Skip to main content
Log in

BIAM: a new bio-inspired analysis methodology for digital ecosystems based on a scale-free architecture

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Today we live in a world of digital objects and digital technology; industry and humanities as well as technologies are truly in the midst of a digital environment driven by ICT and cyber informatics. A digital ecosystem can be defined as a digital environment populated by interacting and competing digital species. Digital species have autonomous, proactive and adaptive behaviors, regulated by peer-to-peer interactions without central control point. An interconnecting architecture with few highly connected nodes (hubs) and many low connected nodes has a scale- free architecture. A new bio-inspired analysis methodology (BIAM) environment, an investigation strategy for information flow, fault and error tolerance detection in digital ecosystems based on a scale-free architecture is presented in this paper. In order to extract the information about modules and digital species role, the analysis methodology, inspired by metabolic network working, implements a set of three interacting techniques, i.e., topological analysis, flux balance analysis and extreme pathway analysis. Highly connected nodes, intermodule connectors and ultra-peripheral nodes can be identified by evaluating their impact on digital ecosystems behavior and addressing their strengthen, fault tolerance and protection countermeasures. Two real case studies of ecosystems have been analyzed in order to test the functionalities of the proposed (BIAM) environment and the goodness of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47–97

    Article  MathSciNet  MATH  Google Scholar 

  • Albert R, Jeong H, Barabasi AL (2000) Error and attack tolerance of complex networks. Nature 406:378–382. doi:10.1038/35019019

    Article  Google Scholar 

  • Arnedo-Moreno J, Matsuo K, Barolli L, Xhafa F (2011) Secure communication setup for a P2P-based JXTA-overlay platform. IEEE Trans Ind Electron 58(6):2086–2096

    Article  Google Scholar 

  • Barolli L, Xhafa F (2011) JXTA-OVERLAY: a P2P platform for distributed collaborative and ubiquitous computing. IEEE Trans Ind Electron 58(6):2163–2172

    Article  Google Scholar 

  • Briscoe G (2010) Complex adaptive digital ecosystems. In: proceedings of the international conference on management of emergent digital ecosystems, ACM New York, NY, USA. doi:10.1145/1936254.1936262

  • Briscoe G, Sadedin S, Paperin G (2007) Biology of applied digital ecosystems. In IEEE 1st international conference on digital ecosystems and technologies. http://arxiv.org/abs/0712.4153v2

  • Chang S-F (2011) A reference architecture for application marketplace service based on SaaS. Int J Grid Util Comput 2(4):243–252. doi:10.1504/IJGUC.2011.042942

    Article  Google Scholar 

  • Conti V, Lanza B, Vitabile S, Sorbello F (2009) Neural networks and metabolic networks: fault tolerance and robustness features. Front Artif Intell Appl 204: Neural Nets WIRN09, IOS Press Editor, pp 39–48, ISSN 0922-6389, ISBN 978-1-60750-072-8. doi:10.3233/978-1-60750-072-8-39

  • Conti V, Lanza B, Vitabile S, Sorbello F (2010) BioAnalysis: a framework for structural and functional robustness analysis of metabolic networks. In: 4th international IEEE conference on complex, intelligent and software intensive systems (CISIS 2010), pp 138–145. doi:10.1109/CISIS.2010.136

  • Conti V, Vitabile S, Militello C, Lanza B, Sorbello F (2011) An embedded processor for metabolic networks optimization. In: 5th international conference on complex, intelligent and software intensive systems (CISIS 2011), pp 77–84, ISBN: 978-0-7695-4373-4. Korean Bible University (KBU), Seoul, Korea, June 30th–July 2nd

  • Crucitti P, Latora V, Marchiori M, Rapisarda A (2004) Error and attack tolerance of complex networks. Physica A 340:388–394

    Article  MathSciNet  MATH  Google Scholar 

  • De la Rosa JL, Hormazbal N, Aciar S, Lopardo GA, Trias A, Montaner M (2011) A negotiation-style recommender based on computational ecology in open negotiation environments. IEEE Trans Ind Electron 58(6):2073–2085

    Article  Google Scholar 

  • Dong H, Hussain FK (2011a) Focused crawling for automatic service discovery annotation, and classification in industrial digital ecosystems. IEEE Trans Ind Electron 58(6):2106–2116

    Article  Google Scholar 

  • Dong H, Hussain FK (2011b) Semantic service matchmaking for digital health ecosystems. Knowl Based Syst 24:761–774

    Article  Google Scholar 

  • Dong H, Hussain FK, Chang E (2011a) A service search engine for the industrial digital ecosystems. IEEE Trans Ind Electron 58(6):2183–2196

    Article  Google Scholar 

  • Dong H, Hussain FK, Chang E (2011b) A framework for discovering and classifying ubiquitous services in digital health ecosystems. J Comput Syst Sci 77:687–704

    Article  MathSciNet  Google Scholar 

  • Fernandez-Mena H, Nesme T, Pellerin S (2016) Towards an agro-industrial ecology: a review of nutrient flow modelling and assessment tools in agro-food systems at the local scale. Sci Total Environ 543:467–479

    Article  Google Scholar 

  • Gentile A, Santangelo A, Sorce S, Vitabile S (2011) Human-to-human interfaces: emerging trends and challenges. Int J Space Based Situat Comput 1(1):3–17. doi:10.1504/IJSSC.2011.039103

    Article  Google Scholar 

  • Gentile U, Marrone S, Mazzocca N, Nardone R (2016) Cost-energy modelling and profiling of smart domestic grids. Int J Grid Util Comput 7(4):257–271. doi:10.1504/IJGUC.2016.10001950

    Article  Google Scholar 

  • Guimer R, Amaral LAN (2005) Functional cartography of complex metabolic network. Nature 433:895–900

    Article  Google Scholar 

  • Hadzic M, Chang E (2010) Application of digital ecosystem design methodology within the health domain. IEEE Trans Syst Man Cybern PART A Syst Hum 40:4

    Article  Google Scholar 

  • Han L, Wang J, Wang X, Wang C (2011) Bypass flow-splitting forwarding in FISH networks. IEEE Trans Ind Electron 58(6):2197–2204

    Article  Google Scholar 

  • Jeong H, Tombor B, Albert R, Oltvai Z, Barabsi AL (2000) The large-scale organization of metabolic networks. Nature 407:651–654

    Article  Google Scholar 

  • Kauffman KJ, Prakash P, Edwards JS (2003) Advances in flux balance analysis, current Opinion in Biotechnology. Elsevier, Hoboken, pp 491–496

    Google Scholar 

  • Kipp A, Jiang T, Liu J, Fugini M, Vitali Monica, Pernici Barbara, Salomie Ioan (2012) Applying green metrics to optimise the energy consumption footprint of IT service centres. Int J Space Based Situat Comput 2(3):158–174. doi:10.1504/IJSSC.2012.048897

    Article  Google Scholar 

  • Lacroix V, Cottret L, Thbault P, Sagot MF (2008) An introduction to metabolic networks and their structural analysis. IEEE/ACM Trans Comput Biol Bioinform 5(4):594–617

    Article  Google Scholar 

  • Lee W, Leung CKS, Lee JJH (2011) Mobile web navigation in digital ecosystems using rooted directed trees. IEEE Trans Ind Electron 58(6):2154–2162

    Article  Google Scholar 

  • Lopardo GA, Rateb FN (2008) Chaos and budworm dynamics of agent interactions: a biologically-inspired approach to digital ecosystems. In: MICAI 2008, advances in artificial intelligence. Lecture notes in computer science, vol 5317, pp 889–899

  • Lowe E (2004) Defining eco-industrial parks: The global context and China. Report prepared for the Policy Research Center for Environment and Economy, State Environmental Protection Administration, China

  • Lu J, Ma J, Zhang G, Zhu Y, Zeng X, Koehl L (2011) Theme-based comprehensive evaluation in new product development using fuzzy hierarchical criteria group decision-making method. IEEE Trans Ind Electron 58(6):2236–2246

    Article  Google Scholar 

  • Mahadevan R, Palsson BO (2005) Properties of metabolic networks: structure versus function. Biophys J 88(1):L07–L09. doi:10.1529/biophysj.104.055723

    Article  Google Scholar 

  • Okaie Y, Nakano T (2011) A game theoretic framework for peer-to-peer market economy. Int J Grid Util Comput 2(3):183–195. doi:10.1504/IJGUC.2011.042041

    Article  Google Scholar 

  • Pastor-Satorras R, Vespignani A (2001) Epidemic spreading in scale-free networks. Phys Rev Lett 86:3200–3203

    Article  Google Scholar 

  • Peleteiro A, Burguillo JC, Armendriz M, Arnould G, Khadraoui D (2012) Djamel, modelling and simulating a dynamic carpooling system for improving citizens mobility. Int J Space Based Situat Comput 2(4):209–221. doi:10.1504/IJSSC.2012.049998

    Article  Google Scholar 

  • Prasarnphanich P, Wagner C (2011) Explaining the sustainability of digital ecosystems based on the Wiki model through critical-mass theory. IEEE Trans Ind Electron 58(6):2065–2072

    Article  Google Scholar 

  • Provost A and Bastin G (2006) Metabolic flux analysis: an approach for solving non-stationary undetermined systems. In: Proceedings 5th MATHMOD, Vienna, Febbraio, I Troch, F. Breitenecker, pp 5/1-5/10

  • Razavi AR, Moschoyiannis SK, Krause PJ (2008) A scale-free business network for digital ecosystems. In: proceedings of the 2nd IEEE international conference on digital ecosystems and technologies, pp 241–246. ISBN: 978-1-4244-1489-5

  • Schilling CH, Letscher D, Palsson B (2000) Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J Theor Biol 203(3):229–248

    Article  Google Scholar 

  • Serbanati LD, Ricci FL, Mercurio G, Vasilateanu A (2011) Steps towards a digital health ecosystem. J Biomed Inf 44(4):621636. doi:10.1016/j.jbi.2011.02.011

    Article  Google Scholar 

  • Vitabile S, Conti V, Lanza B, Cusumano D, Sorbello F (2011) metabolic networks robustness: theory, simulations and results. J Interconnect Netw (JOIN) 12(3):221–240, World Scientific Publishing Company, ISSN: 0219-2659 (print), pp 1793–6713 (online). doi:10.1142/S0219265911002964

  • Vitabile S, Conti V, Lanza B, Cusumano D, Sorbello F (2011) Topological information, flux balance analysis, and extreme pathways extraction for metabolic networks behaviour investigation. Front Artif Intell Appl IOS Press Editor, vol 234: Neural Nets WIRN11, pp 66–73, ISSN 0922-6389, ISBN 978-1-60750-971-4. doi:10.3233/978-1-60750-972-1-66

  • Vitello G, Alongi A, Conti V, Vitabile S (2017) A bio-inspired cognitive agent for autonomous urban vehicles routing optimization. IEEE Trans Cognit Dev Syst 9(1):5–15. doi:10.1109/TCDS.2016.2608500 (ISSN: 2379–8920)

    Article  Google Scholar 

  • Waluyo AB, Rahayu W, Taniar D, Srinivasan B (2011) A novel structure and access mechanism for mobile data broadcast in digital ecosystems. IEEE Trans Ind Electron 58(6):2173–2182

    Article  Google Scholar 

  • Yang Y, Xu Y, Li X, Chen C (2011) A loss inference algorithm for wireless sensor networks to improve data reliability of digital ecosystems. IEEE Trans Ind Electron 58(6):2126–2137

    Article  Google Scholar 

  • Zhang G, Zhang G, Gao Y, Lu J (2011) Competitive Strategic bidding optimization in electricity markets using bilevel programming and swarm technique. IEEE Trans Ind Electron 58(6):2138–2146

    Article  Google Scholar 

  • Zhao G, Xuan K, Rahayu W, Taniar D, Safar M, Gavrilova ML, Srinivasan B (2011) Voronoi-based continuous k nearest neighbor search in mobile navigation. IEEE Trans Ind Electron 58(6):2247–2257

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Conti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conti, V., Ruffo, S.S., Vitabile, S. et al. BIAM: a new bio-inspired analysis methodology for digital ecosystems based on a scale-free architecture. Soft Comput 23, 1133–1150 (2019). https://doi.org/10.1007/s00500-017-2832-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-017-2832-z

Keywords

Navigation