000 evaluations of a certain dimension D, it gives \(T_1\);

  3. (c)

    The complete computation time for the algorithm with 200,000 evaluations of the same D-dimensional benchmark function 14 is T2.

  4. (d)

    Execute step c five times and get 5 \(T_2\) values. \(\hat{{T}}_2 =\hbox {mean}(T_2)\).

The complexity of the algorithm is reflected by: \(T_0, T_1,\hat{{T}}_2, (\hat{{T}}_2 -T_1 )/T_0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zandevakili, H., Rashedi, E. & Mahani, A. Gravitational search algorithm with both attractive and repulsive forces. Soft Comput 23, 783–825 (2019). https://doi.org/10.1007/s00500-017-2785-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-017-2785-2

Keywords

Navigation