
ar
X

iv
:1

80
4.

07
99

9v
1

 [
cs

.N
E

]
 2

1
A

pr
 2

01
8

Swarm Intelligence: Past, Present and Future

Xin-She Yang1, Suash Deb2, Yu-Xin Zhao3, Simon Fong4, Xingshi He5

1) School of Science and Technology, Middlesex University, London NW4 4BT, UK.
2) IT & Educational Consultant, Ranchi, India. Also, Distinguished Professorial Associate,

Decision Sciences and Modelling Program, Victoria University, Melbourne, Australia.
3) College of Automation, Harbin Engineering University, Harbin, China.

4) Department of Computer and Information Sciences, University of Macau, Macau, China.
5) College of Science, Xi’an Polytechnic University, No. 19 Jinhua South Road, Xi’an, China.

Abstract

Many optimization problems in science and engineering are challenging to solve, and the
current trend is to use swarm intelligence (SI) and SI-based algorithms to tackle such challeng-
ing problems. Some significant developments have been made in recent years, though there are
still many open problems in this area. This paper provides a short but timely analysis about
SI-based algorithms and their links with self-organization. Different characteristics and prop-
erties are analyzed here from both mathematical and qualitative perspectives. Future research
directions are outlined and open questions are also highlighted.

Citation Details: X.-S. Yang, S. Deb, Y.X. Zhao, S. Fong, X.S. He, Swarm intelligence: past,
present and future, Soft Computing, (2017). https://doi.org/10.1007/s00500-017-2810-5

1 Introduction

Many optimization problems in science and engineering applications are highly complex and chal-
lenging, and thus require novel problem-solving approaches. Traditional approaches tend to use
problem-specific information such as the gradients of the objective to guide the search for optimal
solutions, and such approaches tend to be highly sophisticated and specialized. They also have the
disadvantage of getting trapped in local optima, except for linear programming and convex opti-
mization. One of the current trends is to solve difficult optimization problems in a quasi-heuristic
way in combination with the successful characteristics of multi-agent systems. Such trend seems also
to be true for solving problems in industry and business settings. This new way of problem solving
has resulted in a significant development of new and novel swarm intelligence based algorithms.

In nature, many living organisms live in a community where there is no centralized decision-
making. In fact, the decision making among many biological systems, especially social insects such
as ants and bees, seems to occur in a distributed, local manner. Individuals make decisions based on
local information and interactions with other agents and their environment. Such local interactions
seem to be responsible for the rise of social intelligence, and it can be hypothesized that such
complex interactions may directly or indirectly somehow contribute to the emergence of intelligence
in general. After all, changes tend to be some sort of responses and adaptation to the changes of the
organism’s community and environment. Groups of different organisms of the same species in nature
have been found to be successful in carrying out specific tasks, by means of a collective behaviour,
namely collective intelligence or swarm intelligence (SI) [22, 33, 46].

It has also been observed in nature that different species can also co-evolve and cooperate under
the right conditions, especially when the resources are sparse. Such swarm intelligence has inspired
researchers to develop various ingenious ways for solving challenging problems in optimization, ma-
chine learning and data mining [6, 27, 55, 58]. Nature-inspired algorithms tend to be flexible, easy to

1

http://arxiv.org/abs/1804.07999v1

implement and sufficiently versatile to deal with different types of optimization problems in practice.
Such characteristics enable to solve problems that may be too challenging to solve using traditional
algorithms.

Accompanying the emergence and success of nature-inspired algorithms, especially the SI-based
algorithms, there is a strong need to understand the mechanisms of algorithms in a rigorous math-
ematical perspective. In contrast, the progress in theory lags behind. Thus, it is often the case
that we know how to use such algorithms and know they will generally work well, but we rarely
know why they work under exactly what conditions. Consequently, the use and applications of such
metaheuristic algorithms are partially heuristic as well.

However, some promising progress starts to emerge in recent years concerning the analysis of
algorithms using Markov chain theory, dynamic systems, random walks and stability analysis. They
start to provide some insight into the intrinsic part of algorithms. This paper will briefly review the
state-of-the-art developments concerning swarm intelligence with a focus on both the present and
future. We will also highlight some key challenges and trends for future developments. Therefore,
the paper is organized as follows. Section 2 first briefly touches the concept of swarm intelligence
and then Section 3 mainly focuses on the present, and Section 4 looks at these algorithms from a
theoretical perspective. Section 5 will try to inspire the future research. Finally, the paper concludes
briefly in Section 6.

2 Swarm Intelligence: A Critical Analysis

Swarm intelligence can arise in multi-agent systems and it is not clear yet what mechanisms are
responsible for the emergence of collective behavior in a swarm. Even so, swarm-intelligence-based
algorithms have been developed and applied in a vast number of applications in optimization, engi-
neering, machine learning, image processing and data mining. Here, we review critically the essence
of swarm intelligence and its link with self-organization.

2.1 Swarm Intelligence

The emergence of swarm intelligence (SI) is a complex process, and it is not quite clear what
mechanisms are required to ensure the emergence of collective intelligence. Inside a swarm, individual
agents such as ants and bees in the complex system follow simple rules, act on local information, and
there is no centralized control [6, 33]. Such rule-based interactions can lead to the emergence of self-
organization, resulting in structures and characteristics at a higher system level. Loosely speaking,
individuals in the system are not intelligent, but the overall system can behave intelligently, at least
as can be considered as some sort of collective intelligence. Such emerging self-organization can
explain some key swarming behaviour from ants to people [22, 46].

For such self-organization behaviour to emerge, it seems that there are certain conditions that are
necessary, and conditions such as feedbacks, stigmergy, multiple interactions, memory and environ-
ment setting are very important. but it is still not clear about the exact role of such conditions and
how seemingly self-organized structures can arise under such conditions. Though there are different
attempts that try to understand the system behaviour, however, different studies in various subjects
typically focus on one or a subset of these factors [11, 6, 22, 28, 40, 50].

Even though we may not fully understand the true mechanisms that lead to the self-organization
and intelligent characteristics of a complex system, researchers have successfully developed optimiza-
tion algorithms based on swarm intelligence. Examples of such algorithms include particle swarm
optimization (PSO) [27], ant colony optimization (ACO) [6], bat algorithm (BA) [55], cuckoo search
(CS) [58], flower pollination algorithm (FPA) [57], wolf search algorithm (WSA) [25] and many
others.

Before we discuss the links between swarm intelligence, self-organization and algorithms, let us
analyze first the main characteristics of optimization algorithms.

2

2.2 Algorithmic Characteristics

Algorithms have always been an important part of computation [5, 9], but contemporary algorithms
tend to be a combination of deterministic and stochastic components. Almost all nature-inspired
algorithms use some aspects of swarm intelligence with stochastic components [60]. Since swarm
intelligence-based algorithms are very diverse in terms of the sources of inspiration in nature and
their formulations, there are different ways of analyzing and decomposing the essential components
of these algorithms. For example, we can look at algorithms by focusing on the key characteristics
and their properties from a perspective of self-organizing systems. This is a higher-level analysis
that does not depend on the details of the mathematical formulations or algorithmic steps, which
allows us to focus on the functionalities and the main search behaviour of algorithms.

First, all SI-based algorithms use a population of multiple agents and each agent is represented
by a solution vector xi, and each vector can be considered as a state of the system. An algorithmic
system is typically initialized by setting the population as the random sampling of the search space.
Then, the update of this population is realized by moving the agents in a quasi-deterministic manner
to be referred to as its ‘algorithmic dynamics’. This algorithm dynamics determines how the system
evolves, according to a set of equations (such as those used in particle swarm optimization) or a
predefined procedure (such as those used in genetic algorithms). Randomness is often used in SI-
based algorithms to act as a perturbation force to drive the system from equilibrium and potentially
jump out of local valleys in the objective landscape.

In addition, a selection mechanism is needed to select the best solution (or the fittest solutions)
in the population so as to allow the fittest to pass onto the next generation. This means that some
states/solutions are preferably selected. Such selection, together with the evolution of population,
often enables the population in the search process to converge to a set of solutions (often the optimal
set), and consequently some convergent states or solutions may emerge as iterations continue.

For example, let us consider both particle swarm optimization (PSO) and firefly algorithm (FA)
to be introduced later. Both algorithms have randomization by using random numbers. Though
their use of two random numbers is different, both can provide some form of stochastic properties
in generating new solutions so that new solutions can be different and sometimes sufficiently distant
from existing solutions. This means that they essentially provide the ability for the algorithms to
escape local optima without being trapped.

However, there are significant differences between PSO and FA. Firstly, PSO uses the best
solution found so far g∗, while FA does not use g∗. Secondly, PSO is a linear system, while FA
is nonlinear in terms of updating equations. Thirdly, the attraction mechanism in FA allows the
swarm to subdivide into multiple small subswarms, which enables FA to solve multimodal problems
more effectively. On the other hand, PSO cannot subdivide the swarm. In addition, PSO has the
drawbacks of using velocity, while FA does not use velocity. Thus, these differences in algorithmic
dynamics will lead to significantly different characteristics, performance and efficiency of algorithms.
In fact, studies show that FA can have a higher convergence rate in most applications [23, 49].

In all algorithms, iterations are used to provide the evolution of solutions towards some selected
solutions in terms of a pseudo-time iteration counter. At the initial stages of such iterative evolution,
solutions tend to have much higher diversity as solutions are usually different and often uniformly
distributed randomly in the search space. As the evolution continues, solutions become more similar
to each other by some selection mechanism based on the fitness landscape. Selection acts as a driving
force for evolution. Good solutions are selected according to their fitness, often the objective values,
which exerts a selection pressure for the multi-agent populations to adapt and react to the changes
in the objective landscape and can thus drive the system to converge towards some specific, selected
states or solutions.

These key characteristics and properties as well as their role can be summarized in Table 1. It is
worth pointing out that this is only one way of looking at the algorithms and the emphasis here is
purely for the convenience of comparing with the mechanisms for self-organization to be discussed
in the next subsection.

Obviously, there are other ways to look at algorithms [7, 11, 59]. For example, the use of explo-
ration and exploitation is another good way to analyze the behaviour of algorithms [7]. In addition,

3

Table 1: Main characteristics of an algorithm based on swarm intelligence.
Algorithmic Components Characteristics Role/Properties

Multi-agents Population Diversity and sampling
Randomization Perturbations Escape local optima
Selection Driving force Organization and convergence
Algorithmic equations Iterative evolution Evolution of solutions

mathematical analysis can provide insight from a theoretical point of view [59]. In general, different
ways of looking at algorithms can lead to different insights and thus understand the algorithms from
different perspectives.

2.3 Algorithms as Self-Organization

A complex system may be able to self-organize under the right conditions. Loosely speaking, when
the size of the system is sufficiently large, it will lead to a sufficiently high number of degrees of
freedom or possible states S. At the same time, there should be a sufficiently long time for the
system to evolve from noise and far from equilibrium states [2].

Another important factor is that a proper selection mechanism must be in place to ensure that
self-organization is possible. In other words, the primary conditions for self-organization to evolve
in a complex system can be summarized as follows [2, 28]:

• The size of the complex system is sufficiently large with a higher number of degrees of freedom
or states.

• Enough diversity exists in the system in terms of perturbations, noise, edge of chaos, or far
from the equilibrium.

• The system is given enough time to evolve.

• There is a selection mechanism (or an unchanging law) in the system to select certain states.

If we loosely represent the above conditions mathematically, we can say that a system with
multiple states Si can evolve towards the self-organized states S∗, driven by a driving mechanism
M(t, p) with a set of parameters p that may vary with time t, which can be written schematically as

Si
M(t,p)
=⇒ S∗. (1)

If we look at an algorithm from the perspective of self-organization, we can indeed consider an
algorithm as a self-organization system, starting from many possible states xi (solutions) and tries
to converge to the optimal solution/state x∗, driven by the selection mechanism in an algorithm
A(p, t) with a set of parameter p, evolving with time pseudo-time t. This can be represented in the
following schematic format:

f(xi)
A(p,t)
=⇒ fmin(x∗) or fmax(x∗). (2)

Now if we look both algorithms and self-organization systems more closely, we can identify the
main role and properties of an algorithm and compare them with the conditions for self-organization,
we can summarize them in Table 2.

Despite these striking similarities, however, there are some significant differences between a
self-organizing system and an algorithm. First, for self-organization, the exact avenues to the self-
organized states may not be clear. But for an algorithm, the way that makes an algorithm converge
is crucial. Second, time is not an important factor for self-organization, while the rate of convergence
is paramount for an algorithm because the minimum computational cost is needed in practice so as
to quickly reach either truly global optimality or suboptimal solutions. Finally, the structure can

4

Table 2: Similarities between self-organization and an algorithm.
Self-organization Features Algorithm Properties

Multiple states High complexity Population Diversity and sampling
Noise, perturbations Diversity Randomization Escape local optima
Selection mechanism Structure Selection Convergence
Re-organization State changes Evolution Evolution of solutions

be important for a self-organized system, while the converged solution vectors (rather than their
structure) is more important for solving an optimization problem.

It is worth pointing out these similarities of self-organization to algorithms are applicable for
almost all stochastic algorithms, including the classic stochastic algorithms such as genetic algorithm
[19]. In addition, even we can consider an algorithm as a self-organized system, this does not mean
that we can always make an algorithm efficiently. This is partly because the exact behaviour is
influenced by both the interactions of algorithmic components and algorithm-dependent parameters,
but these details are not clearly understood yet for most algorithms.

In the next section, we will outline the state-of-the-art developments of SI-based algorithms
before we proceed to do some in-depth mathematical analysis afterwards.

3 The Present Developments

In the current literature, there are many algorithms that use the concept of swarm intelligence (SI),
and the number of SI-based algorithms is increasingly almost monthly. Therefore, it is not possible
to introduce and analyze these algorithms in a very short paper as such. Therefore, our emphasis
will be on the brief analysis of a few selected algorithms as representatives so as to highlight the
main points. Now we first introduce briefly a few algorithms and we then categorize them in terms
of their characteristics and algorithmic dynamics and links to self-organization.

3.1 Algorithms Based on Swarm Intelligence

Though both ant colony optimization (ACO) [6] and particle swarm optimization (PSO) [27] are
primary examples of SI-based algorithms. However, ACO can be considered as a mixture of descrip-
tive procedure and equations, while PSO is mainly based on dynamic equations. For this reason, we
focus first on the PSO here.

For the ease of discussing particle swarm optimization (PSO), developed by Kennedy and Eber-
hart [27], we use xi and vi to denote the position (solution) and velocity, respectively, of a particle
or agent i. The main iteratively updating equations for PSO are

vt+1
i = vt

i + αǫ1[g
∗
− xt

i] + βǫ2[x
∗

i − xt
i], (3)

xt+1
i = xt

i + vt+1
i , (4)

where ǫ1 and ǫ2 are two uniformly distributed random vectors in [0,1]. Both α and β are so-called
learning parameters. This algorithm uses the current global best solution g∗ found so far as well as
the individual best x∗

i . PSO has been applied in many areas in science and engineering [3, 44], and
it has also been extended to solve multiobjective optimization problems [37]. For comprehensive
reviews, please refer to [3, 29].

It is clearly seen that the above algorithmic equations are linear in the sense that both equations
only depend on xi and vi linearly. Selection is carried out by the attractor or converged state g∗,
which is also evolving. Randomization is done by two uniformly distributed random numbers.

Bat algorithm (BA) is another example of SI-based algorithms. BA was developed by Yang and
BA mainly uses frequency-tuning and some characteristics of echolocation of microbats [55]. The

5

main algorithmic equations for BA are

fi = fmin + (fmax − fmin)β, (5)

vt
i = vt−1

i + (xt−1
i − x∗)fi, (6)

xt
i = xt−1

i + vt
i , (7)

where β ∈ [0, 1] is a random vector drawn from a uniform distribution. fmin and fmax are the
frequency-tuning range. These equations are also associated with the pulse emission rate r and
loudness A that can be switched on or off by comparing with a uniformly distributed random
number ε. For each bat i, we can use

rt+1
i = r

(0)
i (1 − e−γt), At+1

i = αAt
i, (8)

where 0 < α < 1 and γ > 0 are two parameters to control the variations of r and A.
The bat algorithm has been extended to multiobjective optimization and hybrid versions as well

as chaotic bat algorithm with many applications [39, 35, 26, 56, 16].
The algorithmic equations in BA are also linear in the sense that the equations depend on xi and

vi linearly. However, the control of exploration and exploitation is carried out by the variations of
loudness A(t) from a high value to a lower value, while the pulse emission rate is increased nonlinearly
from a lower value to a higher value. Selection is done by the current best solution x∗, which acts
a similar role as the g∗ in PSO. Randomization is done by a uniformly distributed number β for
frequency tuning. As a result, BA can have a faster convergence rate.

Firefly algorithm (FA) developed by Yang is an algorithm inspired by the swarming behaviour of
tropical fireflies. FA uses a nonlinear system by combing the exponential decay of light absorption
and inverse-square law of light variation with distance. The main equation in FA is a single nonlinear
equation in the following form:

xt+1
i = xt

i + β0e
−γr2ij(xt

j − xt
i) + α ǫti, (9)

where α is a scaling factor controlling the step sizes, while γ is a scale-dependent parameter con-
trolling the visibility of the fireflies (and thus search modes). In addition, β0 is the attractiveness
constant. Firefly algorithm has been applied to many applications [8, 13, 23, 24, 15, 32, 34, 43, 49, 62]
and there are many different variants such as neighborhood firefly algorithm [52] and the quantum-
based hybrid [65].

Since FA is a nonlinear system, it has the ability to automatically subdivide the whole swarm
into multiple subswarms due to the fact that short-distance attraction is stronger than long-distance
attraction. Each subswarm can potentially swarm around a local mode, and among all the modes,
there is always a globally optimal solution. Therefore, it is suitable for multimodal optimization
problems. There is no explicit use of the best solution, thus selection is through the comparison of
relative brightness according to the rule of ‘beauty is in the eye of the beholder’. Randomization
is explicitly done by a perturbation term in the equation. As pointed out earlier, FA has some
significant differences from the PSO. FA is nonlinear, while the PSO is linear. FA has an ability
of multi-swarming, while the PSO cannot. In addition, the PSO uses velocities (and thus some
drawbacks), while FA does not use velocities. Furthermore, FA have a scaling control by using γ,
while the PSO has no scaling control. All these differences enable FA to search more effectively for
multimodal objective landscapes.

Cuckoo search (CS), developed by Yang and Deb, is another nonlinear system. CS is a primary
example of intriguing brooding parasitism of some cuckoo species, and it uses a balanced combination
of both local and global search capabilities, controlled by a switching probability pa. One equation
is mainly local and can be written as

xt+1
i = xt

i + αs⊗H(pa − ǫ)⊗ (xt
j − xt

k), (10)

where xt
j and xt

k are two different solutions selected randomly by random permutation, H(u) is a
Heaviside function, ǫ is a random number drawn from a uniform distribution, and s is the step size.

6

The other equation is mainly global and can be expressed as

xt+1
i = xt

i + αL(s, λ), (11)

where the Lévy flights are simulated by

L(s, λ) ∼
λΓ(λ) sin(πλ/2)

π

(1

s1+λ

)

, (s ≫ 0). (12)

Here α > 0 is the step size scaling factor. Cuckoo search has become powerful in solving many
problems such as software testing [41], scheduling [31], cyber-physical systems [12] and others [58, 64].

As we can see from the above equations, CS is a nonlinear system due to the Heaviside function
and switch probability. Selection is not via the explicit use of global best g∗, but selection is done
by ranking and elitism where the current best is passed onto the next generation. Randomization is
carried out more effectively using Lévy flights where a fraction of steps are larger than those used in
Gaussian. Thus, the search is heavy-tailed [42]. In addition, as the Lévy flights can be approximated
by a power-law type of distribution, the search steps are also scale-free. In fact, it is observed in the
simulations that CS is indeed scale-free and have a fractal-like search structure. Consequently, CS
can be very effective for nonlinear optimization problems and multiobjective optimization [17, 36,
30, 58, 64].

Flower pollination algorithm (FPA) is inspired by the pollination characteristics of flowering
plants [57], and FPA mimics the biotic and abiotic pollination characteristics as well as the flower
constancy as a co-evolution between certain flower species and pollinators such as insects and ani-
mals. The main algorithmic equations are

xt+1
i = xt

i + γL(λ)(g∗ − xt
i), (13)

and
xt+1
i = xt

i + U (xt
j − xt

k), (14)

where γ is a scaling parameter, L(λ) is the random number vector drawn from a Lévy distribution
governed by the exponent λ. Here g∗ is the best solution found so far, which acts as a selection
mechanism. In addition, U is a uniformly distributed random number. Furthermore, xt

j and xt
k are

solutions representing pollen from different flower patches.
FPA is a quasi-linear system because the equations are linear in terms of xi, but the random

switching between two branches of search moves introduces some weak nonlinearity. Selection uses
the current best explicitly, while randomization is carried out via three components: Lévy flights,
a uniform distribution and a switch probability. Thus, FPA can have a higher explorative ability
while remaining a strong exploitation ability. In fact, it has recently been proved that FPA can
have guaranteed global convergence under the right conditions [20]. FPA has been applied to many
applications with an expanding literature [1, 4, 38, 63].

Obviously, there are other SI algorithms, including the wolf search algorithm (WSA) [25], ant
colony optimization (ACO), artificial bee colony and others, but we do not have space to discuss
them in this paper.

In addition, some algorithms such as differential evolution (DE) are also very efficient [45], but
they may not be classified as SI-based algorithms, and thus we will not discuss them either. Instead,
our focus will be on the discussion and analyses of the above algorithms.

It is worth pointing out that though there are many algorithms in the literature, there is no single
algorithm that can be most efficient to solve all types of problems as dictated by the no-free-lunch
theorems [53]. However, under the right conditions such as co-evolution, certain algorithms can be
more effective [54]. As our purpose here is not to search for best algorithms, our main focus is to
gain more insights into different types of algorithms. In the rest of section, we will discuss the main
characteristics of SI-based algorithms.

3.2 Characteristics of SI Algorithms

Based on the above brief descriptions of some SI-based algorithms, we can now analyze them in terms
of their main characteristics such as randomization techniques, selection mechanism, the potential

7

Table 3: SI Algorithms and their relevant characteristics.
Algorithm Randomization Selection Evolution Mechanism

GA Uniform Elitism Survival of the fittest
PSO Uniform g∗,x∗

i swarming towards g∗

BA Uniform x∗ swarming towards x∗

FA Gaussian Brightest Attraction
CS Lévy flights Best Similarity/Elitism
ACO Probabilistic Pheromone Pheromone variations
FPA Uniform & Lévy g∗ constancy and similarity

mechanism driving the evolution, as summarized in Table 3. Here, we include genetic algorithms
(GA) for the purpose of comparison [19].

From this table, we can see that almost all algorithms use some sort of best solutions such as
the centre of the swarm. Some algorithms such as PSO, BA and FPA use the current global best
solution explicitly in their formulations, while others such as FA, CS and ACO use it in an implicit
way. One of the advantages of explicit use of g∗ is that it provides a direct driving force in the
governing equations, and thus it may be able to speed up the convergence. However, if this driving
force is too strong, it may lead to premature convergence as it can often be observed in PSO. On
the other hand, the advantage of implicit use (either by ranking or post-processing) can lead to
a higher probability of finding the true global best solution, thus potentially avoid some form of
premature convergence. However, it may slow down the search process due to a weaker driving force
for evolution.

Another advantage without the direct use of g∗ is that multiswarms can occur as in the case
of FA due to its nonlinear attraction among different fireflies. In the standard firefly algorithm,
as the short-distance attraction is stronger than long-distance attraction, the whole population can
automatically subdivide into many sub-swarms, and each sub-swarm can potentially swarm around
a local mode, and among all the modes, there is certainly the global best solution. All this makes it
natural for FA to deal with mutlimodal optimization problems effectively.

It is worth pointing out that the above analysis is just one way to analyze SI-based algorithms
from a higher-level but qualitative perspective. Another way of analyses is to use rigorous mathe-
matical theories, which will be the focus of next section.

4 Mathematical Framework for Algorithms

Mathematical frameworks for analyzing algorithms can be dynamic systems, fixed-point theory,
Markov chain theory, self-organization, filtering and others. Though our long-term intention is to
build a solid mathematical framework to analyze algorithms, however, it is not possible to achieve
such a huge task in a single paper. Instead, we would like to highlight a few key points so as to
inspire the research community to carry out more research in this area.

4.1 Fixed-Point Theory

Traditional numerical analysis tends to focus on the iterative nature of an algorithm A(xt) and see
how the solution xt evolves as a pseudo-time iteration counter t. From the well-known Newton’s
method for finding the roots of a nonlinear function f(x)

xt+1 = xt −
f(xt)

∇f(xt)
, (15)

we know that when the solution sequence converges, we have

lim
t→∞

xt = x∗, (16)

8

where x∗ is the final converged solution which is essentially the fixed point. The general theory is
the fixed-point theory which dictates how an iterative formula may evolve and lead to a fixed point
in the search space [47].

For a population of solutions in any of SI-based algorithms, the population can interact with
each other and may lead to potentially multiple fixed points, depending on the algorithm dynamics
of each algorithm. It can be expected that g∗ acts as a fixed point in PSO, while there are multiple
fixed points in the firefly algorithm. In fact, we can hypothesize that there is a single fixed point in
BA, PSO, simulated annealing, FPA and bee algorithm, while multiple fixed points can exist in FA,
CS, ACO and genetic algorithms if the conditions are right. However, it is not clear yet what these
conditions should be, and such conditions may also be problem dependent. More research is highly
needed in this area.

4.2 Dynamic System

The first analysis of PSO using a dynamic system theory was carried out by Clerc and Kennedy
[10], and they linked the governing equations of PSO with the dynamic behaviour of particles under
different parameter settings. In fact, their analysis suggested that the PSO system is governed by
the eigenvalues of a system matrix

λ1,2 = 1−
γ

2
±

√

γ2 − 4γ

2
, (17)

which leads a bifurcation at γ = α + β = 4. Such analysis can indeed provide some insight into
the working mechanism and main characteristics, however, they do not provide a full picture of the
system due to the assumptions and simplifications used in the analysis.

Though in principle we can use the similar method to analyze other algorithms, however, it
becomes difficult to extend to a generalized system. For example, in FA, CS and ACO, the nonlin-
earity makes it difficult to figure out the eigenvalues because the matrix will depend on the current
solution, randomization and other factors. In addition, nonlinearity in FA also means that the char-
acteristics can be much richer than simple linear dynamics such as PSO. Thus, this method may
become intractable in general and it may not be very useful to gain any insight into these algorithms.

4.3 Markov Chain Theory

From the probability perspective, the solutions generated by an algorithm is a statistical sampling
method such as Monte Carlo [21]. In the more general sense, the solution set generated by an
algorithm essentially form a system of Markov chains. A Markov chain is a chain whose next state
will depend only on the current state and the transition probability. In this sense, Markov chain
theory can provide a generalized framework for analyzing SI-based algorithms. In fact, a simple
analysis of genetic algorithms using Markov chain theory was carried out by Suzuki [48], and a
discrete-time Markov chain approach has been used to prove that the flower pollination algorithm
can have guaranteed global convergence [20].

On the other hand, a generalized approach has been designed using a Markov chain for global
optimization [18]; however, this approach may converge slower than SI-based algorithms. This
methodology can provide a quite general framework for optimization.

It is worth pointing out that Markov chain theory can be rigorous, enabling to provide some
significant insight into the algorithms. In theory, the largest eigenvalue of a proper Markov chain is
one, while the second largest eigenvalue λ2 of the transition probability matrix essentially controls
the rate of convergence of the Markov chain. But in practice it is very challenging to find this
eigenvalue. Even some estimates can be difficult. Therefore, the information and insight we can
obtain is limited in practice, which may also limit its practical use.

4.4 Self-Organization

As we have seen earlier, an algorithm can be considered as a self-organizing system where multiple
agents sample the search space, driven by a selection mechanism, evolving according a predefined

9

procedure or a set of algorithmic equations. The iterative evolution will usually lead to a converged
set of solutions that may correspond to the optimal solutions to the problem under consideration.
There are similarities and differences between algorithmic evolution and self-organization as sum-
marized in Table 2. However, such comparison and perspective only provide the qualitative nature
of the algorithm. Though the insightful can be at higher level, it lacks crucial details about how the
self-organized states emerge, under what conditions and how quickly such converged states can be
reached. Unless new theory about self-organization emerges, the information we can gain is mainly
qualitative. Key information and properties may need to obtain by other means.

4.5 Other Approaches

Sometimes, it may not be easy to put some studies into a fixed category, but their results can be
equally useful [51]. For example, Zaharie carried out a variance analysis of population and the effect
of crossover in differential evolution [61]. The variance provides some information about the diversity
of the population during the iterations.

4.6 Multidisciplinary Approach

From the above discussion, it seems that one approach can give only a part of the full information
and insight. Different approaches and perspectives can provide different insights, potentially com-
plementary to each other. Therefore, to truly understand a complex algorithm, it may be useful to
use all different approaches so as to build a fuller picture about the algorithm. It can be expected
that a multidisciplinary framework can be formulated to analyze algorithms comprehensively.

5 Trends and Future Challenges

The above analyses and discussions about SI-based algorithms have laid the foundation for us to
turn our attention to the possible future developments. Obviously, it is not possible to predict
what future research would be, but we hope to inspire more studies in the important directions
concerning swarm intelligence and their applications in optimization, machine learning and data
mining. Therefore, we would like to highlight some of key challenges in this area.

5.1 Some Key Challenges

Many challenging issues exist concerning swarm intelligence, and it is not our intention to address
every aspect of these challenges. As an example, the emergence of intelligent behaviour among a
complex swarm is still poorly understood, which will not be addressed here. Therefore, we can only
focus on a small but key set of challenging issues as outlined below.

• Parameter tuning and control : All algorithms have algorithm-related parameters and some
algorithms have more parameters than others. In general, the setting of these parameters can
affect the algorithm significantly, though some parameters may have a weak influence, while
others may have a strong influence. In theory, these parameters should be tuned so as to
maximize the performance of the algorithm, however, such parameter tuning is not a trivial
task [14]. Even with well-tuned parameters, there is no strong reason that they should remain
fixed. It may be advantageous to use varying parameters during iterations and the proper
variations of parameters are called parameter control. Both parameter tuning and control
can be considered as a high level of optimization; that is the optimization of optimization
algorithms.

Currently, most tuning approaches are done using parametric studies, while parameter control
uses stochastic adaptivity where certain parameters are allowed to vary randomly within a
predefined range. Ideally, parameter tuning and control can be done automatically, such as
the self-tuning framework by Yang et al. [59]. However, the computational costs may be

10

still high. Therefore, there is a strong need to find an effective way to tune parameters both
automatically and adaptively.

• Optimal exploration and exploitation: An efficient algorithm should be able to balance the
exploration of the search space and the exploitation of the landscape information. Exploration
can increase the diversity and thus increase the probability of finding the global optimal so-
lutions, while exploitation uses local information to enhance the search process. However,
too much exploration and too little exploitation will slow down the search process, while too
much exploitation and too little exploration will lead to premature convergence. The optimal
balance can be difficult to find, and empirical observations suggest that such balance may be
also problem-specific. How to achieve such a balance is still an open problem, though it is
possible to produce a better balance under certain conditions.

• Large-scale problems and algorithm scalability: The current literature seems to suggest that
SI-based algorithms can be effective in solving various design problems, and there is some
indication that they can even solve highly complex NP-hard problems, but the case studies
in the current literature have most about optimization problems with the number of variables
ranging from a few to a few hundred. Compared to real-world applications, the dimensionality
tested is relatively low. However, it is not clear if these algorithms can be directly applied
to large-scale problems. The true scalability is yet to be tested. It is highly needed to test
problems with the number of variables more than a thousand or even much higher.

• Mathematical Framework : As we discussed earlier, there are different ways of looking at SI-
based algorithms and analyzing them from different perspectives such as stability, dynamic
systems, Markov chain theory and self-organization. However, there is no unified framework yet
that can provide a fuller picture of an algorithm, concerning convergence, rate of convergence,
stability, ergodicity, repeatability and scalability. It is highly likely that any unified framework
for theoretical analysis is a multidisciplinary approach, looking at algorithms from all angles
and perspectives.

• Rate of convergence and control : From both theoretical and practical perspectives, the rate
of convergence is extremely important. After all, we want the best solution to a problem
quickly with the minimum computational costs. Even though we can understand largely the
characteristics of many algorithms, this does not mean that we can control their behaviour,
especially the rate of convergence in practice. Loosely speaking, the rate of convergence can
depend on many factors such as the intrinsic components, structure, parameter values and
initial configuration of an algorithm, and such dependence can be complex, indirect and non-
linear. Even in the case it may be possible to figure out the rate of convergence, it may be
difficult to control it so as to maximize the search efficiency. It can be expected that such
control can be interlinked with parameter tuning and control.

5.2 Recommendations for Future Research

With the key challenges we just outlined, it is highly recommended to carry out further research to
address such challenges. Therefore, research priority should be given to the following areas:

• Theoretical framework : Due to its importance in understanding how algorithms work, theoret-
ical analysis should be among one of the top priorities in the near future. Theoretical analysis
can gain more insight into algorithms that allow us to identify the best types of problems
to solve and to tune or control the parameters more effectively. This may also allow us to
potentially design better and more effective algorithms and tools.

• Hybridization: Though some algorithms are very effective in solving certain types or even a
wider range of problems, studies suggest that hybridization can be powerful by combining the
advantages of different algorithms [50]. In fact, hybrid algorithms have been attempted for
many years, but the hybridization process is still a bit trial and error. It is not clear yet how
to combine different algorithms so as to produce a better hybrid?

11

• Self-tuning and self-adaptive algorithms : As we mentioned earlier, the tuning of algorithm-
dependent parameters is a challenging task. The control of parameters is also a difficult task.
Ideally, a truly useful algorithm should be able to self-tune and self-adapt to suit for different
types of problems [59]. The main unanswered questions are: what is the best way for algorithms
to be self-tuning and self-adaptive? For a given set of algorithms, how to adapt them to new
problems without any prior knowledge?

• Diverse applications : The usefulness of algorithms is the ability to solve a wide range of
problems, especially large-scale, real-world applications. After all, there are many optimization
problems that need to be solved in all areas of science, engineering, industry and business
applications.

• Intelligent tools : Several decades of intensive research in algorithms and optimization have
enable researchers to design better and more effective tools. However, no one can claim that
they have produced truly intelligent tools that can solve problems automatically, quickly and
intelligently. In fact, there are so many related questions concerning this issue. For example,
what do we mean by ‘intelligent algorithm’? Can algorithms really be intelligent? Questions
like these can be endless, but we may at least wish to know what the minimum components
are so as to make an algorithm sufficiently intelligent?

Obviously, there are other important directions and active research topics concerning swarm
intelligence, optimization and machine learning. One important topic is to use a good combination of
new algorithms with traditional techniques because traditional techniques have been well established
and tested, and they are among the most useful ones to a specific class of problems. New methods
will be most needed when traditional methods do not work well. In addition, even algorithms are
efficient, the proper implementation and parallelization can make algorithms even more useful in
practice.

6 Conclusions

Swarm intelligence is an interesting and important area, and swarm intelligence based algorithms
have permeated into almost all areas of sciences and engineering. Accompanying their success and
popularity, there are some key issues to be addressed. In this paper, we have first reviewed the
essence of swarm intelligence, and then linked algorithms and swarm intelligence to self-organization
of complex systems. Then, we highlighted some SI-based algorithms and subsequently analyzed
their main components, characteristics and properties, followed by a more theoretical approach using
fixed-point theory, dynamic system and Markov chain theory. Finally, we have also outlined some
key challenges and provide some recommendations for addressing such issues. It is authors’ hope
that more research can be inspired, concerning swarm intelligence and nature-inspired computation
so as to solve a diverse range of optimization problems in real-world applications.

References

[1] D.F. Alam. D.A. Yousri, M.B. Eteiba, Flower pollination algorithm based solar PV parameter
estimation, Energy Conversion and Management, 101(2), 410–422 (2015).

[2] W. R. Ashby, Princinples of the self-organizing sysem, in: Principles of Self-Organization:
Transactions of the University of Illinois Symposium (Eds H. Von Foerster and G. W. Zopf,
Jr.), Pergamon Press, London 1962; UK. pp. 255–278.

[3] A. Banks, J. Vincent, C. Anyakoha, A review of particle swarm optimization. Part II: hybridi-
sation, combinatorial, multicriteria and constrained optimization, and indicative applications,
Natural Computing, 7(1), 109–124 (2008).

12

[4] G. Bekdas, S.M. Nigdeli, X.S. Yang, Sizing optimization of truss structures using flower polli-
nation algorithm, Applied Soft Computing, 37, 322-331 (2015).

[5] D. Berlinski, The Advent of the Algorithm: The 300-Year Journey from an Idea to the Computer,
Harvest Book, New York, (2001).

[6] E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm Intelligence: From Natural to Artificial Systems,
Oxford University Press, Oxford, (1999).

[7] C. Blum, and A. Roli, Metaheuristics in combinatorial optimization: overview and conceptural
comparision, ACM Comput. Survey, 35(2), 268–308 (2003).

[8] S. Carbas, Design optimization of steel frames using an enhanced firefly algorithm, Engineering
Optimization, 48(12), 2007–2025 (2016).

[9] J.L. Chabert, A History of Algorithms: From the Pebble to the Microchip, Springer-Verlag,
Heidelberg, (1999).

[10] M. Clerc, J. Kennedy, The particle swarm: Explosion, stability and convergence in a multidi-
mensional compelx space, IEEE Trans. Evol. Comput., 6(1), 58-73 (2002).

[11] D. W. Corne, A. Reynolds, E. Bonabeau, Swarm Intelligence, in: Handbook of Natural Com-

puting (Eds. G. Rozenberg, T. Bäck, J. N. Kok), Springer, pp. 1599-1622 (2012).

[12] Z.H. Cui, B. Sun, G. Wang, Y. Xue, J.J. Chen, A novel oriented cuckoo search algorithm to
improve DV-Hop performance for cyber-physical systems, J. Parallel Distrb. Comput., 103(1),
42–52 (2017).

[13] S.M. Darwish, Combining firefly algorithm and Bayesian classifier: new direction for automatic
multilabel image annotation, IET Image Procesing, 10(10), 763–772 (2016).

[14] A. E. Eiben and S. K. Smit, Parameter tuning for configuring and analyzing evolutionary
aglorithms, Swarm and Evolutionary Computing, 1(1), 19-31 (2011).

[15] A. Gálvez and A. Iglesias, New memetic self-adaptive firefly algorithm for continuous optimi-
sation, Int. J. Bio-Inspired Computation, 8(5), 300–317 (2016).

[16] A.H. Gandomi, X.S. Yang, Chaoti bat algorithm, Journal of Computational Science, 5(2),
224–232 (2014).

[17] A.H. Gandom, X.S. Yang, A.H. Alavi, Cuckoo search algorithm: a metaheuristic approach to
solve structural optimization problems, Engineering with Computers, 29(1), 17–35 (2013).

[18] A. Ghate and R. Smith, Adaptive search with stochastic acceptance probabilities for global
optimization, Oper. Res. Lett., 36 (3), 285-290 (2008).

[19] D. E. Goldberg, Genetic Algorithms in Search, Optimisation and Machine Learning, Reading,
Mass.: Addison Wesley, (1989).

[20] X. S. He, X. S. Yang, M. Karamanoglu, Y. X. Zhao, Global convergence analysis of the flower
pollination algorithm: a discrete-time Markov chain approach, Procedia Computer Science, 108,
1354-1363 (2017).

[21] G. S. Fishman, Monte Carlo: Concepts, Algorithms and Applications, Springer, New York,
(1995).

[22] L. Fisher, The Perfect Swarm: The Science of Complexity in Everday Life, Basic Books, (2009).

[23] I. Fister, I. Fister, X.S. Yang, J. Brest, A comprehensive review of firefly algorithms, Swarm
and Evolutionary Computation, 13(1), 34–46 (2013).

13

[24] I. Fister, X.S. Yang, J. Brest, I. Fister Jr., Modified firefly algorithm using quaternion repre-
sentation, Expert Systems with Applications, 40(18), 7220–7230 (2013).

[25] S. Fong, S. Deb, X. S. Yang, A heuristic optimization method inspired by wolf preying behavior,
Neural Computing and Appplications, 26(7), 1725-1738 (2015).

[26] S. Kashi, A. Minuchehr, N. Poursalehi, A. Zolfaghari, Bat algorithm for the fuel arrangement
optimization of reactor core, Annals of Nuclear Energy, 64, 144-151 (2014).

[27] J. Kennedy and R. C. Eberhart, Particle swarm optimization. Proc. of IEEE International

Conference on Neural Networks, Piscataway, NJ: IEEE Press, pp. 1942-1948 (1995).

[28] E. F. Keller, Organisms, machines, and thunderstorms: a history of self-organization, part two.
Complexity, emergenece, and stable attractors, Historical Studies in the Natural Sciences, 39(1),
1–31 (2009).

[29] A. Khare, S. Rangnekar, A review of particle swarm optimization and its applications in solar
photovoltaic system, Applied Soft Computing, 13(5), 2997–3006 (2013).

[30] J.M. Ma, T.O. Ting, K.L. Man, N. Zhang, S.U. Guan, P.W.H. Wong, Parameter estimation of
photovoltaic models via cuckoo search, Applied Mathematics, Volume 2013, Article ID 362619
(8 pages), (2013). http://dx.doi.org/10.1155/2013/362619

[31] M. Marichelvam, T. Prabaharan, X. S. Yang, Improved cuckoo search algorithm for hybrid
flow shop scheduling problems to minimize makespan, Applied Soft Computing, 19(1), 93-101
(2014).

[32] M.K. Marichelvam, P. Thirumoorthy, X.S. Yang, A discrete firefly algorithm for the multi-
objective hybrid flowshop scheduling problems, IEEE Trans. Evolutionary Computation, 18(2),
301–305 (2014).

[33] P. Miller, Swarm theory, National Geographic, July 2007.

[34] E. Osaba, X. S. Yang, F. Diaz, E. Onieva, A.D., Masegosa, A. Perallos, A discrete firefly
algorithm to sole a rich vehicle routing problem modelling a newspaper distribution system
with recycling policy, Soft Computing, Online First, (2016). https://doi.org/10.1007/s00500-
016-2114-1

[35] E. Osaba, X.S. Yang, F. Diaz, P. Lopez-Garcia, R. Carballedo, An improved discrete bat algo-
rithm for symmetric and assymmetric traveling salesman problems, Engineering Applications

of Artificial Intelligence, 48(1), 59–71 (2016).

[36] A. Ouaarab, B. Ahiod, X.S. Yang, Random-key cuckoo search for the travelling salesman prob-
lem, Soft Computing, 19(4), 1099–1106 (2015).

[37] M. Reyes-Sierra and C. A. Coello Coello, Multi-objective particle swarm optimizers: A survey
of the state-of-the-art, Int. J. of Computational Intelligence Research, 2(3), 287–308 (2006).

[38] D. Rodrigues, G.F. Silva, J.P. Papa, A.N. Marana, X.S. Yang, EEG-based person identification
through binary flower pollination algorithm, Expert Systems with Applications, 62(1), 81–90
(2016).

[39] D. Rodrigues, L.A.M. Pereira, R.Y.M. Nakamura, K.A.P. Costa, X.S. Yang, A.N. Souza, J.P.
Papa, A wrapper approach for feature selection based on bat algorithm and optimum-path
forest, Expert Systems with Applications, 41(5), 2250–2258 (2014).

[40] K. E. Parsopoulos and M. N. Vrahatis, Particle Swarm Optimization and Intelligence: Advances

and Applications, Information Science Publishing (IGI Global), (2010).

14

[41] P. Srivastava, M. Chis, S. Deb and X. S. Yang, An efficient optimization algorithm for structural
software testing, Intl. Journal of Artificial Intelligence, 8(12), 68-77 (2012).

[42] A. M. Reynolds, C. J. Rhodes, The Lévy fligth paradigm: random search patterns and mecha-
nisms, Ecology, 90(4), 877-887 (2009).

[43] J. Senthinath, S.N. Omkar, V. Mani, Clustering using firefly algorithm: performance study,
Swarm and Evolutionary Computation, 1(3), 164–171 (2011).

[44] A. Soleimani, Combined particle swarm optimization and canonical sign digit to design finite
impulse response filter, Soft Computing, 19(2), 407–419 (2015).

[45] R. Storn and K. Price, Differential evolution: a simple and efficient heuristic for global opti-
mization over continuous spaces, J. Global Optimization, 11(4), 341-59 (1997).

[46] J. Surowiecki, The Wisdom of Crowds, Anchor Books, (2004).

[47] E. Süli and D. Mayer, An Introduction to Numerical Analysis, Cambridge University Press,
Cambridge, (2003).

[48] J. A. Suzuki, A Markov chain analysis on simple genetic algorithms, IEEE Trans. Sys. Man

Cybern., 25(4), 655-9 (1995).

[49] S.L. Tilahun, J.M.T. Ngnotechouye, Firefly algorithm for discrete optimization problems: A
survey, KSCE Journal of Civil Engineering, 21(2), 535–545 (2017).

[50] O. Ting, X.S. Yang, S. Cheng, K.Z. Huang, Hybrid metaheuristic algorithms: Past, present,
and futute, in: Recent Advances in Swarm Intelligence and Evolutionary Computation (Ed.
X.S. Yang), Studies in Computational Intelligence 585, pp. 71–83 (2015).

[51] M. Villalobos-Arias, C. A. C. Colleo, O. Hernández-Lerma, Asypmotic convergence of meta-
heuristics for multiobjective optimization problems, Soft Computing, 10(11), 1001-5 (2005).

[52] H. Wang, W.J. Wang, X.Y. Zhou, H. Sun, J. Zhao, X. Yu, Z.H. Cui, Firefly algorithm with
neighborhood attraction, Information Sciences, 382-383(1), 374-387 (2017).

[53] D. H. Wolpert and W. G. Macready, No free lunch theorem for optimization, IEEE Trans. Evol.

Comput., 1(1), 67-82 (1997).

[54] D. H. Wolpert and W. G. Macready, Coevolutionary free lunches, IEEE Trans. Evol. Comput.

, 9(6), 721-735 (2005).

[55] X. S. Yang, Bat algorithm for multi-objective optimisation, Int. J. Bio-Inspired Computation,
3(5), 267-274 (2011).

[56] X. S. Yang and S. He, Bat algorithm: literature review and applications, Int. J. Bio-Inspired
Computation, 5(3), 141-149 (2013).

[57] X. S. Yang, M. Karamanoglu and X. S. He, Flower pollination algorithm: A novel approach for
multiobjective optimization, Engineering Optimization, 46(9), 1222-1237 (2014).

[58] X. S. Yang and S. Deb, Multi-objective cuckoo search for design optimization, Computers and
Operations Research, 40(6): 1616–1624 (2013).

[59] X.S. Yang, S. Deb, M. Loomes, M. Karamanoglu, A framework for self-tuning optimization
algorithm, Neural Computing and Applications, 23(7-8), 2051-2057 (2013).

[60] X.S. Yang, S. Deb, S. Fong, X.S. He, Y.X. Zhao, From swarm intelligence to metaheuristics:
nature-inspired optimization algorithms, Computer, 49(9), 52–59 (2016).

[61] D. Zaharie, Influence of crossover on the behaviour of the differential evolution algorithm,
Applied Soft Computing, 9(3), 1126-38 (2009).

15

[62] C.X. Zhao, C.Z. Wu, J. Chai, X.Y. Wang, X.M., Yang, M. Lee, M.J. Kim, Decomposition-
based multi-objective firefly algorithm for RFID network planning with uncertainy, Applied

Soft Computing, 55, 549–564 (2017).

[63] Y. Zhou, R. Wang, Q. Luo, Elite opposition-based flower pollinaton algorithm, Neurocomputing,
188, 294–310 (2016).

[64] M. Zineddine, Vulnerabilities and mitigation techniques toning in the cloud: a cost and vul-
nerabilities coverage optimiation approach using cuckoo search algorithm with Lévy flights,
Computers & Security, 48(1), 1–18 (2015).

[65] D. Zouache, F. Nouioua, A. Moussaoui, Quantum-inspired firefly algorithm with particle swarm
optimization for discrete optimization problems, Soft Computing, 20(7), 2781–2799 (2016).

16

