Skip to main content
Log in

Image segmentation by minimum cross entropy using evolutionary methods

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

The segmentation of digital images is one of the most important steps in an image processing or computer vision system. It helps to classify the pixels in different regions according to their intensity level. Several segmentation techniques have been proposed, and some of them use complex operators. The techniques based on thresholding are the easiest to implement; the problem is to select correctly the best threshold that divides the pixels. An interesting method to choose the best thresholds is the minimum cross entropy (MCET), which provides excellent results for bi-level thresholding. Nevertheless, the extension of the segmentation problem into multiple thresholds increases significantly the computational effort required to find optimal threshold values. Each new threshold adds complexity to the formulation of the problem. Classic methods for image thresholding perform extensive searches, while new approaches take advantage of heuristics to reduce the search. Evolutionary algorithms use heuristics to optimize criteria over a finite number of iterations. The correct selection of an evolutionary algorithm to minimize the MCET directly impacts the performance of the method. Current approaches take a large number of iterations to converge and a high rate of MCET function evaluations. The electromagnetism-like optimization (EMO) algorithm is an evolutionary technique which emulates the attraction–repulsion mechanism among charges for evolving the individuals of a population. Such technique requires only a small number of evaluations to find the optimum. This paper proposes the use of EMO to search for optimal threshold values by minimizing the cross entropy function while reducing the amount of iterations and function evaluations. The approach is tested on a set of benchmark images to demonstrate that is able to improve the convergence and velocity; additionally, it is compared with similar state-of-the-art optimization approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Oliva.

Ethics declarations

Ethical standards

None of the authors of this paper has a financial or personal relationship with other people or organizations that could inappropriately influence or bias the content of the paper.

Conflict of interest

It is to specifically state that “No Competing interests are at stake and there is No Conflict of Interest” with other people or organizations that could inappropriately influence or bias the content of the paper.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliva, D., Hinojosa, S., Osuna-Enciso, V. et al. Image segmentation by minimum cross entropy using evolutionary methods. Soft Comput 23, 431–450 (2019). https://doi.org/10.1007/s00500-017-2794-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-017-2794-1

Keywords

Navigation