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Some connections between BCK-algebras and n−ary
block codes
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Roxana-Lavinia Cristea, M. Afshar, M. Kuchaki Rafsanjani

Abstract. In the last time some papers were devoted to the study of the con-

nections between binary block codes and BCK-algebras. In this paper, we try to

generalize these results to n-ary block codes, providing an algorithm which allows us

to construct a BCK-algebra from a given n-ary block code.
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0. Introduction

Y. Imai and K. Iseki introduced BCK-algebras in 1966, through the pa-
per [Im, Is; 66], as a generalization of the concept of set-theoretic difference
and propositional calculi. This class of BCK-algebras is a proper subclass
of the class of BCI-algebras and has many applications to various domains of
mathematics.

One of the recent applications of BCK-algebras was given in the Coding
Theory. In the paper [Ju,So; 11], the authors constructed a finite binary block-
codes associated to a finite BCK-algebra. In [Fl; 15], the author proved that, in
some circumstances, the converse of the above statement is also true and in the
paper [B,F; 15] the authors proved that binary block codes are an important
tool in providing orders with which we can build algebras with some asked
properties. For other details regarding BCK-algebras, the reader is referred to
[Is, Ta; 78].

In general, the alphabet on which are defined block codes are not binary.
It is used an alphabet with n elements, n ≥ 2, identified usually with the set
An = {0, 1, 2, ..., n−1}.These codes are called n−ary block codes. In the present
paper, we will generalize this construction of binary block codes to n−ary block
codes. For this purpose, we will prove that to each n−ary block code V we
can associate a BCK-algebra X such that the n−ary block-code generated by
X,VX , contains the code V as a subset.
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1. Preliminaries

Definition 1.1. An algebra (X, ∗, θ) of type (2, 0) is called a BCI-algebra

if the following conditions are fulfilled:
1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = θ, for all x, y, z ∈ X ;
2) (x ∗ (x ∗ y)) ∗ y = θ, for all x, y ∈ X ;
3) x ∗ x = θ, for all x ∈ X ;
4) For all x, y, z ∈ X such that x ∗ y = θ, y ∗ x = θ, it results x = y.

If a BCI-algebra X satisfies the following identity:
5) θ ∗ x = θ, for all x ∈ X, then X is called a BCK-algebra.

A BCK-algebra X is called commutative if x ∗ (x ∗ y) = y ∗ (y ∗ x), for all
x, y ∈ X and implicative if x ∗ (y ∗ x) = x, for all x, y ∈ X. A BCK-algebra
(A, ∗, 0) is called positive implicative if and only if

(x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z), for all x, y, z ∈ A.

The partial order relation ”≤” on a BCK-algebra is defined such that x ≤ y

if and only if x ∗ y = θ.

An equivalent definition of BCK-algebra was gave in the following proposi-
tion.

Proposition 1.2. ([Me, Ju; 94], Theorem 1.6) An algebra (X, ∗, θ) of type
(2, 0) is a BCK-algebra if and only if the following conditions are satisfied:

1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = θ, for all x, y, z ∈ X ;
2) x ∗ (0 ∗ y) = x,for all x, y ∈ X ;
3) For all x, y, z ∈ X such that x ∗ y = θ, y ∗ x = θ, it results x = y.

Let (X, ∗, θ) be a finite BCK-algebra with n elements and A be a finite
nonempty set. A map f : A → X is called a BCK-function. Let An =
{0, 1, 2, ..., n− 1}. In the following, we will consider BCK algebra X and the
set A under the form: X = {r0, r1, ..., rn−1}, A = {x0, x1, ..., xm−1},m ≤ n. A
cut function of f is a map frj : A → An, rj ∈ X, such that frj (xi) = k if
and only if rj ∗ f (xi) = rk, for all rj , rk ∈ X, xi ∈ A, i, j, k ∈ {0, 1, 2, ..., n− 1}.
For each BCK-function f : An → X , we can define an n−ary block-code with
codewords of length m. For this purpose, we consider to each element r ∈ X

the cut function fr : A → An, r ∈ X. To each such a function, will correspond
the codeword wr, with symbols from the set An. We have wr = w0w1...wn−1,

with wi = j, j ∈ An, if and only if fr (xi) = j, that means r ∗ f (i) = rj . We
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denote this code with VX . In this way, we can associate to each BCK-algebra
an n−ary block code.

Example 1.3. We consider the following BCK-algebra (X, ∗, θ), with the
multiplication given in the following table (see [Ju,So; 11] , Example 4.2).

∗ θ a b c

θ θ θ θ θ

a a θ θ a

b b a θ b

c c c c θ

We have X = {θ, a, b, c} A = A4 = {0, 1, 2, 3}.We consider f : A → X, f (0) =
θ, f (1) = a, f (2) = b, f (3) = c and fr : A4 → A4, r ∈ X, a cut function.

To r = θ, corresponds the codeword wθ = 0000. For r = a, we obtain the
codeword 1001. Indeed, fa (0) = 1, since a∗ f (0) = a∗ θ = a = f (1) ; fa (a) = 0
since a ∗ f (1) = a ∗ a = θ = f (0) ; fa (b) = 0 and a ∗ f (2) = a ∗ b = θ =
f (0) ; fa (c) = 1, also a ∗ f (3) = a ∗ c = a = f (1) ;

We wonder if and in what circumstances the converse is also true?
In the following, we will try to find answers at this question.

2. Main results

Let A′
n = {1, 2, ..., n − 1} be a finite set and V = {w1, w2, ..., wm} be

n−ary codewords, ascending ordered after lexicographic order. We consider
wi = wi1wi2...wiq , wij ∈ A′

n, j ∈ {1, 2, ..., q}, with wij descending ordered such
that

wiwik
≤ k, i ∈ {1, 2, ...,m}, k ∈ {1, 2, ...,min{n− 1, q}}

and wij = 1 in the rest.

Definition 2.1. Let V be the n−ary codeword, defined above. To this
code we associate a matrix M = (αst)s,t∈{0,1,...,r−1} , M ∈ Mr (An) , where r is
defined in the following.

Case 1. q < n. Let r = n − 1 + m. We define αss = 0, αs0 = s, α0s = 0,
s ∈ {0, 1, 2, ..., r− 1}. For 1 ≤ s ≤ n− 1, put αst = 1, if t ≤ s, αst = 0, if t ≥ s.

For s ≥ n− 1, define αst = wit, for t ∈ {1, 2, ..., q} and αsq+j = 1, for q+ j < s.

We have αst = 0, for t ≥ s.

Case 2. q ≥ n. Let r = m+ q + 1. We define αss = 0, αs0 = s, α0s = 0, s ∈
{0, 1, 2, ..., r − 1}. For 1 ≤ s ≤ q, define αst = 1, if t ≤ s, αst = 0, if t ≥ s. For
s > q, put αst = wit, for t ∈ {1, 2, ..., q} and αsq+j = 1, for q + j < s. We have
αst = 0, for t ≥ s.

The matrix M is called the matrix associated to the n−ary block code V =
{w1,w2, ..., wm} and is a lower triangular matrix. Example of such a matrix can
be found in Section 3.
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Definition 2.2. With the above notations, let M ∈ Mr (An) be the
matrix associated to the n−ary block code V = {w1,w2, ..., wm} defined on
A′

n and Ar = {0, 1, ..., r− 1} be a nonempty set. We define on Ar the following
multiplication

i ∗ j = αij = wij = k.

Theorem 2.3. With the above notations, we have that (Ar, ∗, 0) is a BCK-

algebra.

Proof. Since conditions 2), 3) from Proposition 1.2 are satisfied using
Definition 2.1, we will only prove that ((i ∗ j) ∗ (i ∗ k)) ∗ (k ∗ j) = 0, for all
i, j, k ∈ {0, 1, ..., r− 1}.

Case 1: j = 0,k 6= 0. We will prove that (i ∗ (i ∗ k)) ∗ k = 0. For i = 0 it is
clear.

For k = 0, we obtain (i ∗ (i ∗ 0)) ∗ 0 = (i ∗ i) ∗ 0 = 0.
For k 6= 0, i ≥ r − m, k ∈ {1, 2, ..., q},we have (i ∗ (i ∗ k)) = wiwik

≤ k,

therefore (i ∗ (i ∗ k)) ∗ k = 0.
For k 6= 0, i ≥ r − m, k ≥ q + 1, i ≥ k,we have (i ∗ (i ∗ k)) ∗ k = 0, since

i ∗ k = 1, i ∗ 1 ≤ n− 1 < k.

For i < r−m, k ≤ q+1, we have (i ∗ (i ∗ k)) ∗ k = 0 since i ∗ k = 1, i ∗ 1 = 1
and 1 ∗ k = 0.

For i < r − m, k > q + 1, we have (i ∗ (i ∗ k)) ∗ k = 0 since i ∗ k = 0, we
obtain (i ∗ 0) ∗ k = i ∗ k = 0.

Case 2: k = 0, j 6= 0. We will prove that (i ∗ j) ∗ i = 0. We always have that
i ∗ j ≤ i, therefore (i ∗ j) ∗ i = 0.

Case 3: k 6= 0, j 6= 0. We will prove that ((i ∗ j) ∗ (i ∗ k)) ∗ (k ∗ j) = 0. For
i = 0, it is clear. We suppose that i 6= 0.

For i ≥ r − m and j, k < r − m, j < k. We have n − 1 ≥ (i ∗ j) ≥ (i ∗ k) ,
therefore ((i ∗ j) ∗ (i ∗ k)) = 1. We also obtain k ∗ j = 1, therefore ((i ∗ j) ∗
(i ∗ k)) ∗ (k ∗ j) = 1 ∗ 1 = 0.

For i ≥ r − m and j, k < r − m, k < j. We have n − 1 ≥ (i ∗ j) ≤ (i ∗ k) ,
therefore ((i ∗ j) ∗ (i ∗ k)) = 0. It results that ((i ∗ j) ∗ (i ∗ k)) ∗ (k ∗ j) = 0.

For i ≥ r − m and j, k ≥ r − m, j < k. We can have i ∗ j = 1 and i ∗ k =
1,therefore (i ∗ j)∗ (i ∗ k) = 0. We can also have i∗ j = 1, i∗k = 0 and k ∗ j = 1,
since j < k. It results that ((i ∗ j) ∗ (i ∗ k)) ∗ (k ∗ j) = (1 ∗ 0) ∗ 1 = 1 ∗ 1 = 0. Or,
we can have i ∗ j = 0, i ∗ k = 0, therefore the asked relation is zero.

For i ≥ r − m and j, k ≥ r −m, k < j. We can have i ∗ j = 1 and i ∗ k =
1,therefore (i ∗ j) ∗ (i ∗ k) = 0. Or, we can have i ∗ k = 1, i ∗ j = 0 and k ∗ j = 0,
therefore we obtain zero. We also can have i ∗ j = 0, i ∗ k = 0, therefore the
asked relation is zero.

For i ≥ r−m and k < r−m < j. We can have i ∗ j = 0, therefore the asked
relation is zero. We can have i ∗ j = 1. It results ((i ∗ j) ∗ (i ∗ k)) ∗ (k ∗ j) =
(1 ∗ (i ∗ k)) ∗ 0 = 1 ∗ β = 0, since k < j and β ≥ 0.

For i ≥ r−m and j < r−m < k. We have i∗j = 1.If i∗k = 1, we obtain zero.
If i∗k = 0, it results ((i ∗ j) ∗ (i ∗ k))∗ (k ∗ j) = (1 ∗ 0)∗ (k ∗ j) = 1 ∗ (k ∗ j) = 0,
since k ∗ j ≥ 1.
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For i < r−m and j, k < r−m, j < k. We have i∗ j = 1, i∗k = 1, therefore
we obtain zero.

For i < r−m and j, k < r−m, k < j. We can have ((i ∗ j)∗(i ∗ k))∗(k ∗ j) =
(1 ∗ 1) ∗ 0 = 0. Or, we can have (i ∗ j) = 0, therefore we obtain zero.

For i < r −m and j, k < r −m, j < n − 1 + max{q,m} −m ≤ k. We have
i∗ j = 1, i∗k = 0 and k ∗ j = 1. It results ((i ∗ j)∗ (i ∗ k))∗ (k ∗ j) = (1 ∗ 0)∗1 =
1 ∗ 1 = 0.

For i < r−m and k < r−m, k < r−m ≤ j. We can have ((i ∗ j) ∗ (i ∗ k)) ∗
(k ∗ j) = (1 ∗ 1) ∗ 0 = 0. Or, we can have (i ∗ j) = 0, therefore we obtain zero.

For i < r − m and j, k ≥ r − m, j < k. We have (i ∗ j) = 0, therefore we
obtain zero.

For i < r − m and j, k ≥ r − m, j > k. We have (i ∗ j) = 0, therefore we
obtain zero. �

Remark 2.4.

1) BCK-algebra (Ar, ∗, 0) obtained in Theorem 2.3 is unique up to an
isomorphism.

2) From Theorem 2.3, let (Ar, ∗, 0) be the obtained BCK-algebra, with
Ar = {0, 1, 2, ...r − 1}. If X = {a0 = θ, a1, a2, ..., ar−1}, with multiplication
”◦” given by the relation ai ◦ aj = ak if and only if i ∗ j = k, for i, j.k ∈
{0, 1, 2, ..., r− 1}, then (X, ◦, θ) is a BCK-algebra.

3) If we consider Aq = {0, 1, 2, ...q−1}, the map f : Aq → X, f (i) = ai, gives
us a code VX , associated to the above BCK-algebra (X, ◦, θ) , which contains
the code V as a subset.

Definition 2.5. Let (X, ∗, θ) be a BCK-algebra, and I ⊆ X. We say that
I is a right-ideal for the algebra X if θ ∈ I and x ∈ I, y ∈ X imply x ∗ y ∈ I.
An ideal I of a BCK-algebra X is called a closed ideal if it is also a subalgebra

of X (i.e. θ ∈ I and if x, y ∈ I it results that x ∗ y ∈ I).

Let V be an n−ary block code. From Theorem 2.3 and Remark 2.4, we can
find a BCK-algebra X such that the obtained n−ary block-code VX contains
the n−ary block-code V as a subset.

Let V be a binary block code with m codewords of length q. With the above
notations, letX be the associatedBCK-algebra and W = {θ, w1, ..., wr} the as-
sociated n−ary block code which include the code V. We consider the codewords
θ, w1,w2, ..., wr lexicographically ordered, θ ≥lex w1 ≥lex w2 ≥lex ... ≥lex wr.

Let M ∈ Mr (An) be the associated matrix with the rows θ, w1, ..., wr , in this
order. Let Lwi

and Cwj
be the lines and columns in the matrix M . We consider

the sub-matrix M ′ of the matrix M with the rows Lw1
, ..., Lwm

and the columns
Cwm+1

, ..., Cwm+q
, which is the matrix associated to the code C.

Proposition 2.6. With the above notations, we have that

{θ, w1, wr−m, wr−m+1, ..., wr} determines a closed right ideal in the algebra X.

Proof. Let Y = {θ, w1, wr−m, wr−m+1, ..., wr}. We will prove that y ∈
Y, x ∈ X imply y ∗ x ∈ Y. From the definition of the multiplication in the
algebra X, we have that y ∗ x ∈ {θ, w1}. In the same time, if x, y ∈ Y, it results
that x ∗ y ∈ Y, since y ∗ x ∈ {θ, w1}.
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3. Examples

Example 3.1. Consider A7 = {0, 1, 2, 3, 4, 5, 6}, n = 7, q = 4, m = 3,
r = 9, V = {w1, w2, w3}, with w1 = 3211, w2 = 4221, w3 = 4321. The matrix M

associated to the n−ary code V, is

M =





























0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0
4 1 1 1 0 0 0 0 0
5 1 1 1 1 0 0 0 0
6 3 2 1 1 1 0 0 0
7 4 2 2 1 1 1 0 0
8 4 3 2 1 1 1 1 0





























and the corresponded BCK-algebra, (X, ∗, θ) , where
X = {a0 = θ, a1, a2, a3, a4, a5, a6, a7, a8},
with the following multiplication table
∗ θ a1 a2 a3 a4 a5 a6 a7 a8
θ θ θ θ θ θ θ θ θ θ

a1 a1 θ θ θ θ θ θ θ θ

a2 a2 a1 θ θ θ θ θ θ θ

a3 a3 a1 a1 θ θ θ θ θ θ

a4 a4 a1 a1 a1 θ θ θ θ θ

a5 a5 a1 a1 a1 a1 θ θ θ θ

a6 a6 a3 a2 a1 a1 a1 θ θ θ

a7 a7 a4 a2 a2 a1 a1 a1 θ θ

a8 a8 a4 a3 a2 a1 a1 a1 a1 θ

If we consider A = {1, 2, 3, 4}. The map f : A → X, f (1) = a1, f (2) =
a2, f (3) = a3, f (4) = a4 gives us the following block code
V ′ = {0000, 1000, 1100, 1110, 1111,3211,4221,4321}, which contains V as a
subset.

We remark that this algebra is not commutative since a7 ∗ (a7 ∗ a6) = a7 ∗
a1 = a4 and a6 ∗ (a6 ∗ a7) = a6 ∗ θ = a6. This algebra is not implicative since
a6 ∗ (a7 ∗ a6) = a6 ∗ a1 = a3 6= a6. This algebra is not positive implicative
since (x ∗ y) ∗ z 6= (x ∗ z) ∗ (y ∗ z). Indeed, (a7 ∗ a6) ∗ a3 = a1 ∗ a3 = θ 6=
(a7 ∗ a3) ∗ (a6 ∗ a3) = a2 ∗ a1 = a1.

Example 3.2. Let A4 = {0, 1, 2, 3}, n = 4, q = 5, m = 3, r = 9, V =
{w1, w2, w3}, with w1 = 21111, w2 = 32111, w3 = 33111. We obtain the matrix
M associated to the n−ary code V,
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M =





























0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0
4 1 1 1 0 0 0 0 0
5 1 1 1 1 0 0 0 0
6 2 1 1 1 1 0 0 0
7 3 2 1 1 1 1 0 0
8 3 3 1 1 1 1 1 0





























and the corresponded BCK-algebra, (X, ∗, θ) , where
X = {a0 = θ, a1, a2, a3, a4, a5, a6, a7, a8},
with the following multiplication table
∗ θ a1 a2 a3 a4 a5 a6 a7 a8
θ θ θ θ θ θ θ θ θ θ

a1 a1 θ θ θ θ θ θ θ θ

a2 a2 a1 θ θ θ θ θ θ θ

a3 a3 a1 a1 θ θ θ θ θ θ

a4 a4 a1 a1 a1 θ θ θ θ θ

a5 a5 a1 a1 a1 a1 θ θ θ θ

a6 a6 a2 a1 a1 a1 a1 θ θ θ

a7 a7 a3 a2 a2 a1 a1 a1 θ θ

a8 a8 a3 a3 a1 a1 a1 a1 a1 θ

If we consider A = {1, 2, 3, 4, 5}. The map f : A → X, f (1) = a1, f (2) =
a2, f (3) = a3, f (a4) = 4, f (a5) = 5, gives us the following block code VX =
{00000, 10000, 11000, 11100, 11110,21111,32211,33111}, which contains V as
a subset.

Example 3.3. We consider A4 = {0, 1, 2, 3}, n = 4, q = 5, m = 5, r = 11,
V = {w1, w2, w3, w4, w5}, with w1 = 11111, w2 = 21111, w3 = 31111, w4 =
32111, w5 = 33111. We obtain the matrix M associated to the n−ary code V,

M =





































0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0
4 1 1 1 0 0 0 0 0 0 0
5 1 1 1 1 0 0 0 0 0 0
6 1 1 1 1 1 0 0 0 0 0
7 2 1 1 1 1 1 0 0 0 0
8 3 1 1 1 1 1 1 0 0 0
9 3 2 1 1 1 1 1 1 0 0
10 3 3 1 1 1 1 1 1 1 0





































and the corresponded BCK-algebra, (X, ∗, θ) , where
X = {a0 = θ, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10},
with the following multiplication table
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∗ θ a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
θ θ θ θ θ θ θ θ θ θ θ θ

a1 a1 θ θ θ θ θ θ θ θ θ θ

a2 a2 a1 θ θ θ θ θ θ θ θ θ

a3 a3 a1 a1 θ θ θ θ θ θ θ θ

a4 a4 a1 a1 a1 θ θ θ θ θ θ θ

a5 a5 a1 a1 a1 a1 θ θ θ θ θ θ

a6 a6 a1 a1 a1 a1 a1 θ θ θ θ θ

a7 a7 a2 a1 a1 a1 a1 a1 θ θ θ θ

a8 a8 a3 a1 a1 a1 a1 a1 a1 θ θ θ

a9 a9 a3 a2 a1 a1 a1 a1 a1 a1 θ θ

a10 a10 a3 a3 a1 a1 a1 a1 a1 a1 a1 θ

If we consider A = {1, 2, 3, 4, 5}. The map f : A → X, f (1) = a1, f (2) =
a2, f (3) = a3, f (a4) = 4, f (a5) = 5, gives us the following block code V ′ =
{00000, 10000, 11000, 11100, 11110,11111,21111,31111,32111,33111}, which
contains V as a subset.

Conclusions. In this paper, we proved that to each n−ary block code
V we can associate a BCK-algebra X such that the n−ary block-code gener-
ated by X,VX , contains the code V as a subset. This algebra is unique up to
an isomorphism and X is not commutative, not implicative and not positive
implicative BCK-algebra.

As a further research will be very interesting to study properties of the above
constructed codes and how these codes in connections with their associated
BCK-algebras.
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