Skip to main content
Log in

Study on centroid type-reduction of general type-2 fuzzy logic systems with weighted enhanced Karnik–Mendel algorithms

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

With the development of \(\alpha \)-planes representation of general type-2 fuzzy sets (GT2 FSs), general type-2 fuzzy logic systems (GT2 FLSs) based on GT2 FSs have become a hot topic in academic field. While type-reduction (TR) is most critical block for a T2 FLS, generally speaking, the most popular Karnik–Mendel (KM) or enhanced KM (EKM) algorithms are used to perform the TR. The paper connects the EKM and the continuous version of EKM algorithms together and expands the EKM algorithms to three different forms of weighted EKM (WEKM) algorithms resort to the Newton–Cotes quadrature formulas of numerical integration techniques, while the EKM algorithms just become a special case of the WEKM algorithms. Four computer simulation examples are used to illustrate the performances of the WEKM algorithms. Compared with the EKM algorithms, the WEKM algorithms have smaller absolute error and faster convergence speed to compute the centroid defuzzified value of GT2 FLSs in general, which make them potentially applicable for T2 FLSs designers and adopters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  • Aisbett J, Rickard JT, Morgenthaler DG (2010) Type-2 fuzzy sets as functions on spaces. IEEE Trans Fuzzy Syst 18(4):841–844

    Article  Google Scholar 

  • Biglarbegian M, Melek WW, Mendel JM (2010) On the stability of interval type-2 TSK fuzzy logic systems. IEEE Trans Syst Man Cybern B Cybern 40(3):798–818

    Article  Google Scholar 

  • Biglarbegian M, Melek WW, Mendel JM (2011) Design of novel interval type-2 fuzzy controllers for modular and reconfigurable robots: theory and experiments. IEEE Trans Ind Electron 58(4):1371–1384

    Article  Google Scholar 

  • Bilgin A, Hagras H, Malibari A et al (2013) Towards a linear general type-2 fuzzy logic based approach for computing with words. Soft Comput 17(12):2203–2222

    Article  Google Scholar 

  • Caraveo C, Valdez F, Castillo O (2017) Nature-inspired design of hybrid intelligent systems. Studies in computational intelligence

  • Castillo O, Amador-Angulo L, Castro JR, Garcia-Valdez M (2016a) A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems. Inf Sci 354(Part C):257–274

    Article  Google Scholar 

  • Castillo O, Cervantes L, Soria J et al (2016b) A generalized type-2 fuzzy granular approach with applications to aerospace. Inf Sci 354(C):165–177

    Article  Google Scholar 

  • Chen Y, Wang DZ (2015) Studies on centroid type-reduction algorithms for interval type-2 fuzzy logic systems. In: IEEE international conference on big data and cloud computing, pp 344–349

  • Chen S, Chang Y, Pan J (2013) Fuzzy rules interpolation for sparse fuzzy rule-based systems based on interval type-2 gaussian fuzzy sets and genetic algorithms. IEEE Trans Fuzzy Syst 21(3):412–425

    Article  Google Scholar 

  • Chen Y, Wang DZ, Ning W (2015) Studies on centroid type-reduction algorithms for general type-2 fuzzy logic systems. Int J Innov Comput Inf Control 11(6):1987–2000

    Google Scholar 

  • Chen Y, Wang DZ, Tong SC (2016) Forecasting studies by designing Mamdani interval type-2 fuzzy logic systems: with the combination of BP algorithms and KM algorithms. Neurocomputing 174(Part B):1133–1146

    Article  Google Scholar 

  • Coupland S, John R (2007) Geometric type-1 and type-2 fuzzy logic systems. IEEE Trans Fuzzy Syst 15(1):3–15

    Article  MATH  Google Scholar 

  • Gonzalez C, Castro JR, Melin P, Castillo O (2016) An edge detection method based on generalized type-2 fuzzy logic. Soft Comput 20(2):773–784

    Article  Google Scholar 

  • Gonzalez CI, Melin P, Castro JR, Mendoza O, Castillo O (2017) General type-2 fuzzy edge detection in the preprocessing of a face recognition system. Springer, Berlin

    Book  Google Scholar 

  • Hagras H, Wagner C (2012) Towards the wide spread use of type-2 fuzzy logic systems in real world applications. IEEE Comput Intell Mag 7(3):14–24

    Article  Google Scholar 

  • Hidalgo D, Melin P, Castillo O (2012) An optimization method for designing type-2 fuzzy inference systems based on the footprint of uncertainty using genetic algorithms. Expert Syst Appl 39(4):4590–4598

    Article  Google Scholar 

  • Hsu CH, Juang CF (2013) Evolutionary robot wall-following control using type-2 fuzzy controller with species-de-activated continuous ACO. IEEE Trans Fuzzy Syst 21(1):100–112

    Article  Google Scholar 

  • Juang CF, Chang PH (2010) Designing fuzzy-rule-based systems using continuous ant-colony optimization. IEEE Trans Fuzzy Syst 18(1):138–149

    Article  Google Scholar 

  • Karnik NN, Mendel JM (2001) Centroid of a type-2 fuzzy set. Inf Sci 132(1–4):195–220

    Article  MathSciNet  MATH  Google Scholar 

  • Khosravi A, Nahavandi S (2014) Load forecasting using interval type-2 fuzzy logic systems: optimal type reduction. IEEE Trans Ind Inf 10(2):1055–1063

    Article  Google Scholar 

  • Linda O, Manic M (2012) Monotone centroid flow algorithm for type reduction of general type-2 fuzzy sets. IEEE Trans Fuzzy Syst 20(5):805–819

    Article  Google Scholar 

  • Liu FL (2008) An efficient centroid type reduction strategy for general type-2 fuzzy logic system. Inf Sci 178(9):2224–2236

    Article  MathSciNet  Google Scholar 

  • Liu X, Mendel JM, Wu DR (2012) Study on enhanced Karnik–Mendel algorithms: initialization explanations and computation improvements. Inf Sci 184(1):75–91

    Article  MathSciNet  MATH  Google Scholar 

  • Mathews JH, Fink KD (2004) Numerical methods using matlab. Prentice-Hall Inc., Upper Saddle River

    Google Scholar 

  • Melin P, Gonzalez CI, Castro JR, Mendoza O, Castillo O (2014) Edge-detection method for image processing based on generalized type-2 fuzzy logic. IEEE Trans Fuzzy Syst 22(6):1515–1525

    Article  Google Scholar 

  • Mendel JM (2001) Uncertain rule-based fuzzy logic systems: introduction and new directions. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Mendel JM (2007) Type-2 fuzzy sets and systems: an overview. IEEE Comput Intell Mag 2007 2(2):20–29

    Article  Google Scholar 

  • Mendel JM (2013) On KM algorithms for solving type-2 fuzzy set problems. IEEE Trans Fuzzy Syst 21(3):426–446

    Article  Google Scholar 

  • Mendel JM (2014) General type-2 fuzzy logic systems made simple: a tutorial. IEEE Trans Fuzzy Syst 22(5):1162–1182

    Article  Google Scholar 

  • Mendel JM, John RB (2002) Type-2 fuzzy sets made simple. IEEE Trans Fuzzy Syst 10(2):117–127

    Article  Google Scholar 

  • Mendel JM, Liu F (2007) Super-exponential convergence of the Karnik–Mendel algorithms for computing the centroid of an interval type-2 fuzzy set. IEEE Trans Fuzzy Syst 15(2):309–320

    Article  Google Scholar 

  • Mendel JM, Liu X (2013) Simplified interval type-2 fuzzy logic systems. IEEE Trans Fuzzy Syst 21(6):1056–1069

    Article  Google Scholar 

  • Mendel JM, Wu HW (2006) Type-2 fuzzistics for symmetric interval type-2 fuzzy sets: part 1, forward problems. IEEE Trans Fuzzy Syst 14(6):781–792

    Article  Google Scholar 

  • Mendel JM, Liu FL, Zhai DY (2009) \(\alpha \)-Plane representation for type-2 fuzzy sets: theory and applications: theory and applications. IEEE Trans Fuzzy Syst 17(5):1189–1207

    Article  Google Scholar 

  • Niewiadomski A (2010) On finity, countability, cardinalities, and cylindric extensions of type-2 fuzzy sets in linguistic summarization of databases. IEEE Trans Fuzzy Syst 18(3):532–545

    Article  Google Scholar 

  • Olivas F, Valdez F, Castillo O et al (2016) Dynamic parameter adaptation in particle swarm optimization using interval type-2 fuzzy logic. Soft Comput 20(3):1057–1070

    Article  Google Scholar 

  • Sanchez MA, Castillo O, Castro JR (2015) Generalized type-2 fuzzy systems for controlling a mobile robot and a performance comparison with interval type-2 and type-1 fuzzy systems. Expert Syst Appl 42(14):5904–5914

    Article  Google Scholar 

  • Wagner C, Hagras H (2010) Toward general type-2 fuzzy logic systems based on zSlices. IEEE Trans Fuzzy Syst 18(4):637–660

    Article  Google Scholar 

  • Wang T, Chen Y, Tong SC (2008) Fuzzy reasoning models and algorithms on type-2 fuzzy sets. Int J Innov Comput Inf Control 4(10):2451–2460

    Google Scholar 

  • Wu DR, Mendel JM (2009) Enhanced Karnik–Mendel algorithms. IEEE Trans Fuzzy Syst 17(4):923–934

    Article  Google Scholar 

  • Zarandi MHF, Rezaee B, Turksen IB, Neshat E (2009) A type-2 fuzzy rule-based expert system model for stock price analysis. Expert Syst Appl 36(1):139–154

    Article  Google Scholar 

  • Zhai DY, Hao MS, Mendel JM (2012) Universal image noise removal filter based type-2 fuzzy logic system and QPSO. Int J Uncertain Fuzziness Knowl Based Syst 20(supp02):207–232

    Article  Google Scholar 

Download references

Acknowledgements

This paper is partially sponsored by the Natural Science Foundation of China (No. 61374113) and Fundamental Research Funds for Liaoning’s Universities (No. JL201615410). The author is so thankful to Prof. J. M. Mendel, who has offered the author some worthy suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Chen.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Wang, D. Study on centroid type-reduction of general type-2 fuzzy logic systems with weighted enhanced Karnik–Mendel algorithms. Soft Comput 22, 1361–1380 (2018). https://doi.org/10.1007/s00500-017-2938-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-017-2938-3

Keywords

Navigation